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The main bottleneck for universal quantum computation with traveling light is the preparation of
Gottesman-Kitaev-Preskill states of sufficient quality. This is an extremely challenging task, experimental
as well as theoretical, also because there is currently no single easily computable measure of quality for
these states. We introduce such a measure, Gottesman-Kitaev-Preskill squeezing, and show how it is related
to the current ways of characterizing the states. The measure is easy to compute and can be easily employed
in state preparation as well as verification of experimental results.
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Universal quantum computation is a goal pursued on
many experimental platforms [1–3], each one with a set of
advantages and disadvantages. Bosonic harmonic oscilla-
tors encoded into modes of room temperature traveling
light offer unprecedented scalability, arising from their
compatibility with modern communication technologies
[4–6]. Traveling light has already been used for demon-
strating quantum advantage [2,3], but the universal com-
putation requires passing a significant bottleneck—
preparation of suitable non-Gaussian states.
Gottesman-Kitaev-Preskill (GKP) states can provide the

necessary non-Gaussianity [5,7–10]. They can be effec-
tively multiplexed and error corrected by feasible Gaussian
operations and measurements [6,11–16]. However, prepa-
ration of high quality GKP states is a task that has so far
been achieved only in systems with strong coupling to an
auxiliary qubit [17–19]. Unfortunately, traveling light
requires a more challenging approach [20]. The currently
available optical preparation is based on the boson sam-
pling [21], in which some modes of a multimode entangled
Gaussian state are measured by photon number resolving
detectors and some outcomes herald preparation of the
desired state [20,22–25]. A key component of this approach
is the numerical simulation optimization of the state
preparation setup with the goal of preparing a suitable
state with a feasible success rate [26,27]. However, quan-
tifying the quality of the prepared GKP approximation is
still an open problem.
The ideal GKP state is a non-normalizable abstraction

with unit value of the stabilizers and infinitely squeezed
states [7]. All of these are separate properties, so, rather
than using a multiparameter optimization, the current
customary approach relies on devising an approximative
state with limited quality and aiming to prepare it with high
fidelity [20,23–25,28,29]. However, for the sake of both
setup optimization and state evaluation, it would be
practical to identify a single measure of non-Gaussianity
inherent to GKP states, similarly to the cubic squeezing of
resource states for the cubic phase gate [7,30–33].

In this Letter we introduce a class of Hermitian positive
semidefinite operators, whose ground states are the GKP
qubit states in various topologies. We show that their mean
values can be interpreted as nonlinear squeezing of the
GKP states and that this squeezing neatly ties together the
existing methods for evaluation. Furthermore, it can be
advantageously used for efficiently evaluating experimen-
tally prepared states, optimizing the state preparation
procedures, and even arriving at fundamental relation
between the quality of GKP states and their stellar rank.
The ideal GKP qubit state j0Li is defined as the infinite

superposition of quadrature eigenstates,

j0Li ∝
X
s∈Z

jx ¼ 2s
ffiffiffi
π

p i: ð1Þ

Its main properties arise from the state being the simulta-
neous eigenstate of stabilizer displacement operators Ŝx ¼
e−i2

ffiffi
π

p
p̂ and Ŝp ¼ e−i2

ffiffi
π

p
x̂, where x̂ and p̂ are quadrature

operators with ½x̂; p̂� ¼ i. Furthermore, the state is pre-

served under
ffiffiffiffiffi
Ŝp

q
and changes to the orthogonal state j1Li

under
ffiffiffiffiffi
Ŝx

q
. Any approximation j0̃Li of the state (1) should

follow

Ŝxj0̃Li ≈ j0̃Li;
ffiffiffiffiffi
Ŝp

q
j0̃Li ≈ j0̃Li; ð2Þ

where “≈” represents approximate equality and would be
replaced by the equality for the ideal state j0Li. The main
result of this Letter is the realization that the GKP qubit
state (1) can be also found as the zero eigenvalue eigenstate
of operator

Q̂0 ¼ 2sin2
�
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π

p
2
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: ð3Þ
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The asymmetry between x̂ and p̂ follows the asymmetry of
the GKP state (1) and the minimal operations (2) that
preserve it. For any quantum state, the mean value hQ̂0i
directly depends on the value of stabilizers and it can be

zero only when eigenvalues of both Ŝx and
ffiffiffiffiffi
Ŝp

q
are equal

to 1. At the same time, the asymmetry between x̂ and p̂
ensures that the eigenstate of Q̂0 is indeed the GKP qubit
state j0Li, rather than any other state preserved under the
action of the stabilizers. Looking at it from a different
perspective, operator (3) can produce the value of zero only
for those quantum stateswith nonzerowave function only for
discrete periodic values in both x and p representation. This
is a property satisfied only by the GKP qubit state j0Li.
The main advantage of the specific combination of

displacement operators is that the resulting operator Q̂0

is Hermitian and positive semidefinite. The operator can be
therefore taken as a Hamiltonian and the GKP state as its
ground state. Furthermore, the mean value hQ̂0i in some

cases equals to the variance of
ffiffiffiffiffiffi
Q̂0

p
, which is a nonlinear

functional of quadrature operators, and can be therefore
interpreted as nonlinear squeezing. The concept of squeezing
is closely tied to continuous variable quantum optics and it
serves as one of its main resources [34–36]. As a figure of
merit for preparation of squeezed states, the variance of x̂
neatly transitions between the classical limit given by the
vacuum state with variance hvacjx̂2jvaci ¼ 1=2, and the
ultimately unachievable limit of the unphysical quadrature
eigenstate hx ¼ 0jx̂2jx ¼ 0i → 0. The degree of squeezing
for any quantum state ρ̂with hx̂i ¼ 0 can be then given by the
normalized secondmoment2Tr½ρ̂x̂2�,which canbe expressed
either as a direct value or in decibels. The concept can be
expanded to moments of other operators, which has been
demonstrated on resource states for the cubic phase gate
[15,30,32,33,37].
In analogy to quadrature squeezing, we can define the

nonlinear GKP squeezing for any quantum state ρ as

ξ0 ¼ hQ̂0i ¼ Tr½ρ̂Q̂0�: ð4Þ

It can be quickly shown that, for any Gaussian state, the
GKP squeezing cannot be lower than one, which is
achieved for a quadrature eigenstate [38]. Quantity (4) is
also bounded for classical states that can be expressed as
mixtures of coherent states and always result in
ξ0 ≥ 2 − e−π=2 − e−π . Note that definition (4) does employ

the second moment of
ffiffiffiffiffiffi
Q̂0

p
and not the variance, which is

customarily considered in the Gaussian squeezing scenario.
The omission of the square of the first moment was done
deliberately to keep the GKP squeezing as a linear func-
tional of the density matrix. The choice is also justified as
the optimal states have the mean values equal to zero.
The GKP squeezing (4) is defined for the GKP state j0̃i.

However, since other GKP states and other encodings are

only a Gaussian operation away, we can easily define
operators for the other GKP states by replacing the argu-
ments of the functions. We can thus define

Q̂1 ¼ 2cos2
�
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ffiffiffi
π

p
2

�
þ 2sin2

�
p̂

ffiffiffi
π

p �
;

Q̂s0 ¼ 2sin2
�
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π

2
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�
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ffiffiffi
π

2

r �
;

Q̂s1 ¼ 2cos2
�
x̂

ffiffiffi
π

2

r �
þ 2sin2

�
p̂

ffiffiffi
π

2

r �
;

Q̂h ¼ 2sin2ðκþx̂ − κ−p̂Þ þ 2sin2ðκþp̂ − κ−x̂Þ;
Q̂G ¼ Û†

GQ̂0ÛG;

Q̂j ¼ 2sin2ðax̂Þ þ 2sin2ðbp̂Þ; ð5Þ

which are the operators whose ground states are, respec-
tively, GKP qubit state j1Li, symmetrical GKP states j0Si
and j1Si on a square grid, hexagonal GKP on a triangular
grid with κ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðπ=8Þp ð31=4 � 3−1=4Þ [39], a GKP state
transformed by an arbitrary unitary Gaussian operation ÛG
to fit into any desired encoding, and, finally, a general GKP
type state on a grid with arbitrary spacing. Operators for
qubit states 0 and 1 generally differ by displacement in x̂,
symmetrical grid is then obtained by squeezing [38]. The
last operator stands aside because it cannot be always
obtained from the others by a Gaussian unitary trans-
formation and therefore does not always have a zero
eigenvalue, but it is relevant for scenarios in which the
grid is affected by nonunitary transformations, such as in
the case of losses. Among these new operators, ξs0 plays a
prominent role—since the operator is symmetric, it has
identical properties in both quadratures and therefore
makes it easier to compare it to the existing figures of
merit, which is what we are going to do now.
The GKP squeezing is directly tied to the grid squeezing

proposed by [23,28], which is also expressed as the
function of stabilizers. For any quadrature operator q̂
and the corresponding displacement operator e−iuq̂ that
translates the conjugate quadrature by a grid constant u, the
grid squeezing is defined as

Δ2
q;u ¼ −

4

u2
ln
��he−iuq̂i��: ð6Þ

Please note that we have deliberately changed the notation
from [23,28] to allow for easier discussion. The GKP
squeezing can be directly expressed as a function of grid
squeezing values for quadratures x̂ and p̂:

ξs0 ¼ 2 − e−
π
2
Δ2

x;
ffiffiffi
2π

p − e
−π
2
Δ2

p;
ffiffiffi
2π

p ≈
π

2
Δ2

x;
ffiffiffiffi
2π

p þ π

2
Δ2

p;
ffiffiffiffi
2π

p ; ð7Þ

where the approximation holds for states with high squeez-
ing. This correspondence can be used to gain some insight
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about the suitability of the respective states for error
correction [5]. The exact equivalence will need to be
derived by further research, but we can expect −8.69 dB
(−5.06 dB) of GKP squeezing to be sufficient (necessary)
for fault tolerance [38]. These thresholds are invariant
under Gaussian operations if they are accompanied by
suitable transformation of the grid. A sufficient amount of
GKP squeezing therefore indicates that the state can be
transformed into an error correctable form by Gaussian
transformations.
The GKP squeezing also directly relates to the fidelity

with which it is possible to prepare the approximate GKP
state

j0s;gi ∝
X
s∈Z

e−
g
2
ðs ffiffiffiffi

2π
p Þ2 1

ðπgÞ1=4
Z þ∞

−∞
e−

ðx−s ffiffiffi2πp Þ2
2g jxidx; ð8Þ

with grid squeezing Δ2
x;

ffiffiffiffi
2π

p ¼ Δ2
p;

ffiffiffiffi
2π

p ¼ g, which is equal

to the normalized quadrature variance of the individual
squeezed states forming the superposition. For such state,
the GKP squeezing can be found analytically as

ξs0;g;F¼1 ¼ h0s;gjQ̂s0j0s;gi ¼ 2 − 2e−
πg
2 : ð9Þ

The linearity of the operator and the bounded range of its
eigenvalues guarantee that, for any state that has fidelity
F ¼ f to approximate state (8) with parameter g, the GKP
squeezing is bounded by

fξs0;g;F¼1 ≤ ξs0;g;F¼f ≤ fξs0;g;F¼1 þ 4ð1 − fÞ: ð10Þ

See [38] for details. The upper and lower bounds are shown
in Fig. 1. The spread suggests that squeezing might be a
more suitable figure of merit for evaluation of quantum
states than the fidelity.

The operators (3) and (5) are Hermitian and can be, in
principle, directly measured. Interestingly, for the sake of
evaluation, the measurement can be replaced by direct
measurements of two quadratures. From their statistics it is
now possible to obtain the values of sine and cosine
functions, together with their respective error bars, and
use them to construct the value of GKP squeezing. Any
value smaller than one witnesses the non-Gaussian nature
of the state and low enough value ensures fault tolerance.
The measurement is also much more feasible than quantum
tomography required for evaluating the fidelity.
Furthermore, when trying to assess the non-Gaussian

nature of experimental data, one can calculate the GKP
squeezing pertinent to any operator from (3) and (5) and
look for the lowest value:

ξopt ¼ 2 minhsin2ðc11x̂þ c12p̂þ d1Þ
þ sin2ðc21x̂þ c22p̂þ d2Þi; ð11Þ

where the minimization is taken over the vector of
parameters ðc11; c12; c21; c22; d1; d2Þ. While the coefficients
cij can be, in principle, arbitrary, they should form a

symplectic matrix multiplied by
ffiffiffiffiffiffiffiffi
π=2

p
for GKP states. In

all cases, the mean value (11) can be converted to a linear
combination of mean values of displacement operators,
which can be evaluated efficiently [37]. The minimum (11)
then represents the best achievable GKP squeezing and the
optimal vector determines the relevant grid. Taking
MGKP ¼ − ln ξopt now gives us an operationally defined
convex monotone of non-Gaussianity specific to GKP
states [40–42].
On a theoretical side, any of operators (3) and (5) can be

used as a straightforward cost function for numerical
optimization of state preparation protocols. The optimiza-
tion numerically simulates the experimental circuits
planned for the state preparation for various parameters
of the setups with the goal of finding parameters for which
the produced quantum state has the required properties.
Such properties can be efficiently evaluated by GKP
squeezing. For example, it can be quickly seen that the
breeding protocol [23], which is often cited as a determin-
istic way to prepare GKP states, actually requires the
postselection to work [38].
The operators (3) and (5) can also give us a valuable

insight on how the GKP squeezing of quantum states
depends on their stellar rank [43]. We can see that by taking
any one of the operators in Fock representation and turning
it into a square Hermitian matrix by projecting it on a finite
dimensional Hilbert space. The most straightforward way
of doing that relies on decomposing the operator into a sum
of displacement operators (2), constructing their matrices
on a larger Hilbert space, and then truncating them [37,38].
The minimal eigenvalue of this matrix now determines the
maximal achievable GKP squeezing and the corresponding

FIG. 1. The range of GKP squeezing ξs0 for quantum states that
have fidelity F with an approximate state (8) relative to quad-
rature squeezing g (see the legend). Solid lines show the lower
bound, dashed lines the upper bound. The black lines represent
the classical and Gaussian thresholds. Background colors mark
areas in which fault tolerance is guaranteed (brown) and possible
(orange).
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eigenstate is the optimal quantum state. Figure 2 shows few
examples of quantum states found in this way for operator
(3) limited to several chosen dimensions. We can also
quickly compare the maximal achievable GKP squeezing
for different operators (5) to see which one of them is best
suitable for state preparation, see Fig. 3. It can be seen that
the GKP state j1i is the first to show a non-Gaussian
behavior, already for N ¼ 3 corresponding to maximal
photon number 2. The symmetrical GKP states s0 and s1
can be prepared slightly more easily than the other forms,
but the difference is not large and the Hilbert space
dimension related to the stellar rank is the determining
factor.
The GKP squeezing also offers a straightforward way to

evaluate effects of the dominant forms of decoherence
suffered by GKP states—Gaussian loss and additive noise.

Both of these can be efficiently described with the help of
the Heisenberg picture; the quadrature operators of the
mode after the decoherence evolution are given in terms of
the initial quadrature operators as x̂out ¼ ffiffiffi

η
p

x̂in þ x̂V and
p̂out ¼ ffiffiffi

η
p

p̂in þ p̂V , where η represents the intensity loss
coefficient and x̂V and p̂V represent the quadrature oper-
ators of the effective environmental mode with variance
V ¼ hn̂i þ ½ð1 − ηÞ=2�, where hn̂i is the number of added
thermal photons. The GKP squeezing after such a channel
can be expressed as

ξs0;out ¼ 2γ

�
sin2

� ffiffiffiffiffi
πη

2

r
x̂in

��
þ 2γ

�
sin2

� ffiffiffiffiffi
πη

2

r
p̂in

��

þ 2 − 2γ; ð12Þ

where γ ¼ e−πV [38]. The two main effects of decoherence
are the scaling of the grid and addition of a noise floor. The
scaling of the grid can be ignored in single quadrature
measurements, because it can be compensated by Gaussian
phase sensitive amplification or by transforming the data.
In this way, the purely lossy channel with η can be
converted to purely noisy channel with η ¼ 1 and
V ¼ ð1 − ηÞ=ð2ηÞ. The effect is illustrated in Fig. 4, where
we can see that roughly 10% losses can be expected to
prevent fault tolerance. For the symmetrical GKP squeez-
ing, the two quadratures are affected in the similar manner.
This is not true in general; different topologies behave
differently under decoherence. It could be therefore prac-
tical to take this into consideration when designing experi-
ments [44,45].
In summary, from their very introduction it was realized

that GKP states are simultaneous eigenstates of the com-
muting stabilizer operators. However, these operators,
individually representing displacements in two quadra-
tures, were always treated independently. Consequently,
the figures of merit, apart from the fidelity to a finite energy

(a) (b)

(d)(c)

FIG. 2. Wigner functions of the lowest eigenvalue eigenstates
of Q̂0 restricted to dimension (a) N ¼ 5, (b) N ¼ 10,
(c) N ¼ 20, and (d) N ¼ 50.

FIG. 3. Maximal GKP squeezing (4) in various topologies (see
the legend) achievable for quantum states from a Hilbert space
with dimension N . The black lines represent the classical and
Gaussian thresholds. Background colors mark areas in which
fault tolerance is guaranteed (brown) and possible (orange).

FIG. 4. The GKP squeezing ξs0;out after decoherence relative to
the GKP squeezing before decoherence ξs0;in for various lossy
channels (see the legend). The black lines represent the classical
and Gaussian thresholds. Background colors mark areas in which
fault tolerance is guaranteed (brown) and possible (orange).
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approximate states, were also mostly focused on their
independent properties, which led to difficult trade-offs,
as each stabilizer could be, on its own, saturated by a
Gaussian state. We have shown that it is possible to merge
the stabilizers into a single positive semidefinite Hermitian
operator. In any quantum state, the mean value of this
operator can be interpreted as the amount of GKP squeez-
ing that is a monotone for the particular non-Gaussianity
relevant to GKP states. At the same time, the mean value
directly depends on the values of stabilizers, which allows
us to keep the methods of characterization developed so far.
The new operator can be feasibly evaluated for exper-
imentally prepared states as it requires only measurement in
two orthogonal bases, offers an easy-to-compute cost
function for the numerical methods employed in optimi-
zation of state preparation circuits, and its eigenstates in
any given dimension are the best possible approximations
of GKP states. The operator can be also treated as the
Hamiltonian of a system for which the GKP states arise
naturally as its ground states.
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