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When two active Brownian particles collide, they slide along each other until they can continue their free
motion. For persistence lengths much larger than the particle diameter, the directors do not change, but the
collision can be modeled as producing a net displacement on the particles compared to their free motion in
the absence of the encounter. With these elements, a Boltzmann-Enskog-like kinetic theory is built. A linear
stability analysis of the homogeneous state predicts a density instability resulting from the effective velocity
reduction of tagged particles predicted by the theory.
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Introduction.—Noninertial self-propelled activeparticles,
even when the dominant interaction between particles is
purely repulsive, have a natural tendency to cluster [1–8].
Qualitatively, the mechanism is quite simple. When two
particlesmeet, they remain in contact for a finite time, during
which theypoint in roughlyconstantdirections. If theparticle
density ρ is high enough, during the time they remain in
contact and before one of them changes its direction and
escapes, more particles can arrive, becoming the seed of a
cluster. That is, clustering is a direct consequence of persist-
ence in motion and excluded volume. Active Brownian
particles (ABPs) [9–11] are an ideal model to test this
hypothesis. Here, particles move persistently at constant
speed V along directors that change slowly by rotational
diffusion with coefficientDr, and interact only by excluded
volume. The equations of motion for the position ri and the
director n̂i of the particle i are

ṙi ¼ Vn̂i þ Fi; ˙̂ni ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξiðtÞ × n̂i; ð1Þ

where ξi are uncorrelated white noises and Fi the hard-
core interparticle force acting on i. For the case of
spherical ABPs with diameter σ, despite the absence of
interparticle attraction, persistence was indeed found to
induce clustering [3,4,8]. Dimensional analysis and sim-
ulations indicate that the relevant control parameters in
d spatial dimensions are ρ̃ ¼ ρσd (which is proportional
to the volume fraction) and the persistence length
l ¼ V=ðσDrÞ, also called the active Péclet number.
Clustering takes place for high ρ̃ and l [4,8,12–14].
A theoretical framework to describe the clustering

instability is the so-called motility induced phase separation
(MIPS), which states that the effective particle velocities
are reduced due to particle encounters, which turn out to be
a decreasing function of the local density VeffðρÞ [15,16].
Then, if fluctuations create a density excess in a particular
region, the particles there will move at a lower speed,
implying that the incoming diffusive particle flux will be

greater than the outgoing one, creating a mechanism for
instability. This model allows for a hydrodynamiclike
description of the density and polarization fields, where
it has been shown that in the limit of very large l the
density mode becomes unstable akin to spinodal decom-
position if −ð∂Veff=∂ρÞ > Veff=ρ, that is, if the velocity
reduction is sufficiently drastic [15,16]. For finite persist-
ence lengths, corrections to this prediction appear, and the
instability develops only for l greater than a threshold, in
agreement with simulations [16]. Nonequilibrium thermo-
dynamic formulations allow one to obtain the binodal
curves besides the spinodals [16–20].
Microscopically, the MIPS instability has been derived

for lattice models, where it is possible to write the system
dynamics in terms of a master equation [2]. With the usual
approximation of no correlations, MIPS is predicted to
occur for analogous conditions as for ABPs. For ABPs, the
MIPS explanation is realized by noting that hard-core
collisions cause particles to take longer to travel a distance,
i.e., the effective velocity is reduced by collisions. In
Ref. [21], for large spatial dimensions, d ≫ 1, a kinetic-
theoretic analysis allowed to compute the effective velocity
reduction, obtaining Veff ¼ Vð1 − ρ=ρcrÞ, where ρcr is a
characteristic density that depends on d. Also, using a
mean-field approximation, the same dependence for Veff
was found for ABP, although no analytical derivation of ρcr
was made [22]. In Ref. [23], hydrodynamic equations
showing MIPS were derived from a mean-field kinetic
theory for inertial ABPs.
Despite its importance, a complete microscopic deriva-

tion of MIPS for ABPs has not yet been obtained. Here, we
present a kinetic theory description of ABPs in the large
persistence regime, from which we derive the conditions
for MIPS to occur with a clear and identifiable mechanism
for the reduction of the effective velocity. Kinetic theory is
a powerful tool to coarse-grain microscopic models to
obtain macroscopic equations for a reduced number of
relevant fields (hydrodynamiclike equations) [24]. In the
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case of active matter, kinetic equations have been success-
fully used in the low density limit for active particles
presenting short-range aligning interactions [25–30]. For
microswimmers moving in a fluid the interactions are
mediated by the fluid and become long-range. In this case,
a mean-field approximation, analogous to that used in
plasma physics, has been used to study the instabilities that
appear in these suspensions [31,32] and the effects of
fluctuations [33]. Also, a kinetic analysis of the interactions
of the swimmers with the fluid and among themselves has
been used to characterize the rheology of bacterial sus-
pensions [34,35]. The case of ABP is more challenging for
the construction of a kinetic theory because the interactions
are short-ranged, but due to persistence, particles remain in
contact for finite time and the usual concept of a collision is
difficult to visualize. Here, however, we show that it is
indeed possible to formulate a kinetic description of ABPs
at moderate densities and large l, with collision events
having well-defined pre and postcollisional states. The
kinetic equation will be presented in general for d spatial
dimensions, but the explicit calculations will be performed
in two dimensions. Finally, we want to emphasize that
ABPs have become a prototype for active matter because of
their theoretical simplicity, the possibility to perform
efficient simulations, and because, besides showing clus-
tering, this model accurately describes the properties of
many experimental realizations of noninertial active matter
such as Janus colloids [7,36–38], Quincke rollers [39,40],
or active droplets [41], just to name a few. The construction
of a kinetic theory for ABPs has, therefore, the possibility
to help with the theoretical description of different phe-
nomena shown by active matter.
Effective collision theory for active Brownian

particles.—When two ABPs meet, steric repulsion prevents
them from continuing their free motion and they begin to
slide in contact with each other. That is represented in
Fig. 1: two particles moving with velocity directors n̂1 and
n̂2, get in contact at positions marked by light yellow and
light green disks. They start to slide around each other until
they can detach again, indicated with dark yellow and dark
green disks. Such condition is mathematically satisfied
when ðn̂1 − n̂2Þ · ðr1 − r2Þ ¼ 0, being ri the position of the
particle i ¼ 1, 2. Trajectories displayed by solid black lines,
while dotted lines would be the trajectories without the
collision. The duration of this collision process tcol is of the
order of σ=V. Then, in the regime of large persistence
lengths, l ≫ 1, the directors have hardly changed, allowing
us to make the approximation that the directors remain
constant in the process. What changes are the particle
positions. If we call rinii the particle positions when they
first meet, rendi the positions when they depart, and
Δ0

i ¼ Vn̂itcol, the distance traveled if the collision had
not occurred, a collision results in net displacements
Δi ¼ rendi − rinii − Δ0

i . Then, a collision can be modeled
as an instantaneous process where the directors do not

change, but the positions change as ri → ri þ Δi (depicted
in Fig. 1).
It is possible to find an explicit expression for the

displacements in terms of the particle directors and the
unit vector σ̂ pointing from particle 1 to 2 at the beginning
of the collision. The calculation (see the Supplemental
Material [42]) consists of solving the equation of motion of
the two particles with an additional normal force to
maintain the impenetrability condition. The results are that
tcol ¼ σ=½Vjn̂2 − n̂1j� log j tanðθ=2Þj, with θ the angle
between σ̂ and n̂2 − n̂1, and

Δ1 ¼ −Δ2 ¼ −σ
σ̂end − σ̂

2
− VΔtcol

n̂1 − n̂2

2
; ð2Þ

¼ −
σ

2

�
σ̂end − σ̂ − log j tanðθ0=2Þj

n̂1 − n̂2

jn̂2 − n̂1j
�
: ð3Þ

Here, σ̂end is the unit vector from 1 to 2 at the end of the
collision, which is in the same plane as σ̂ and ðn̂2 − n̂1Þ,
and perpendicular to the latter. Note that although the
system does not obey Galilean invariance, the displace-
ments for the colliding particles are reciprocal. The
collision time tcol diverges for head-on collisions
(θ ¼ π), but it is an integrable divergence, giving finite
results for the relevant calculations below.
Average velocity reduction.—For a tagged particle, the

displacement has a component perpendicular to its director
that contributes to diffusion and mixing. More importantly
for the purpose of understanding MIPS, there is a compo-
nent parallel to the director Δk ¼ Δ1 · n̂1, which we show

FIG. 1. Scheme of an effective collision for particles 1 (orange)
and 2 (green). Directors n̂1;2 are indicated by red arrows. The light
colored circles show the initial state of the collision, while the dark
colored circles show the statewhen the particles start to depart. The
solid black lines show the actual trajectories up to the point of
departure. The trajectories that the particles would had have
followed without the collision are shown as black dotted lines.
Finally, blue arrows show the effective displacements Δ1;2 caused
by thecollision.Forsimplicity, the figureonlyshows thecasewhere
n̂2 ¼ −n̂1, in which case the center of mass remains fixed.
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below to be negative on average. Therefore, the effective
particle velocity is reduced as a result of collisions.
Before proceeding to derive the full kinetic theory, we

present some elements of the theory by computing in a
homogeneous system the average parallel displacement rate
due to collisions, hdΔk=dtjcolli. Let i ¼ 1 be the tagged
particle. For the collisions with particle 2, we assume the
molecular chaos hypothesis for the precollisional states,
corrected with the static pair correlation function at contact
χ, as in the Enskog theory for moderately dense gases.
That is, the collision rate for the two particles is
χðρÞfðn̂1Þfðn̂2ÞjVσd−1ðn̂2 − n̂1Þ · σ̂jΘ½−ðn̂2 − n̂1Þ · σ̂�,
where f is the distribution function. The factor in absolute
value represents the collision rate, which is proportional to
the velocity V multiplied by the effective cross section.
Finally, Θ is the Heaviside step function to select particles
that are approaching [24]. Assuming an equilibrium
distribution in two dimensions, fðn̂Þ ¼ ρ=ð2πÞ, after
integrating over all directions of n̂2 and σ̂, we obtain
hdΔk=dtjcolli ¼ −ρχπσ2V=4 (see the Supplemental
Material), which, as anticipated, is negative, indicating
that collisions reduce the effective velocity of a particle to

Veff ¼ Vð1 − ρχπσ2=4Þ: ð4Þ
The spinodal density ρ� for the MIPS instability is given

by the condition −ð∂Veff=∂ρÞ ¼ Veff=ρ [15,16], which
upon substitution of Eq. (4) reads

ρ�σ2½χðρ�Þ þ ρ�χ0ðρ�Þ=2� ¼ 2=π; ð5Þ
with χ0 ¼ dχ=dρ, assuming that χ depends on the local
density. To evaluate Eq. (5), it is necessary to know the
value of χ, but it has not been determined for ABPs [43].
Therefore, we have to rely on expressions valid for elastic,
passive particles. The first approach can be to neglect
correlations, χ ¼ 1, approximation valid for very low
densities. In this case, Eq. (5) gives ρ�σ2 ¼ 2=π ≈ 0.64,
which is quite large, in the range of high densities and near
close packing, ρmax ¼ 2=ð ffiffiffi

3
p

σ2Þ. Then, the assumption of
no correlations is hard to justify. It is then necessary to use
an expression for χ valid at moderate densities, such
as that of Ref. [47], for hard disks in equilibrium
χhd ¼ ð1 − 7πρσ2=64Þ=ð1 − πρσ2=4Þ2. With this expres-
sion, the spinodal density is ρ�σ2 ≈ 0.32 (area fraction
ϕ� ¼ πρ�σ2=4 ≈ 0.25), which is in the region of moderate
densities where χhd is expected to be valid. The comparison
with the simulation results for the spinodal curves is
excellent. Simulations of ABPs with hard disk interactions,
Refs. [13,48,49], predict ϕ� ≈ 0.25 for infinitely large
l. Other authors carry out simulations for ABPs interact-
ing with softer potentials (see, e.g., Refs. [12,14,50])
predicting ϕ� ≈ 0.30–0.35. Softer potentials delay the
MIPS transition, that is, the spinodal line moves to higher
densities [51,52]. In both cases the agreement with our
theory is excellent.

Kinetic theory.—A kinetic theory that can be analyzed
more formally to study MIPS can be derived following the
ideas presented above. In absence of collisions, the dis-
tribution function evolves purely by the effects of free
particle motion and rotational diffusion. Collisions can be
included in the kinetic equation in a complete analogy to
the Boltzmann-Enskog equation for moderately dense
gases, except that instead of changing velocities, here each
collision has the effect of displacing particles by an amount
Δi. Thus the equation for fðr1; n̂1; tÞ reads

∂f
∂t

þ Vn̂1 ·
∂

∂r1
f ¼ Dr∇2

n̂1
f þ J½f�: ð6Þ

The first three terms, up to the Laplace-Beltrami operator
∇2

n̂1
, are standard to account for the free streaming and

rotational diffusion of the particles [9–11,26,30,31,34]. The
collisional term J we propose is written, as in the
Boltzmann-Enskog equation, as the difference of a gain
and a loss term,

J½f� ¼
Z

χ

�
ρ

�
r10 þ r20

2

��
fðr01; n̂1Þfðr02; n̂2Þ

× jVσd−1ðn̂2− n̂1Þ · σ̂jΘ½−ðn̂2− n̂1Þ · σ̂�δðr02− r01−σσ̂Þ
× ½δðr1− r01−Δ1Þ−δðr1− r01Þ�dr01dr02dn̂2dσ̂: ð7Þ

The loss term, with the factor δðr1 − r01Þ, indicates that a
particle with position r1 and director n̂1 collides with a
partner at the previously given rate, resulting in a decrease
of fðr1; n̂1; tÞ. The gain term, with the factor δðr1 − r01 −
Δ1Þ accounts for the increase in fðr1; n̂1; tÞ due to a particle
located at r1 − Δ1 colliding with a partner such that after
the collision it ends at r1 with director n̂1. Both collision
terms have the factor χ evaluated at the middle position of
the two colliding particles.
The subtraction of the two Dirac deltas in Eq. (7)

represents the instantaneous particle teleportation at colli-
sions, concept that is at the basis of the effective collision
theory presented here. It is for the mass, the equivalent
of the collisional transfer of momentum and energy for
hard sphere systems, where these quantities are instanta-
neously exchanged between particles in a collision. As
noted by Irving and Kirkwood, collisional transfers imply
that momentum and energy are not locally conserved.
However, by assuming that the momentum and energy
flow along the line connecting the particle centers, it
is possible to define local stress tensors and heat fluxes
[24,53]. Here, we proceed analogously. For that, we note
that we can write δðr − raÞ − δðr − rbÞ ¼ −∇α

R
rb
ra
δðr−

sÞdsα, where summation over repeated indices is used.
With this expression, the collision term can be written as a
divergence of a vector field, denoted by Gðr; n̂; tÞ, with the
form
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J½f� ¼ −∇αGαðr1; n̂1; tÞ ¼ −∇α

�Z
χ

�
ρ

�
r10 þ r20

2

��

× fðr01; n̂1Þfðr02; n̂2ÞjVσd−1ðn̂2 − n̂1Þ · σ̂j
Θ½−ðn̂2 − n̂1Þ · σ̂� × δðr02 − r01 − σσ̂Þ

×
Z

r0
1
þΔ1

r0
1

δðr1 − sÞdsαdr01dr02dn̂2dσ̂

�
: ð8Þ

With this expression, integrating Eq. (6) over n̂1 gives the
mass conservation equation

∂ρ

∂t
¼ −∇ · J; ð9Þ

where

ρðr; tÞ ¼
Z

fðr; n̂; tÞdn̂; ð10Þ

Jðr; tÞ ¼ V
Z

fðr; n̂; tÞn̂ dn̂þ
Z

Gðr; n̂; tÞdn̂ ð11Þ

are the density and the mass flux vector, respectively.
Linear perturbation and MIPS.—Having derived the

kinetic equation for ABPs, we now proceed to study the
stability of the homogeneous state to determine if MIPS is
well described by this theory. For simplicity, we consider
the two-dimensional case. First, it is easy to verify by direct
substitution that the homogeneous and isotropic state,
described by f0 ¼ ρ=ð2πÞ, is a stationary solution of the
kinetic equation. Since the kinetic equation is homo-
geneous in space, we can use spatial Fourier modes for
the linear stability analysis. For the n̂ part of f, we consider
a series of angular Fourier modes for the distribution of the
director. In summary, we study solutions of the form

fðr; n̂; tÞ ¼ f0 þ eik·rþλt
X
m

gmeimϕ; ð12Þ

where λ is the rate of amplification (Reλ > 0) or decay
(Reλ < 0) of the perturbation. Projecting back the kinetic
equation (6) in the mode e−ipϕ and choosing k ¼ kx̂, gives
the eigenvalue problem for λ,

ikV
X
m

IpmðkÞgm −Drp2gp −
ikV
2

ðgpþ1 þ gp−1Þ ¼ λgp;

ð13Þ
where the matrix elements IpmðkÞ are given in terms of the
displacement Δ1 (see the Supplemental Material), and the
prefactor ik has been explicitly put to reflect the effect of
the divergence operator in the collision operator [Eq. (8)].
The eigenvalues λn can be obtained with increasing number
of angular Fourier modes. Figure 2 shows two cases, one
that is stable and one where the real part of an eigenvalue is
positive, signaling the appearance of an instability, where
the matrices have been truncated to seven modes
(p ¼ −3;−2;…; 3). For any number of modes, it is found

that for k ¼ 0 the eigenvalues are simply λn ¼ −Drn2,
meaning that all modes are stable except for one that is
marginal, the density mode. For finite but small wave
vectors, the real part of the density mode eigenvalue is
quadratic in k. Then, for the purpose of this Letter, which is
to show that MIPS is predicted by kinetic theory, it is
sufficient to show that for small wave vectors the den-
sity mode eigenvalue can be positive, analysis that can be
done using perturbation theory. For that, a small k expan-
sion of the matrix elements is needed, which can be done
analytically using the explicit expression of Δ1 (see the
Supplemental Material). It is found that for Ipmðk ¼ 0Þ
the only nonzero elements are when m ¼ p� 1,
with I�1;0 ¼ ρð2χ þ ρχ0Þπσ2=8, I0;�1 ¼ 0, and Ip;p�1 ¼
ρχπσ2=8 for the rest. Also needed is dI00ðk ¼ 0Þ=
dk ¼ i2σGð2ρχ þ ρ2χ0Þ=π, where G ≈ 0.916 is the
Catalan constant. With these elements, perturba-
tion theory gives λ0 ¼ ðV2=2DrÞ½ðρπσ2=4Þð2χ þ ρχ0Þ
ð1 − 16GDrσ=Vπ2Þ − 1�k2 þOðk3Þ. The spinodal density
ρ� for MIPS is determined by the change of sign of the k2

coefficient, resulting in a value that grows with Dr. In the
limit of large persistence lengths (Dr → 0), where the
present theory is valid, ρ� is obtained from the reduced
equation (5). Notably, the spinodal density obtained from
the heuristic analysis of the effective velocity reduction
coincides with that obtained from the formal analysis of the
kinetic equation.
Discussion.—The kinetic theory presented here is

expected to be a valid formalism for different regimes
occurring in active Brownian particles, and when additional
interactions with external fields or between particles are
considered. The only limitation is that the persistence
length is large and that no long-lived bound states are
formed, as happens for example in some nonreciprocal
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FIG. 2. Dynamical eigenvalues of the first five modes as a
function of the wave vector k forDr ¼ 0.1 (l ¼ 10), χ ¼ χhd, and
ρ ¼ 0.32 (left) and ρ ¼ 0.38 (right), obtained by truncating the
dynamical matrix to p ¼ −3;−2;…; 3. The real (imaginary)
parts are shown with solid blue (dashed orange) lines. Units have
been chosen so that V ¼ σ ¼ 1.
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interactions [54,55]. As usual in kinetic theory, it is
necessary to assume absence of all or at least some
correlations in the precollisional state. Here, we were able
to build the theory assuming that there are no director-
director correlations, but that there are position correlations,
which were considered in the factor χ. To make more
quantitative predictions, it is crucial to evaluate this factor.
Note that no assumption has been made about the postcolli-
sional states, which are indeed highly correlated.
The effective collision theory and the associated collision

operator were obtained in the limit of infinite persistence
lengths. For a more complete theory, it becomes relevant to
develop a systematic approach to derive corrections for large
but finite persistence lengths,where, as an effect of rotational
diffusion, colliding particles can escape at different angles
andwith new directors, as in the case of tumbling particles in
an array of fixed obstacles [56]. Formal methods like those
used in Refs. [57,58] can be fruitful for this purpose.
Heuristically, nevertheless, it is possible to advance that
on average colliding particles will escape earlier for finite
persistence lengths. This results in a less pronounced
reduction of the effective velocity (4), implying that the
spinodal density ρ� should grow with Dr, consistently with
experiments and simulations. This dependence of ρ�withDr
of kinematic origin should be added to the dependence found
above in the linear stability analysis.
The application of the kinetic theory to an initially

homogeneous gas correctly predicts MIPS without any
ad hoc hypothesis about the effective velocity. Rather, its
reduction by collisions appears naturally and the predicted
spinodal density shows an excellent agreement with the
extrapolation of simulations to very large persistence
lengths. Finally, for a complete analysis of the phase
diagram, with the binodal curves besides the spinodal
ones, it would be necessary to solve the stationary long-
time nonlinear dynamics of the kinetic equation, which will
be the purpose of future work.
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