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Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and
inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-
dimensional quantum systems, exploring both theoretical frameworks and experimental validations.
We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number
of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally,
we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided
device-independent context. These criteria serve as tools for identifying potential asymmetric dimension-
ality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we
experimentally observe asymmetric structures of EPR steering in the C3 ⊗ C3 Hilbert space. Our Letter
offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential
applications in asymmetric high-dimensional quantum information tasks.
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Introduction.—Einstein-Podolsky-Rosen (EPR) steer-
ing, an intermediate quantum correlation situated between
entanglement [1] and Bell nonlocality [2], describes the
ability of one observer to affect the state of another remote
observer via local measurements [3–7]. More importantly,
its directional property indicates an extraordinary asym-
metry, which further leads to so-called one-way steering
(1WS), that is, steering could be possible in a single
direction but is impossible in the reverse direction [8].
The effect of 1WS has been experimentally demonstrated
in both continuous-variable systems [9] and discrete-
variable systems [10–14] and also been recognized as a
remarkable resource for one-sided device-independent
(1SDI) quantum information processing [15–22].
Previous experimental works on one-way steering focused

on two-qubit or qubit-qutrit systems. Employing high-
dimensional (HD) quantum systems features increased
channel capacity and significantly improved robustness to
noise and loss beyond qubits [23]. Recently, HD steering
has been observed in experiments [24–27]. Meanwhile,
developing reliable tools to characterize EPR steering of
HD quantum systems is a central challenge. Considerable
interest has been seen in quantifying HD steering using the
Schmidt number [28] in theories and experiments [29–32].
The notion of genuine high-dimensional steering (GHDS)
was proposed to introduce a dimensional quantification of
steering, as quantified by Schmidt number [29]. In a practical

quantum network, the asymmetric channels are very likely
to exist due to differences of sites and users. A maximally
asymmetrical steering was theoretically studied by construct-
ing states in an asymmetric dimension d × ðdþ 1Þ [33].
That is, Bob cannot steer the state of Alice, while Alice
can strongly steer Bob’s state by demonstrating GHDS.
Meanwhile, the asymmetry of steerability could exist even
in the standard two-way steering [11,34]. Intuitively, rich
asymmetric structures of HD steering could be characterized
by quantifying the Schmidt number in both steering direc-
tions, which still lacks a full description. Considering
complex HD quantum systems, characterizing various
asymmetric steering therein is of fundamental interest and
has potential applications in quantum communications with
asymmetric channels and settings [35–38].
In this Letter, we theoretically formalize and experimen-

tally observe the diverse asymmetric structures of HD
steering. To do this, we first propose a notion of genuine
high-dimensional one-way steering (GHD-1WS) to show-
case the novel forms of asymmetric HD steering. By
exploring the monotone of consistent steering robustness
(CSR) [39] and the connection between GHDS and
simulability of HD measurements [40,41], we develop
two criteria to sufficiently certify the lower and upper
bounds of the Schmidt number in the 1SDI setting.
Our approach would expose the possible asymmetry of
steering dimensionality in two directions, even for standard
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two-way steering. With the restriction of finite projective
measurements, a class of two-qutrit mixed states is con-
structed to illustrate how the GHD-1WS manifests in the
C3 ⊗ C3 Hilbert space. By generating these states encoded
in the photonic polarization and path degrees of freedom,
we experimentally observe asymmetric structures of genu-
ine three-dimensional 1WS.
Preliminaries.—Considering a bipartite state ρAB, Alice

implements k-setting local measurements fMajxga on her
subsystem (labeled by x ¼ 1;…; k) and receives a result
a∈ f0;…; d − 1g, where fMajxga;x denotes a set of pos-
itive operators Majx ≥ 0 and satisfies

P
a Majx ¼ I for

each x. Correspondingly, Bob’s subsystem is reduced in
a conditional (unnormalized) state

σajx ¼ TrA½ðMajx ⊗ IBÞρAB�: ð1Þ
The set fσajxga;x is an assemblage and features standard
steering from Alice to Bob if it admits no local hidden
state (LHS) model [3].
We recall the concept of GHDS [29], which provides a

dimensional measure of steering by Schmidt number. The
Schmidt number of a bipartite mixed state ρ is the minimum
n such that it can be decomposed as ρ ¼ P

i pijψ iihψ ij,
where all pure states jψ ii have a Schmidt rank of at most n.
Formally, that is SNðρÞ ≔ minfpi;jψ iigmaxfig SRðjψ iiÞ,
where the minimization is ergodic over all possible pure-
state decompositions fpi; jψ iig of ρ ¼ P

i pijψ iihψ ij.
Hence, an assemblage fσajxg is termed n-preparable

when it is prepared by local measurements fMajxga;x
on any bipartite state ρ of Schmidt number at most n.
We denote the convex set of all n-preparable assemblages
as An. In this framework, A1 simply means the collection
of LHS assemblages. Any assemblage is defined to exhibit
genuine n-dimensional steering when it is not (n − 1)-
preparable but n-preparable, denoted as dAB ¼ n from
Alice to Bob for convenience.
Genuine high-dimensional one-way steering.—Recent

works have explored GHDS on the symmetric steerable
states, namely, dAB ¼ dBA [29–32]. Building upon the
GHDS concept, we introduce the notion of GHD-1WS,
which characterizes asymmetric steering in scenarios where
the dimension of steering would be different when the roles
of Alice and Bob are exchanged. A bipartite state features
genuine n-dimensional 1WS from Alice to Bob, when
(i) Alice can strongly steer Bob and prepare an n-steerable
assemblage for Bob via local operations, that is, dAB ≥ n;
(ii) but, in turn, Bob could generate only assemblages
exhibiting at most (n − 1)-steerable for Alice via local
operations, dBA ≤ n − 1. More formally, this indicates

fσBajxg ∉ An−1; fσAbjyg∈An−1: ð2Þ

Thus, GHD-1WS is defined in the sense that GHDS can
be demonstrated in a single steering direction but not

reciprocally. Notably, there exist (n − 1) forms in genuine
n-dimensional 1WS. In this way, only genuine two-
dimensional 1WS can be characterized by conventional
methods [42]. As depicted in Fig. 1, the GHD-1WS concept
would enable the formalization of complete asymmetric
steering structures within HD systems.
A naturally raised question is how to characterize GHD-

1WS. First, we use the steering monotone CSR as the
quantifier. Standard steering robustness SRðfσajxgÞ quan-
tifies the minimal amount t of arbitrary noise fτajxg that can
be added to the assemblage fσajxg, such that the mixture
ðσajx þ tτajxÞ=ð1þ tÞ defines an LHS assemblage [43]. The
notion of CSR is defined by a slight modification that
demands the noise assemblage fτajxg has the same reduced
state, that is,

P
a τajx ¼

P
a σajx ∀ x [39]. Thus, CSR is

expressed as

SCSRðfσajxgÞ ¼ min
t;τajx

�

t ≥ 0j σajx þ tτajx
1þ t

unsteerable;

and
X

a

τajx ¼
X

a

σajx; ∀ x

�

: ð3Þ

The above formulation can be numerically computed via
the semidefinite program (SDP) [5]. Exploiting the prop-
erty of CSR, the standard connection between steering
and measurement incompatibility [44], we can obtain the
necessary condition that any n-preparable assemblage
fσajxg satisfies

SCSRðfσajxgÞ ≤ max
fMajxg

IRðfMajxgÞ ≤ βk;n; ð4Þ

where βk;n denotes the universal bounds of incompatibility
robustness of all k-setting measurements with dimension
n [30,45]. With the additional constraint in CSR, one can
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FIG. 1. Structures of steering in two-qutrit states. (a) Three
standard forms of steerability can be observed in terms of the
violation of the LHS model, among which the middle one is
asymmetric. (b) The diverse steering structures are revealed by
introducing the concepts of GHDS and GHD-1WS. The numbers
above the arrows denote the dimension quantification of steer-
ability. The symmetric forms in the left column correspond to
GHDS [29]; the asymmetric forms in the right column corre-
spond to GHD-1WS.
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have that SCSRðfσajxgÞ ≥ SRðfσajxgÞ. Thus, the violation of
inequality (4) provides a tighter lower bound of Schmidt
number in the1SDI setting.Moreover,wedevelopa resource-
minimal steering inequality based on the dual objective
function of CSR, which does not need the assemblage
tomography. That is, Tr

P
a;x Fajxσajx − 1 ≤ βk;n, which is

completely equivalent to formula (4). This is done by
optimizing Bob’s measurements fFajxg via the dual program
of the original SDP formulation of CSR to find a state-
dependent optimal steeringwitness.A detailed derivation and
thevalues of βk;n can be found in SupplementalMaterial [46].
To determine the upper bound of the dimension of

steering, we exploit n-dimensional simulable measure-
ments [40]. A set of measurements fMajxga;x, defined in
the Cd Hilbert space, is considered n-simulable when the
statistics of these measurements on any possible quantum
state can be recovered via a form of information compres-
sion to a lower n-dimensional space. That is,

X

λ

Tr½Najx;λEλðρÞ� ¼ TrðMajxρÞ ∀ ρ; ð5Þ

where fEλgλ is a quantum instrument with each
Eλ∶ BðCdÞ → BðCnÞ being a completely positive map with
classical output λ and Najx;λ is a set of n-dimensional
positive operator-valued measures. Crucially, it has been
proven that the n-preparability of an assemblage fσajxg is
equivalent to the n-simulability of its steering equivalent
observables (SEOs) Eajx ¼ ρ−1=2B σajxρ

−1=2
B , where ρB ≔P

a σajx [41]. Thus, the assemblage can be mapped
to the corresponding SEOs, and its preparability can be
determined. Using the SDP methods proposed in Ref. [40],
one can certify the n-simulability of the steered party’s
SEOs. The quantum instrument fEλgλ can be constructed
by choosing one of the k mutually unbiased bases
(MUBs) [47] randomly and perform a projection onto
Cn
d n-dimensional subspaces. Since not all choices of the

bases have been explored, it is a sufficient condition to
ensure n-preparability, giving an upper bound of the
Schmidt number in the steering scenario.
The problem is computationally feasible when limiting

the number of measurements and outputs to be finite. We
apply a class of two-qutrit mixed states with restricted
projective measurements of three-setting MUBs to show-
case GHD-1WS in the C3 ⊗ C3 Hilbert space. These states
are constructed by introducing asymmetric noise into the
partially entangled two-qutrit state:

ρðp;θ;ϕÞ¼pjψðθ;ϕÞihψðθ;ϕÞjþð1−pÞI
3
A

3
⊗ ðj0ih0jÞB;

ð6Þ

where p∈ ½0; 1� is the mixing parameter, θ∈ ð0; π=4�, ϕ∈
ð0; π=2Þ, and jψðθ;ϕÞi¼ cosðϕÞj00iþsinðθÞsinðϕÞj11iþ

cosðθÞsinðϕÞj22i. When we set θ ¼ π=4, the distribution
of other two parameters ðp;ϕÞ for various HD steering
structures is depicted in Fig. 2. For all nontrivial states
ρ½p; ðπ=4Þ;ϕ�, Alice can always steer Bob’s subsystem,
namely, fσBajxg ∉ A1. The orange, blue, and red curves,
obtained by steering inequalities (4), shows the critical
value of p given certain ϕ for sufficiently certifying
fσBajxg ∉ A2, fσAbjyg ∉ A1, and fσAbjyg ∉ A2, respectively.

The black curve is obtained by the criterion based on
2-simulability, below which one can certify fσAbjyg∈A2.
The uncertainty regarding the presence of either 2-steerable
or 3-steerable assemblages in some steering directions
arises from the absence of both sufficient and necessary
criteria so far. The complete parameter spaces are presented
in Supplemental Material [46].
Experimental scheme.—Experimentally, we focus on

the genuine three-dimensional 1WS regime, denoted by
the blue area in Fig. 2. Two quantum sources were
employed to generate three-dimensional pure state ρs ¼
jψðθ;ϕÞihψðθ;ϕÞj with probability p and asymmetric
noise ρn ¼ ðI3A=3Þ ⊗ j0ih0jB with probability 1 − p.
As shown in Fig. 3, a continuous-wave laser

with a wavelength of 775 nm is divided into two paths
(“a” and “b”) with a 4 mm separation between the
horizontally and vertically polarized photons in the
beam displacer (BD1) to ensure the phase stability [48].
By pumping the PPKTP1 crystal, the path-polarization
entangled state

jΨðθ;ϕÞi ¼ cosðϕÞjaHaHi þ sinðϕÞ cosðθÞjaVaVi
þ sinðϕÞ sinðθÞjbHbHi ð7Þ

FIG. 2. Diverse HD steering structures are parametrized by
ðp;ϕÞ for the two-qutrit states ρðp; π=4;ϕÞ in the case of three-
measurement settings. The blue area represents the states ex-
hibiting genuine three-dimensional 1WS. It is uncertain that the
states feature either 2- or 3-steerable in some areas due to the lack
of both sufficient and necessary criteria.
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is obtained with signal and idle photons at 1550 nm,
via a type-II phase-matched spontaneous parametric down-
conversion process in a Sagnac structure, where jaðbÞHðVÞi
represents horizontal (vertical) polarization on path a (or
b). The parameters θ and ϕ can be adjusted by HWP1 and
2. By coding jaHi, jaVi, and jbHi as j0i, j1i, and j2i, we
obtain the pure state. Then, we pump the PPKTP2 crystal
with the same laser and collect correlated photon pairs into
couplers S1 and S2. Single photons emitted from coupler
S10 are prepared in the state ð1= ffiffiffi

3
p Þðj0i þ j1i þ j2iÞ

through the expansion of its subspace using HWPs and
BD2. Birefringent crystals (DP1 and DP2) are inserted to
induce decoherence between the three-dimensional sub-
spaces [49], resulting in the noisy part ρn ¼ 1

3
ðj0ih0j þ j1i

h1j þ j2ih2jÞA ⊗ j0ih0jB. Subsequently, BS1 and BS2 were
used to combine ρs and ρn to complete the preparation of
quantum state (6), where the parameter p can be adjusted
by changing the intensity of the pump of the two sources.
Alice’s and Bob’s measurement devices can achieve

arbitrary three-dimensional projection measurements by
decomposing them into two-dimensional projection mea-
surements [50]. Finally, the measured photons pass through
bandpass filters (1550� 15 nm) and long pass filters
(1200 nm), are gathered in couplers, and are detected by
the superconducting detectors.
Experimental results.—The experimental brightness

of the target states is approximately 2000 Hz, and the
integration time for each measurement is 200 s. We assume
that the state preparation during the experimental process is

independent and identically distributed [51,52] and inves-
tigate the following two cases. The experimental results are
shown in Fig. 4.
Case 1 (▴).—It is 3-steerable from Alice to Bob, i.e.,

dAB ¼ 3, while Bob cannot steer Alice, i.e., dBA ¼ 1.
We experimentally prepare state ρ1 with p ¼ 0.78,

θ ¼ 0.3, and ϕ ¼ π=4. We obtained the density matrix
ρexp 1 of the prepared quantum state by performing
tomography [53,54]. To verify dAB by using steering
inequality (4), ρexp 1 was substituted into the SDP program
to obtain Bob’s measurements fFajxgexp 1a;x , while Alice’s
measurements are three sets of MUBs [47]. Corresponding
measurements are performed on ρexp 1, and the inequality
value obtained was SAB exp 1

CSR ¼ 0.3316� 0.0040, which
exceeds the bound β3;2 ¼ 0.2679 with 15.9σ violation.
This proves that the lower bound of dexp 1AB is 3. To verify
dBA, Alice performed tomography [53] on her assemblage,
while Bob performed a three-setting MUB measurement
fMbjygb;y on his part, and the corresponding experimental
result was fσbjygexp 1 [46]. Its SEOs fEbjygexp 1 are certified
as joint measurability via the SDP proposed in Ref. [44],
which indicates that Bob cannot steer Alice, i.e., dexp 1BA ¼ 1.
Case 2 (•).—It is 3-steerable from Alice to Bob, i.e.,

dAB ¼ 3; conversely, dBA ¼ 2.
We experimentally prepare state ρ2 with p ¼ 0.7,

θ ¼ 0.5, and ϕ ¼ π=4. Similar to case 1, we obtained
the density matrix ρexp 2 experimentally. To verify dAB, we
obtain Bob’s measurement fFajxgexp 2a;x and then obtain the
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FIG. 3. Experiment setup. (a1) Preparation of the three-dimensional entangled state jψi ¼ cosðϕÞj00i þ sinðϕÞ cosðθÞj11iþ
sinðϕÞ sinðθÞj22i. A continuous-wave laser with wavelength 775 nm pumps the PPKTP1 crystal in the Sagnac structure, resulting
in correlated photon pairs with a wavelength of 1550 nm. (a2) Prepare asymmetric noise state I3=3 ⊗ j0ih0j. We prepared in state
ð1= ffiffiffi

3
p Þðj0i þ j1i þ j2iÞ and inserted YVO4 to induce decoherence between each subspace. (b1),(b2) Measurement device of Alice and

Bob. We combine QHQ (QWP, HWP, QWP) as a measurement part (MP) to achieve arbitrary operations in a two-dimensional subspace.
The projection measurement between subspaces j0i and j1i is constructed by MP1 (MP3) and BD3 (BD4), and the projection
measurement between subspaces j0i, j1i, and j2i is constructed by MP2 (MP4) and PBS for Alice (Bob). PBS, polarizing beam splitter.
D-PBS, dichroic polarizing beam splitter. BD, beam displacer. DM, dichroic mirror. D-HWP, dichroic half wave plate. DP, decoherent
phase birefringent crystal. HWP, half wave plate. QWP, quarter wave plate. BS, beam splitter. PPKTP, periodically poled potassium
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value of the inequality as SAB exp 2
CSR ¼ 0.2895� 0.0031,

which exceeds the bound β3;2 ¼ 0.2679 with 7.0σ viola-
tion. This proves that the lower bound of dexp 2AB is 3. We
employ both criteria simultaneously to establish both the
upper and lower bounds for dBA. While Bob preforms
three-setting MUB measurement fMbjygb;y, we determine
the SEOs fEbjygexp 2 of Alice’s assemblage fσbjygexp 2 as
2-simulability via the SDP proposed in Ref. [40], which
indicates fσbjygexp 2 is 2-preparable and demonstrates that

the upper bound of dexp 2BA is 2 [46]. Next, we measure SBA
CSR

to further determine the lower bound of dBA. We obtain
Alice’s measurements fFbjygexp 2b;y , while Bob’s measure-
ments fMbjygb;y are three sets of MUBs. It results in

SBA exp 2
CSR ¼ 0.0215� 0.0020, which exceeds the bound

β3;1 ¼ 0 with 10.7σ violation. This proves that the lower
bound of dexp 2BA is 2. In summary, dexp 2BA ¼ 2.
Hence, we experimentally reveal two asymmetric struc-

tures of three-dimensional EPR steering.
Discussion.—We have introduced the concept of

GHD-1WS, providing an effective method to explore the
intricate structures of asymmetric steering in HD systems.
Moreover, we have formulated corresponding criteria and

conducted a photonic experiment to prepare two-qutrit
mixed states with asymmetric noise, enabling the obser-
vation of various asymmetric steering structures.
Compared to theoretical investigations [32,33,42], our

Letter showcases the novel structures of HD steering in
both theory and experiment. Particularly, we reveal the
asymmetry in standard two-way steering within HD sys-
tems under the limitation of projective measurements, as
illustrated by instances such as dAB ¼ 3 and dBA ¼ 2.
These cases deviate from symmetric steering and standard
one-way steering, highlighting the complexity and richness
of high-dimensional quantum systems. An interesting
question is if the similar cases can be found by applying
more general measurements and asymmetric-loss channels.
Furthermore, it could be of significant interest in quantum
cryptography for realistic quantum networks with asym-
metric channels and settings [35–38].
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