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Notions of nonstabilizerness, or “magic,” quantify how nonclassical quantum states are in a precise
sense: states exhibiting low nonstabilizerness preclude quantum advantage. We introduce “pseudomagic”
ensembles of quantum states that, despite low nonstabilizerness, are computationally indistinguishable
from those with high nonstabilizerness. Previously, such computational indistinguishability has been
studied with respect to entanglement, introducing the concept of pseudoentanglement. However, we
demonstrate that pseudomagic neither follows from pseudoentanglement nor implies it. In terms of
applications, the study of pseudomagic offers fresh insights into the theory of quantum scrambling: it
uncovers states that, even though they originate from nonscrambling unitaries, remain indistinguishable
from scrambled states to any physical observer. Additional applications include new lower bounds on state
synthesis problems, property testing protocols, and implications for quantum cryptography. Our Letter is
driven by the observation that only quantities measurable by a computationally bounded observer—
intrinsically limited by finite-time computational constraints—hold physical significance. Ultimately, our
findings suggest that nonstabilizerness is a “hide-able” characteristic of quantum states: some states are
much more magical than is apparent to a computationally bounded observer.
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The boundary between quantum and classical compu-
tation is a central question in current research, with a focus
on identifying uniquely quantum resources that contribute
to a quantum advantage. One such resource is nonstabi-
lizerness (“magic”), which is a measure of the non-Clifford
resources needed to prepare a quantum state [1–3].
Nonstabilizerness is directly connected to the hardness
of classically simulating a quantum state [4–12], the yield
of magic state distillation protocols [1,13–22], the overhead
required for fault-tolerant quantum computation [23–26],
and the degree of chaos in a system [27–30]. Given these
connections, one might expect that quantum states with
high nonstabilizerness are inherently different, and more
nonclassical, than states with low values.
In this Letter, we challenge this intuition by constructing

ensembles of states that are poor in magic resources but,
nonetheless, are computationally indistinguishable from
an ensemble of states that are rich in magic resources.
Because they masquerade as highly magical ensembles,
we call the former “pseudomagic” ensembles. Moreover,
their nonstabilizerness can also be tuned: for any value of
nonstabilizerness strictly greater than logðnÞ and up to n,
there is a pseudomagic ensemble with that amount of

nonstabilizerness. While the “pseudoentangled” ensembles
introduced in Ref. [31] happen to also display the above
pseudomagic properties, we prove that the amount of each
resource in them (i.e., entanglement and magic) can be
tuned independently: the existence of pseudoentangled
ensembles does not imply their pseudomagic counterparts,
nor vice versa. While we quantify nonstabilizerness in the
rest of this Letter with the measure of stabilizer Rényi
entropy [27], we explain how to generalize our construction
to many other popular magic measures, such as robustness
of magic [13], stabilizer fidelity and extent [8], and max
relative entropy of magic [32].
As physically motivated applications, we discuss the

implication of pseudomagic for quantum scrambling. Our
results imply, counterintuitively, that some states generated
by nonscrambling unitaries are computationally indistin-
guishable from states generated by scrambling unitaries.
Furthermore, we show that the existence of pseudomagic
states immediately implies the existence of a quantum
cryptographic primitive known as EFI pairs [33]. Finally,
we employ our findings to obtain lower bounds for
black-box magic state distillation and property testing
protocols.
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The computationally bounded observer.—The central
claim of this Letter is that an idea from computer science—
namely, computational indistinguishability—has signifi-
cant ramifications for the ways in which we understand
physics. Say we have two n-particle systems S1 and S2 that
differ in some physical characteristic C, and we aim to
distinguish between the two systems. What if the time
needed for any distinguishing method is on par with the age
of the universe? If so, we then have two systems which
purportedly differ in some physical attribute C, yet never-
theless can never be distinguished in any reasonable
amount of time—so in what sense can we say C is a
genuine physical attribute? In the language of computer
science, a distinguishing algorithm is efficient if its requi-
site computational time (i.e., number of elementary oper-
ations) scales polynomially with the number of particles,
denoted by polyðnÞ, and inefficient if it scales exponentially
as expðnÞ. This (fuzzy) distinction delineates between a
feasible distinguishing scheme and an impractical one.
Indeed, if every possible distinguishing algorithm scales
exponentially with the number of particles n, we say the
two systems S1 and S2 are “computationally indistinguish-
able,” as for even a modest system size n ∼ 120, an
exponential distinguisher’s runtime will surpass the age
of the Universe ∼1018 s, impossible to execute in practice.
This idea motivates us to introduce the notion of the
computationally bounded observer (CBO), an observer
constrained to measurement schemes that operate within
polynomial time. The results presented in this Letter
demonstrate that the (many-body) physics observed by a
CBO differs profoundly compared to an unconstrained
observer. This introduces a unique perspective into quan-
tum many-body systems, transforming the laboratory from
a mere verifier of quantum theories into an integral part of
the theory itself, where the limitations of observers assume
a central role.
Pseudomagic.—First, we review some useful definitions

associated with nonstabilizerness. Let Pn be the Pauli
group on n qubits, Cn be the Clifford group, and let Σ be
the set of pure stabilizer states. A stabilizer operation S is a
quantum channel obeying SðΣÞ ¼ Σ, which is to say that S
preserves the set of stabilizer states [11]. There are many
ways to quantify nonstabilizerness [8,13,27,32,34–43], but
we limit our attention to the magic measures introduced in
Table I [44]. The second key concept in this Letter is the

notion of computational indistinguishability for two ensem-
bles of states, which means that no CBO (i.e., polynomially
bounded algorithm) can tell the difference between the two
ensembles. We refer the reader to Ref. [57] for a detailed
treatment of this concept and its relevance for quantum
cryptography. Having established the two notions of magic
and computational indistinguishability, we now introduce
pseudomagic.
Definition 1.—(Pseudomagic) Let M be a magic mea-

sure. A pseudomagic pair with gap fðnÞ vs gðnÞ [where
fðnÞ > gðnÞ] consists of two state ensembles: (a) a “high
magic” ensemble of n-qubit quantum states fjψk1ig such
that Mðψk1Þ ¼ fðnÞ with high probability over k1, and
(b) a “low magic” ensemble of n-qubit quantum states
fjϕk2ig such that Mðϕk2Þ ¼ gðnÞ with high probability
over k2,such that the two ensembles are computationally
indistinguishable, even when given polynomially many
copies.
Qualitatively, states from the ensemble fjϕk2ig mimic

much more “magical” states to all CBOs, even though they
themselves are low magic. In the rest of this Letter we use
stabilizer Rényi entropy as our magic measure, given by

MαðψÞ ¼
1

1 − α
log

1

2n

X
P∈Pn

tr2αðPψÞ; ð1Þ

which is a magic monotone for α ≥ 2 [58]; see Ref. [44] for
a detailed discussion [59]. Combining the computational
indistinguishability property with the properties of stabi-
lizer Rényi entropy, we show that gðnÞ, the nonstabilizer-
ness of the low-magic ensemble, can be no smaller than
ωðlog nÞ [60]:
Lemma 1.—(Bound to stabilizer entropies) Let E be

the low magic ensemble of a pseudomagic pair. Then the
α-Rényi stabilizer entropies obey MαðψÞ ¼ ωðlog nÞ, with
high probability over the choice of jψi∈ E.

TABLE I. Magic measures and their definitions.

Magic measure Definition

Stabilizer entropy [27] MαðψÞ ¼ ½1=ð1 − αÞ� logð1=dÞPP tr
2αðPψÞ

Robustness of magic [13] RðψÞ ¼ logminfkck1jψ ¼ P
i cijσiihσijg

Stabilizer fidelity [8] F stabðψÞ ¼ − logmaxσ ∈Σjhψ jσij2
Stabilizer extent [8] ξðψÞ ¼ logminðPϕ jcϕjÞ2
Max-relative entropy [32] DmaxðψÞ ¼ logminfλjλσ − ψ ≥ 0g

FIG. 1. The pseudomagic state ensembles discussed in this
Letter are computationally indistinguishable from highly magical
states produced by scrambling dynamics (e.g., Haar random
states).
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In the next section, we turn to the construction of pseudo-
magic pair with maximal gap, i.e., ωðlog nÞ vs OðnÞ.
Construction of pseudomagic ensembles.—For any func-

tion f∶ f0; 1gn → f0; 1g and subset S ⊆ f0; 1gn, we define
the associated subset phase state as [31]

jψf;Si ¼
1ffiffiffiffiffiffijSjp X

x∈ S

ð−1ÞfðxÞjxi: ð2Þ

In Ref. [31], it was shown the ensemble E ¼ fjψf;Sig of
subset phase states (for pseudorandom functions f and
subsets S) is both efficiently preparable, and computation-
ally indistinguishable from Haar random states. In this
section, we show that E also saturates the nonstabilizerness
lower bound in Lemma 1. Since the ensemble of Haar-
random states EHaar have stabilizer entropy ΘðnÞ with
overwhelming probability [44], ðE; EHaarÞ form a pseudo-
magic pair with gap ωðlog nÞ vs OðnÞ. We then show that
applying a polynomial depth quantum circuit U to E results
in a high-magic ensemble EU that, thanks to the transitivity
of computational indistinguishability, is computationally
indistinguishable from the low-magic ensemble E, thus
forming another pseudomagic pair ðE; EUÞ (see Fig. 2).
Theorem 1.—(Subset phase states display pseudomagic)

For any k∈ ½ωðlognÞ; n�, there exists an ensemble E ¼
fjψf;Sig for jSj ¼ 2k that hasMαðψf;SÞ ¼ OðkÞ. For α ≤ 2,
this bound is tight:Mαðψf;SÞ ¼ ΘðkÞ. Furthermore, (a) E is
computationally indistinguishable the ensemble of Haar
random states EHaar. Therefore, ðE; EHaarÞ forms a pseudo-
magic pair with gap ωðlog nÞ vs OðnÞ. (b) There exists a

quantum circuit U composed solely of single-qubit gates
(i.e., it has depth 1) such that ðE; EUÞ, where EU ¼
fUjψf;Sig, also forms a pseudomagic pair with maximal
gap ωðlognÞ vs OðnÞ.
It is natural to ask if, besides the stabilizer Rényi entropy,

other magic measures (see Table I) can be used to define
pseudomagic. In [44], we show that both the α-stabilizer
entropiesMαðψÞ and the log-robustness of magicRðψÞ are
measures of pseudomagic with gap Θðpoly log nÞ vs ΘðnÞ.
As a corollary, we have a sufficient condition for a magic
measure to be a good measure for defining pseudomagic.
For any magic monotone M, if there exists an α such that
Ω½MαðψÞ� ≤ MðψÞ ≤ O½RðψÞ� for pure states ψ , then M
is also a measure of pseudomagic with gap ΘðnÞ vs
Θðpoly log nÞ. In [44], we use this fact to show that the
magic monotones M ¼ F stabðψÞ; ξðψÞ; DmaxðψÞ, as
defined in Table I, are also measures of pseudomagic with
gap Θðpoly log nÞ vs ΘðnÞ. Notably, these measures serve
as genuine magic monotones even in the context of mixed-
state magic resource theory.
Implications to quantum scrambling.—Having defined

the notion of pseudomagic, we now use it to address some
important aspects of quantum information scrambling, and
explore how CBOs challenge its foundational principles.
One way of defining a scrambling unitary evolution U is
to say that it is scrambling if it attains the Haar value for its
2k-point out-of-time-order correlators (OTOCs) [61,62].
These OTOCs are denoted by C2k and are defined as

C2kðUÞ ≔ 1

d
tr
�
P̃1Q1P̃2Q2 � � � P̃kQk

�
; ð3Þ

where Pi and Qi are nonidentity Pauli operators for i ¼
1;…; k and P̃i ≔ U†PiU. To be precise, U is scrambling if
C2kðUÞ ¼ Õ½C2kðUHaarÞ�, where Õ stands for an irrelevant
polynomial overhead. Indeed, typically C2kðUHaarÞ ¼
O½expð−γnÞ� with γ depending on the particular choice
of the correlator C2k [61].
Magic resource theory is linked to quantum information

scrambling [63–65]. Clifford unitaries can be scramblers, but
they scramble information in a relatively simple way [66].
Any unitary exhibiting complex information scrambling for
its OTOCs must contain ΩðnÞ non-Clifford gates [67,68].
Information scrambled by a unitary evolution with less
than n non-Clifford gates can be unscrambled and recon-
structed [66,69]. Consequently, the mere existence of
pseudomagic states that are also pseudorandom (i.e., subset
phase states), suggests the existence of noncomplex scram-
blers that nonetheless generate states indistinguishable
from states generated by maximal scramblers. More pre-
cisely, we establish that such states must be generated by a
unitary evolution that exhibits exponentially separated
OTOCs from the typical Haar value.
Theorem 2.—(Hidden quantum scrambling) Let E be an

ensemble of pseudomagic states that is also pseudorandom.

FIG. 2. The pseudorandom ensemble of states E (subset phase
states) we consider in this Letter exhibit both pseudomagic and
pseudoentanglement. However, we show that we can independ-
ently tune the entanglement and nonstabilizerness of these
pseudorandom states via local and Clifford unitaries, respectively.
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Let jψi∈ E and letU such that jψi ¼ Uj0i⊗n. The 2k-point
OTOCs of U (for k ≥ 4) are exponentially separated from
the Haar value,

C2kðUÞ ¼ Ω
�
expðnÞC2kðUHaarÞ

�
: ð4Þ

Therefore, although it generates a state that is on-average
computationally indistinguishable from Haar random, U is
not fully scrambling.
The proof of this can be found in [44]. The curious

implication of Theorem 2 is this: any physical observer, in-
herently constrained by computational limits (i.e., a CBO),
cannot differentiate between a maximally scrambling
evolution and nonscrambling one solely based on the
observed resultant state (see Fig. 1). As a result, a CBO
interprets quantum scrambling evolutions differently from
an unrestricted observer, exposing a significant conceptual
challenge in characterizing quantum information scram-
bling. Additionally, our findings could potentially also lead
to implications for the theory of quantum chaos. Indeed, by
defining quantum chaotic evolution as maximally scram-
bling unitary operators, then Theorem 2 would imply the
impossibility for a CBO to distinguish between a chaotic
quantum evolution from a nonchaotic one. However, while
some authors [61] are inclined to think about quantum
chaotic evolution precisely as maximal scramblers [61],
this concept has been challenged in Ref. [70], where it has
been proven that scrambling (when restricted to k ¼ 2)
does not imply chaos. The question of whether maximal
scrambling, as probed by higher order OTOCS, implies
chaos remains an exciting venue for future research.
Implications to quantum cryptography.— An essential

primitive for classical cryptography is the concept of a one-
way function (OWF), which is a function that is efficient to
evaluate but hard to invert. However, the story is much
different in the quantum world: OWFs are unnecessary for
some quantum cryptographic constructions to hold [71,72].
This leads naturally to a question of whether there is an
indespensible primitive for quantum cryptography that
serves a similar role to OWFs for classical cryptography.
In Ref. [33], the authors introduce EFI pairs as this quan-
tum analog and show that it is necessary for many secure
quantum cryptographic schemes, including bit commitment
[73,74], oblivious transfer [75,76], multiparty quantum
computation [77], and zero knowledge proofs [78]. EFI
pairs are state ensembles generated by efficient circuits that
are statistically far but computationally indistinguishable.
In light of the proposed significance of EFIs, we show the
following.
Theorem 3.—(Cryptographic implications) Consider an

ensemble of efficiently preparable pseudomagic states that
have stabilizer entropy M1 ¼ Θ½gðnÞ� with high probabil-
ity, where gðnÞ is tunable in the range ωðlog nÞ and OðnÞ.
Then, the pseudomagic ensemble, along with the high
nonstabilizerness ensemble, forms an EFI pair.

For a proof, see Ref. [44]. Crucially, Theorem 3 holds
even in a world without quantum-secure OWFs: it says that
the bare existence of pseudomagic states with tunable
stabilizer entropy implies the existence of EFI pairs and
the world of cryptographic applications they unlock. This
strengthens the case that EFI pairs are a more fundamental
primitive for quantum cryptography than OWFs.
No efficient black-box magic-state distillation.—Several

architectures for universal fault-tolerant quantum comput-
ing rely on applying stabilizer operations to carefully
prepare resource states called magic states [25,79–81].
An example is the canonical magic state vector jTi ¼
j0i þ eiπ=4j1i, which when provided as an input to aux-
iliary qubits, enables T-gate implementation using only
stabilizer operations. However, not all nonstabilizer states
are useful for implementing non-Clifford gates [82],
especially noisy ones. This motivates the question, can
we develop efficient (i.e., polynomial-sized circuit descrip-
tion) stabilizer protocols that can transform generic non-
stabilizer states ρ into useful nonstabilizer states, such as
jTi? In line with the spirit of analogous tasks for entangle-
ment resource theory [83,84], we term this task black-box
magic-state distillation.
Theorem 4.—(Black-box magic state distillation) Given

a magic monotone M such that Ω½MαðψÞ� ≤ MðψÞ ≤
O½RðψÞ� for all pure states ψ , any efficient stabilizer
protocol that synthesizes a state vector jBihBj from an
arbitrary (potentially mixed) input state ρ requires

Ω
�
MðjBihBjÞ
log1þcMðρÞ

�
ð5Þ

copies of ρ, for any constant c > 0. Remarkably the above
is valid for M ¼ F stab; ξ; Dmax in Table I.
The proof of this can be found in [44]. This theorem

shows how pseudomagic provides a complementary per-
spective to magic resource theory in determining the limits
of magic state distillation protocols. If we have a target
magic state jBihBj and a generic input state ρ, naive lower
bounds from resource theory say that we require
ΩðMðjBihBjÞ=MðρÞÞ copies of ρ to synthesize jBihBj.
This assumes that we can freely convert from nonstabilizer-
ness in the input state to nonstabilizerness in the output
state. However, once we take into account the computa-
tional efficiency of our synthesization protocol, Theorem 4
intuitively means that if we do not know what the input
state is, the “value” of the nonstabilizerness in the input state
is reduced logarithmically. For instance, assume we have a
generic resource state vector jψiwithMðψÞ ¼ OðnÞ. Naive
bounds tell us that we can distill at most r ¼ OðnÞ canonical
magic states jTi, since MðjTihTj⊗rÞ ∝ r. However,
Theorem 4 imposes a much stricter bound; if our synthesis
protocol is efficient, it can synthesize at most r ¼
Oðlog1þc nÞ copies of jTi.
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Independence of pseudomagic and pseudoentanglement:
Tighter distillation bounds.—The astute reader may notice
that pseudomagic states are the same states that display
pseudoentanglement [31]. Given the long history of re-
source theories centered on these two quantities, it is natural
to wonder if the existence of pseudomagical ensembles is in
some way implied by the existence of pseudoentangled
ensembles. We answer this question in the negative by
showing that the entanglement and magic of a pseudoran-
dom ensemble can be independently tuned. These findings
suggest that neither pseudomagic nor pseudoentanglement
is a generic feature of pseudorandom ensembles.
Theorem 5.—(Pseudomagic and pseudoentanglement

are independent properties) Given any two functions
fðnÞ; gðnÞ∈ ½ωðlognÞ; OðnÞ�, there exists a pseudorandom
ensemble whose states have entanglement Θ½fðnÞ� and
magic Θ½gðnÞ� up to negligible failure probability. More-
over, there exists a pseudomagic pair with maximal gap
and fixed entanglement Θ½fðnÞ�. Conversely, there exists a
pseudoentangled pair with maximal gap and fixed magic
Θ½gðnÞ� (for any magic measure in Table I).
We study the implications of this theorem in the context

of distillation protocols. Theorem 4 and Proposition 3.1
of Ref. [31] are similar in spirit: they demonstrate that
resource-theoretic distillability limits for EPR pairs or
magic states are a gross overestimate of what is achievable
by any computationally efficient algorithm that is agnostic
to its input state. However, many magic state or entangle-
ment distillation protocols are handcrafted to work on
particular classes of input states [1,85]. Do our lower
bounds still hold up, then, if we knew something about the
state we started with? For example, Ref. [86] asks whether
one can distill magic from highly entangled states. We use
Theorem 5 to show that prior knowledge of the non-
stabilizerness of input states does not lead to increased
efficiency in entanglement distillation.
Theorem 6.—(Prior knowledge of magic does not help

entanglement distillation) Consider an entanglement dis-
tillation protocol that distills EPR pairs from states drawn
from an ensemble fψkg. Even if we are guaranteed that the
states ψk have magic Θ½gðnÞ� for gðnÞ∈ ½ωðlog nÞ; OðnÞ�
with high probability, the protocol can distill at most
O½log1þc SðρÞ� Bell pairs with high probability, where
SðρÞ is the von Neumann entanglement entropy of an
input state ρ and c > 0.
An identical strengthening of the black-box magic

state distillation protocol in Theorem 4 is also possible,
using a similar proof technique (see the Supplemental
Material [44]). Our results say that for states with super-
logarithmic entanglement (i.e., beyond MPS), magic dis-
tillation must be highly inefficient. Beyond strengthening
distillation results, Theorem 5 allows us to significantly
strengthen a wide array of no-go results for any entangle-
ment (nonstabilizerness) manipulation or detection task to
cases where we even have a priori knowledge about states’
nonstabilizerness (entanglement).

Conclusions and outlook.—In this Letter, we introduced
the concept of pseudomagic states, providing an insightful
expansion of the magic resource theory. We first estab-
lished the theoretical foundation for pseudomagic states.
The core of this framework is the stabilizer entropy, which
is unique among various magic measures (see Table I) as it
does not require an impractical minimization procedure
to be evaluated either theoretically or experimentally, and
lower bounds all the other magic measures. These features
allowed us to demonstrate the existence of pseudomagic
ensembles with a large magic gap log n vs n, with respect to
all the genuine magic monotones in Table I. We refer to the
Supplemental Material for a technical discussion regarding
the role of the stabilizer entropy in pseudomagic [44].
We investigated the implications of pseudomagic for

quantum scramblers, quantum cryptography, and magic
state distillation. We proved the existence of states, pre-
parable with a nonscrambling unitary, that appear to have
been generated by a scrambling one, concluding that a
computationally bound observer cannot determine whether
a process is scrambling solely by the generated states. More
general questions concerning the existence of pseudoran-
dom unitaries [87] and its consequence for quantum chaos
theory will be the subject of future research. Another
exciting avenue to explore is the implication that pseudo-
magic has for many-body physics, particularly in light of
the recent studies of magic-state resource theory [88–95]
and quantum complexity in many-body systems [96].
Finally, our exploration of computationally bounded
observers has revealed the subtleties of quantum phenom-
ena under computational constraints. This perspective,
guided by computational limitations, deepens our under-
standing of quantum systems and underscores the necessity
of considering computational constraints in quantum
research, opening avenues for future investigations at the
intersection of quantum information and computation.
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