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Networks of coupled Kerr parametric oscillators (KPOs) are a leading physical platform for analog
solving of complex optimization problems. These systems are colloquially known as “Ising machines.”We
experimentally and theoretically study such a network under the influence of an external force. The force
breaks the collective phase-parity symmetry of the system and competes with the intrinsic coupling in
ordering the network configuration, similar to how a magnetic field biases an interacting spin ensemble.
Specifically, we demonstrate how the force can be used to control the system, and highlight the crucial role
of the phase and symmetry of the force. Our Letter thereby provides a method to create Ising machines with
arbitrary bias, extending even to exotic cases that are impossible to engineer in real spin systems.
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The Kerr parametric oscillator (KPO) is a nonlinear
resonator with a time-dependent harmonic potential term
[1–16]. In a certain range of parameters, this potential
modulation renders the zero-amplitude solution unstable.
There, the system undergoes a spontaneous period-
doubling Z2 symmetry-breaking phase transition and
assumes a large-amplitude oscillation at a so-called phase
state. Importantly, a KPO features two such phase states
with equal amplitude but phases separated by π, shown as
black dots in Fig. 1(a).
TheKPO is at the focus ofmuch researchwork because its

two phase states are analogous to the two polarization states
of an Ising spin, “up” and “down.” Consequently, it was
proposed that networks of KPOs can be used to find the
ground state of Ising Hamiltonians, that is, the energetically
preferred configuration of a spin network [18]. Such
resonator-based Ising solvers [14,19–22] are of high interest
because the corresponding calculations are NP-hard (where
NP stands for nondeterministic polynomial time) to tackle
with conventional computers [23], and yet theymap tomany
other key optimization problems, such as the travelling
salesman problem [24], the MAX-CUT problem [25,26],
and the number partitioning problem [27]. In Fig. 1(b), we
sketch a network of two spins, where each spin takes the
form of a double-well potential whose wells corresponds
the two levels (“spin up” or “spin down”).
Previous experimental and theoretical studies of KPO-

based Ising simulators with bilinear coupling considered the
case of unbiased IsingHamiltonians, where the solutions are
only defined up to a global sign [17,20,27–33]. For example,
the state “down-up” shown in Fig. 1(b) can be identically
replaced by “up-down,” as the individual spin levels are

FIG. 1. KPOs as Ising spin analogues. (a) KPO phase states in a
rotating phase space spanned by the quadratures u and v, where
x ¼ u cosð2πfdtÞ − v sinð2πfdtÞ, with fd the driving frequency.
Stationary solutions in the absence of an external force are shown as
black dots and are labeled “up” and “down” to indicate a formal
similarity to the two states of an Ising spin, marked by arrow
symbols. Solutions in the presence of an external forceF are shown
as white dots as a function of the force phase θ (dotted circle).
(b) Representation of a two-spin network as coupled doublewells in
the absence of a bias field. The levels of each double well (1,2) are
energetically degenerate. The spin-spin coupling is indicated by J
and leads to an antisymmetric state in this example. (c) In the
presence of a bias field B, the degeneracy is broken and each spin
has a preferred polarization. This preference can overcome the
solution favored by the coupling J. (d) Coupled resonators are often
described in a normal-mode basis as illustrated by two coupled
pendula. For two KPOs, the relevant nonlinear stationary states we
will refer to in this Letter include states with zero amplitude (Z),
symmetric (S) and antisymmetric (A) oscillation, as well as mixed-
symmetry (M) solutions. The latter denote oscillations that are
neither fully symmetric nor antisymmetric [17].

PHYSICAL REVIEW LETTERS 132, 207401 (2024)

0031-9007=24=132(20)=207401(7) 207401-1 © 2024 American Physical Society

https://orcid.org/0000-0002-0586-1809
https://orcid.org/0009-0003-1722-5329
https://orcid.org/0000-0001-9731-2729
https://orcid.org/0009-0006-7409-5577
https://orcid.org/0000-0001-7953-7908
https://orcid.org/0000-0001-7082-7300
https://orcid.org/0000-0001-6185-813X
https://orcid.org/0000-0002-1759-4920
https://orcid.org/0000-0001-6757-3442
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.207401&domain=pdf&date_stamp=2024-05-17
https://doi.org/10.1103/PhysRevLett.132.207401
https://doi.org/10.1103/PhysRevLett.132.207401
https://doi.org/10.1103/PhysRevLett.132.207401
https://doi.org/10.1103/PhysRevLett.132.207401


degenerate. Many Ising problems, however, require
breaking of this degeneracy; the archetypal case being a
magnetic field applied to a spin ensemble. In Fig. 1(c),
a magnetic field B biases the potential to compete with
the spin-spin coupling J. A strong field can overcome the
coupling-induced ordering and dramatically change the
configuration that emerges as the optimal solution of
the spin system. These solutions can be characterized in
terms of the normal modes of the oscillator network in the
linear regime, see Fig. 1(d) [17,33,34]. The external field
functionality was recently included in optical parametric
systems with dissipative coupling [35], which constitute an
alternative route towards Ising simulators [36,37].
In this Letter, we demonstrate experimentally how the

functionality of an external B field can be introduced in a
classical KPO network. By applying an external force F to
each resonator, we can displace the network’s solutions in
their phase space, as indicated in Fig. 1(a). Our experiment
features two coupled KPOs, but the concepts we present are
easily extended to larger networks. We provide a general
framework to understand the role of the external force
term for coupled KPOs and resonator-based Ising solvers.
Importantly, while this forcing can emulate the effect of a
simple bias field, we show that its consequences are much
richer due to the freedom of selecting the driving amplitude
and phase for each resonator individually. Our Letter

will therefore not only provide a practical guide for
applications, but also motivate further fundamental
research on Ising networks with inhomogeneous magnetic
fields, including quantum implementations [12,20,28,30].
Our experiment consists of two electrical resonators that

feature a nonlinear capacitance [10]. The system can be
described by the coupled differential equations

ẍi þ ω2
0½1 − λ cos ð4πfdtÞ�xi þ βx3i þ Γẋi − Jxj ¼ FiðtÞ;

ð1Þ

where the displacement xi is the measured voltage signal
of resonator i [10,17] as a function of time t. The
angular resonance frequency ω0=2π ¼ f0 ¼ 2.646 MHz,
the damping rate Γ ¼ ðω0=QÞ ¼ 73 kHz, the parametric
modulation depth λ, and the nonlinearity β are approx-
imately equal for both resonators, see section S1 in the
Supplemental Material [38]. Finally, J quantifies the
coupling between the resonators (j ≠ i), and the FiðtÞ
are external forces applied to the resonators individually.
We experimentally implement the forces with driving
voltages Ud ∝ F [38]. In the following, we will study
the competition between these two effects (J versus Fi) in
ordering the phases of the two KPOs. All phases are
measured relative to the same reference clock unless

FIG. 2. (a) Measured amplitudes Ai and phase responses ϕi of the two resonators when driven by a parametric pump tone with
Up ¼ 3.5 V. The arrow symbols represent the Ising spin analogy, and the colors indicate the relative phase configuration. (b) Measured
phase ϕ2 as a function of fd and Up for Ud ¼ 0, where Ud ∝ F is a driving voltage [38]. (c) Measured amplitude and phase
configuration of the two resonators for Ud ¼ 0. Dashed lines are theory predictions for the outline of the characteristic double tongue.
(d) Same as (b) with a force strength Ud ¼ 10 mV at a phase θ ¼ 55°. This value of θ was found to strongly favor the symmetric state
with ϕ1;2 ≈ 45° ¼ 0.78 rad. (e) Measured amplitude and phase configuration of the two resonators for Ud ¼ 10 mV and θ ¼ 55°.
Dashed lines mark the outlines calculated for (c) to highlight the shifted boundaries.
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otherwise stated. The phases of the parametric pump terms
are set to zero and are therefore not shown in Eq. (1).
In Fig. 2(a), we demonstrate a frequency sweep

by slowly increasing fd at a constant pump amplitude
Up ∝ λ [38] with Fi ¼ 0. We use lock-in amplifiers (Zurich
Instruments MFLI) to measure the amplitudes Ai ¼ ðu2i þ
v2i Þ1=2 and phases ϕi ¼ arctanðvi=uiÞ of the two resonators,
where x ¼ u cosð2πfdtÞ − v sinð2πfdtÞ. We observe that
both resonators jump from zero to a finite amplitude around
2.63 MHz. The phase of the two resonators assumes a well-
defined value after the jump, with ϕ1 − ϕ2 ¼ π. In our
spin analogy, this corresponds to an antisymmetric ordering
(up-down). Around 2.645 MHz, the amplitudes jump
again, accompanied by a π shift of ϕ1. The resulting state
is analogous to a symmetric spin state (“down-down”).
Roughly at 2.66 MHz, the amplitudes drop to zero and the
phases become random again.
We repeat frequency sweeps at different values of Up. In

Fig. 2(b), the measured ϕ2 as a function of fd and Up is
plotted. We clearly see that in each sweep, the phase
assumes a well-defined value in a certain frequency range
described by two overlapping, rounded triangles often
called “Arnold tongues” [17,40]. Importantly, the phase
randomly assumes one of two values separated by π in each
sweep. This randomness is a consequence of the symmetry
illustrated in Fig. 1(b), and the resulting spontaneous time-
translation symmetry breaking at each jump from zero to
finite amplitude. It is a fundamental feature of a KPO, and
of networks thereof, in the absence of an external force.
To map the different symmetry phases of the system,

we employ the symmetric and antisymmetric quadratures
vS ¼ ð1= ffiffiffi

2
p Þðv1 þ v2Þ and vA ¼ ð1= ffiffiffi

2
p Þðv1 − v2Þ. Note

that uS;A can be defined analogously and yield qualitatively
similar results. In Fig. 2(c), we represent the total amplitude
X ¼ ðv2S þ v2AÞ1=2 as a brightness contrast, while the
relative phase of the two resonators is shown in color
code. As in a previous work [17], we observe S, A, and M
phases inside the overlapping Arnold tongues. The center
frequencies and phase symmetries of the two Arnold
tongues are inherited from the normal modes of the system
in the linear regime. The precise shapes of these zones are
understood to originate from an interplay of the non-
linearity β and the coupling J, and can be reproduced
precisely with numerical simulations and with an analytical
solver [38,41].
In the next step, we additionally apply an external force

to each resonator. For simplicity, we select FiðtÞ ¼
F cosð2πfdtþ θÞ for both resonators, with θ a global
phase. Note that Fi (and therefore Ui) are applied at
exactly half the frequency of the parametric pump. In
Fig. 2(d), we see a striking change in the measured ϕ2

compared to Fig. 2(b): the phase now exhibits a well-
defined value over the entire parameter space, and the jump
between solutions follows a deterministic pattern. The
spontaneous time-translation symmetry breaking observed

in Fig. 2(b) is entirely replaced by a force-induced bias, as
sketched in Fig. 1(c). The force therefore allows us to
control the “spin polarization” of the individual KPOs in
each sweep.
When plotting the system states in Fig. 2(e), we find

several important differences to the unbiased example in
Fig. 2(c). First, the outlines of the Arnold tongues
are shifted by the force. This effect arises due to changes
in the stability conditions of the parametric oscillators,
which was previously studied for the case of a single KPO
[1,5,10,42–44]. The most prominent manifestation of this
effect is a jump (of both phase and amplitude) at the right
border of the S phase. This jump is caused by the
termination of the selected symmetric phase state [38].
For a symmetric force, we mainly observe a shift of the S
region. Second, the antisymmetric state labeled A is no
longer visible, as it is not favored by the symmetric force.
Numerical simulations indicate that the A state still appears
at higher values of Up, where the impact of the external
force is reduced relative to the parametric pump. The
symmetric state S therefore fills a greater portion of the
diagram, in agreement with the intuition that a symmetric
force F1 ¼ F2 should favor this phase configuration. Third,
the S state now only comprises an “up-up” component,
instead of allowing both up-up and “down-down” as in
Fig. 2(c). The force therefore fulfills the role of a potential
bias, as anticipated.

FIG. 3. Ringup experiments with different values of force phase
θ. Both resonators are initialized in ui ¼ 0 and vi ¼ 0 (center of
graphs). First, only an external forceUd ¼ 20 mVwith phase θ is
applied to break the symmetry, bringing the resonators to an
amplitude of ≈0.1 mV. Then the parametric pump Up ¼ 3.15 V
is added and the resonators ring up to symmetric or mixed-
symmetry solutions, as marked by white disks. Arrow symbols
indicate the corresponding spin analogy. All experiments were
performed at fd ¼ 2.639 MHz.
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In Fig. 2, we employ frequency sweeps with a fixed force
phase θ to study the solution space of our system. In many
applications, however, it may be more useful to start from
the equilibrium state of the unforced system (ui ¼ 0 and
vi ¼ 0), and then directly access a particular solution
through the correct choice of θ. We demonstrate this
capability experimentally in Fig. 3, where the system rings
up to four different symmetric and mixed-symmetry states,
depending on the phase θ of the symmetric external force.
In the spirit of the two-spin analogy that we employ
throughout the paper, we label the final states with
corresponding symbols. We find that small changes in θ
can cause the system to attain an entirely different state. For
instance, θ ¼ 36° leads to a symmetric state while θ ¼ 54°
leads to a mixed-symmetry state. Rotating θ by 180° inverts
the final state of both resonators, leaving the relative
configuration intact (e.g., up-up becomes down-down).
The deterministic experiments we reported so far

always reach the same stable solutions for the same initial
conditions and driving parameters. This leads to a limited
understanding of our system, which possesses several
stable solutions for certain positions in the fd-Up diagram
[38]. Stochastic sampling allows us to explore these
different solutions, and to assess their dwell times in the

long-time limit [33]. In Fig. 4(a), we show how the system
jumps between different solutions when activated by
white noise and in the absence of external forcing
(Fi ¼ 0). For most of the time, the system jumps between
the two symmetric solutions, which are more stable than the
antisymmetric solutions due to their higher amplitude.
A high amplitude imposes a larger “momentum barrier”
and makes the state more stable against jumps [33]. In a
so-called symmetry space spanned by vS and vA, these
dynamics result in the plot shown in Fig. 4(b). Here,
symmetric and antisymmetric states appear at the corners of
a diamond at vA ¼ 0 and vS ¼ 0, respectively (plots for the
uS and uA look very similar). The edges of the diamond
result from points measured during transitions between the
states. As insets, we sketch the corresponding picture of
two spins without an external field, allowing both sym-
metric and antisymmetric states (and fluctuations
between them).
When applying an external force, we can change the

relative weight (occupation probability) of these four
states. In Figs. 4(c) and 4(d), we apply symmetric forces
whose phase θ is tuned to favor either of the two symmetric
states. As a consequence, we observe the system only in
the corresponding symmetric state, and all jumps are

FIG. 4. Stochastic sampling of KPO network states. (a) Quadratures v1 and v2 measured as a function of time in the presence of force
noise. The applied noise is white up to approximately 30 MHz and has a standard deviation of 350 mV. Separate noise generators were
employed for the two KPOs and connected via additional inductive lines. Only the vi are shown here for simplicity. Up ¼ 3.5 V,
Ud ¼ 0, lock-in demodulation rate B ¼ 500 Hz, and fd ¼ 2.586 Hz (the resonance frequencies of both KPO shifted due to the
additional inductive lines). (b) Representation of the time trace from (a) in a so-called symmetry space spanned by vS ¼ ð1= ffiffiffi

2
p Þðv1 þ

v2Þ and vA ¼ ð1= ffiffiffi

2
p Þðv1 − v2Þ. The stable solutions of the system in the absence of noise are at the corners of the diamond. (c) A

symmetric force of 30 mV with θ ¼ 0 (after subtracting a global phase offset of -46°) favors the negative symmetric state. (d) With
θ ¼ 180°, the symmetric force favors the positive symmetric state. (e) An antisymmetric force with θ1 ¼ 0 and θ2 ¼ 180° favors the
negative antisymmetric state. (f) inverting both phases favors the positive antisymmetric state. A total of 60s of data was taken for each
case. Insets show spin with grey dashed arrows for the local magnetic field direction. (g) Measured probability P of finding the system in
the symmetric (blue) and antisymmetric (red) configuration as a function of antisymmetric driving voltage Ud. Points at 0 mV and
30 mV correspond to the data in (b) and (e),(f), respectively. For details see Ref. [38].
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suppressed. The spin picture with external field below each
graph shows how the spins are forced to align by the
homogeneous external field.
In contrast to a real (nanoscale) spin ensemble, our

system allows us to arbitrarily tune the amplitude and phase
of the applied force (corresponding to the strength and
direction of the external field) for each KPO individually.
As a demonstration example, we show in Figs. 4(e)
and 4(f) the results for an antisymmetric force FiðtÞ ¼
F cosð2πfdtþ θiÞ with θ2 ¼ −θ1. Here, we find that the
system occupies almost exclusively the selected antisym-
metric state. However, the suppression of the symmetric
states is weaker than in the opposite case in Figs. 4(c)
and 4(d). Again, this is due to the fact that the symmetric
state is generally more stable than the antisymmetric state
for J=β > 0 [33]. Even larger forces would be necessary to
entirely overcome this intrinsic bias.
The statistical state distribution of coupled KPOs for weak

coupling and F ¼ 0 was studied previously [30,45]. Our
experiment is in the limit of strong coupling and F ≠ 0, for
which no analytical solution exists. However, we experi-
mentally study the transition between the regime dominated
by J to an ordering imposed by F in Fig. 4(g). More details
and additional simulations can be found in [38].
In our experiments and in the theory analysis, we find

that the external force can bias our system of coupled
KPOs. In the simplest case, this bias is analogous to an
external magnetic field acting on an ensemble of coupled
spins. The tunable phase θ of the external force assumes the
role of the magnetic field angle, which can be different for
each KPO, cf. Figs. 3 and 4. This freedom in selecting the
phases will be crucial in future experiments that go beyond
conventional spin systems, as it allows access to unex-
plored, exotic networks that have no counterpart in solid
state physics. Such novel networks include, for instance,
the Ising chain in the presence of a tunable local impurity
[46], the random-field Ising model [47–50] and corre-
sponding avalanche models [51–54], and the magnetic
Bose polaron [55]. We believe that controlled experimental
realizations of these elusive phenomena will spur new
developments in theory in many directions. At the same
time, our Letter demonstrates new strategies to control
Ising machines, and to program such systems to solve
complex optimization tasks [23–27].
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