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We use the spectral kinetic theory of soliton gas to investigate the likelihood of extreme events in
integrable turbulence described by the one-dimensional focusing nonlinear Schrédinger equation (fNLSE).
This is done by invoking a stochastic interpretation of the inverse scattering transform for fNLSE and
analytically evaluating the kurtosis of the emerging random nonlinear wave field in terms of the spectral
density of states of the corresponding soliton gas. We then apply the general result to two fundamental
scenarios of the generation of integrable turbulence: (i) the asymptotic development of the spontaneous
modulational instability of a plane wave, and (ii) the long-time evolution of strongly nonlinear, partially
coherent waves. In both cases, involving the bound state soliton gas dynamics, the analytically obtained
values of the kurtosis are in perfect agreement with those inferred from direct numerical simulations of the
fNLSE, providing the long-awaited theoretical explanation of the respective rogue wave statistics.
Additionally, the evolution of a particular nonbound state gas is considered, providing important insights

related to the validity of the so-called virial theorem.

DOI: 10.1103/PhysRevLett.132.207201

Integrable turbulence (IT) has been introduced by
Zakharov [1] as a general theoretical paradigm for the
description of random nonlinear waves in physical systems
modeled by integrable equations such as the Korteweg—
de Vries (KdV) or the nonlinear Schrodinger equation.
Since its inception in 2009, IT has been receiving a growing
interest from both theoretical [2-7] and experimental
[8-16] viewpoints, and has since become a distinct frame-
work to study a large class of complex nonlinear wave
phenomena.

Integrable evolution equations typically arise as leading
order approximations of nonlinear dispersive wave systems
and often provide a very good description of the core
nonlinear dynamics in a variety of physical contexts
ranging from water waves to quantum gases [17]. The
integrable nature of the equations enables analytical sol-
utions via the inverse scattering transform (IST) method
with both zero and nonzero boundary conditions at infinity
[17-19]. Often seen as a nonlinear generalization of the
Fourier method, the IST method consists of three main
steps: (i) the direct spectral transform that decomposes the
scattering data of the wave field at # = 0 into the so-called
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solitonic (related to discrete spectrum) and radiative
(related to continuous spectrum) components, (ii) the
(simple) time evolution of the scattering data for both
components, and (iii) the inverse scattering procedure for
reconstructing the nonlinear wave field at r > 0 from the
evolved combined spectral data.

While the above classical, deterministic IST framework
has been remarkably successful in many problems of
nonlinear physics, its “stochastic” counterpart addressing
the evolution of random initial data in integrable systems
(essentially the theory of IT) is still in its infancy, with the
majority of physically significant theoretical results being
reliant on heavy numerical simulations (see, e.g., [2,3,7]) or
short-time expansions [6]. The challenge is, given the
statistics (the probability density function, the correlations,
etc.) of the initial random data for an integrable equation, to
determine the statistics of the solution at ¢ > 0.

We propose a general theoretical approach to the analysis
of the long-time integrable evolution of random wave fields
whose typical realizations are dominated by the solitonic
spectral component. We focus on the statistics of extreme
events (also known as rogue waves) in random wave fields
developing from certain generic classes of stochastic initial
data for the focusing nonlinear Schrodinger equation
(fNLSE). This fundamental problem of nonlinear physics
has been the subject of extensive experimental and numeri-
cal investigations for several decades in various physical
contexts [2,5,9-12,14,20-28]. Recently, statistical esti-
mates for the probability of extreme events have been
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derived using large deviations theory [29,30]. However, an
exact analytical treatment of the extreme wave statistics
remains an open problem.

In this Letter, we consider two ubiquitous random waves
settings that exhibit extreme events in the process of the
fNLSE evolution: (i) the nonlinear stage of the develop-
ment of the noise-induced (spontaneous) modulational
instability (MI) of a plane wave [2,14], and (ii) the
evolution of the so-called partially coherent waves whose
amplitude is given by a slowly varying random function
with a given statistics [7,10-12].

In both settings the amplitude of the initial oscillations,
negligible in the MI case and finite in partially coherent
waves, dramatically increases with time, as depicted in
Fig. 1. The numerical simulations in [2,7,9] showed that,
remarkably, the developed IT is characterized by sta-
tistically stationary states in the long-time regime, but
the properties of these states are drastically different for the
two types of random input. This is a clear consequence of
integrability of the wave dynamics exhibiting infinite
number of conservation laws, and in sharp contrast with
the properties of classical dissipative hydrodynamic or
weak (wave) turbulence characterized, in the absence of
damping or forcing, by the equipartition of energy and the
universal Rayleigh-Jeans Fourier spectra as t — oo, inde-
pendently of the initial data [31]. In particular, it has been
observed that in case (i) the fourth normalized moment x =
{w|*)/|{|w]?)?* of the probability density function (PDF) of
the random wave amplitude wy—the kurtosis—evolves
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FIG. 1. Spatiotemporal plot of |y|? for the asymptotic develop-

ment of MI (a) and partially coherent waves (b). Snapshots at
t = 0 (dashed red line) and ¢t = 100 (black solid line) for MI (c)
and partially coherent waves (d); £ represents the typical width of
the initial pulses composing the partially coherent wave. The
details of the numerical implementation are given in [7,26].

from the initial value of 1 to 2 [2,14,26], while in case
(ii) it grows from 2 to 4 in the highly nonlinear regime [7].
Although in both cases the kurtosis doubles as a result of
the nonlinear random wave field evolution, the former case
(x =2) corresponds to the Gaussian statistics of the
asymptotic IT while the latter (x = 4) implies enhanced
probability of high amplitude events—often described as a
“heavy tail” of the PDF and associated with the rogue wave
formation [10,12,14,20-22,26]. The value of the kurtosis
has been derived for partially coherent waves in the weakly
nonlinear regime (i.e., when solitons can be ignored) in the
framework of wave turbulence theory [20]. To the best of
our knowledge, there is no theoretical description of the
kurtosis doubling in the above scenarios (in the strongly
nonlinear regime). Below we present an analytical descrip-
tion of this phenomenon using recent developments of the
spectral theory of soliton gas.

Soliton gas (SG) can be seen as an infinite stochastic
ensemble of interacting solitons randomly distributed on
the whole line [32]. It represents a prominent example of IT
that has been attracting a great deal of interest recently due
to the recognition of its ubiquity in various physical
systems [8,16,33-35].

The theory of SG was initiated in Zakharov’s 1971 paper
[36] by considering an infinite collection of well-separated
(weakly interacting) KdV solitons randomly distributed in
space and having some given distribution over the IST
spectral parameter {4;}—the discrete spectrum. This
theory of rarefied SG has been significantly expanded
by considering dense (strongly interacting) KdV and
fNLSE soliton gases within the mathematical framework
of the thermodynamic limit for spectral finite-gap solutions
and their modulations [37-39].

The key observation is that, in both MI and partially
coherent wave settings, the dynamics are dominated by the
solitonic component of the spectrum so that the long-time
behavior of the IT can be approximated by appropriate
SGs. In what follows we shall take advantage of the fNLSE
SG theory [39] to infer important statistical characteristics
of the developed, homogeneous IT. This will be done
within the “stochastic” version of the IST schematically
shown in Fig. 2. Specifically, one extracts the spectral
statistical distribution—the so-called density of states
(DOS)—of the approximating SG from the direct scattering
analysis of random initial data w(x, 7 = 0) (solid line in
Fig. 2), and then reconstructs the statistics of the long-time
asymptotic IT wave field y(x,7 — o) via the inverse

initial random data v (z,0)
with PDF Py (|2|?)

int. turbulence ¢ (z,t — o)
with PDF Poo(|9]?)
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FIG. 2. Stochastic analog of the nonlinear Fourier (IST)
framework for the fNLSE with initial data in the form of a
random potential dominated by solitonic content.
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transform of the SG DOS (dashed line) using the invariance
in time of the global spectrum statistics for problems with
macroscopically homogeneous random initial data. The
time evolution step for scattering data of the traditional
IST is replaced by the assumption of an effective stochas-
tization of the soliton phases ensuring spatial uniformity
and statistical stationarity of the SG at t — oo. Although
generally, the direct scattering transform of a random
potential represents a complex mathematical problem
[40], we show that the determination of the spectral
DOS for the two cases considered here reduces to evalu-
ating the Abel transform of the PDF of the random initial
data. We then use the relations between the spectral DOS
and the fNLSE conserved densities and currents [41] to
determine the kurtosis k., of the developed IT.
We consider the fNLSE in the form

iy, +y. 2wy =0, wxr)eC. (1)
The discrete, soliton spectrum {/; } in the linear scattering
problem associated with (1) lies in complex plane [42]. If
the spectrum contains only one point 4 = &+ i in the
upper half-plane C*, the wave field y(x, 1) is given by the
(bright) soliton solution

w(x,1,1) =2nsech[2n(x — xy + 4&t)]
x exp[=2ig(x—xo) +4i(* = &)t +ioo].  (2)

where xj,00 €R are constant parameters describing the
soliton spatial position and the phase at t = 0, respectively;
2n > 0 represents the soliton amplitude, —4—the soliton
velocity. The fNLSE supports N-soliton solutions charac-
terized by the spectral set {4, =& + in}Y_, comple-
mented by the set of N complex norming constants
related to the initial “positions” x& and phases of of the
individual solitons within the N-soliton solution [42] (see
Supplemental Material [43] for details). The N-soliton
solution is called a bound state if all £, = 0.

The fNLSE SG can be formally defined via the limit as
N — oo of N-soliton solution with discrete spectrum points
Ay distributed with some density over a domain 't ¢ C*
and appropriately chosen random distributions for the
norming constants ensuring certain nonzero spatial density
of SG on R. The key aggregated characteristics of SG is the
DOS f(4;x, t), defined as the local density in the spectral
phase space I't x R so that f(4; x, 7)dédndx is the number
of soliton states contained in the element [, & + d&] x
[, 1 + dn] x [x, x 4+ dx] of the phase space at time 7. For a
spatially homogeneous, equilibrium SG f = f(4) globally,
ie, f;=f=0.

fNLSE soliton collisions are pairwise and elastic, and are
accompanied by certain position and phase shifts [42]. As a
result, the effective velocity s(4) of a tracer soliton in a SG is
different from its velocity —4¢£ in a “vacuum” (free soliton
velocity) and is defined by the SG equation of state [38,39]

s(A) = —4&+ / A (A)[s(A) = s()]|dx], (3)
l"+

where the kernel A(4,1) = In|(2* = 2')/(4* + A)|/Im(4)

describes the asymptotic spatial shift in a two-soliton

collision [42]. In this Letter, integrations are written for a

ID curve I'". If ' is a 2D domain in C, the arc integration

Jr+ ---1d4] should be replaced by [[r+...d&dy [39].

The fNLSE has an infinite number of conservation laws
(p;lw]); + (g,[w]), = 0 (j > 1); see for instance [17]. We
focus in the following on
P =l -2y (4)
p3 is commonly called the energy density, where H; =
[ lw.|*dx corresponds to the linear kinetic energy of the
physical system, and Hy; = — [ |w|*dx to the nonlinear
interaction energy. It was shown in [41] that ensemble
averages of the densities (p;) and currents (g;) in SGs are
given by the moments of the DOS such that

pi=wl*  pi=lwl* -y,

16

(p1) = 4Im(2), (p3) = —?Im(ﬁ),

(q2) = 4Im[2%s ()], (5)
where the spectral average h(A) = [, h(4)f(1)|dA] [see
Supplemental Material [43] for an alternative derivation of
relations (5)]. Relations (5) are based on ergodicity of a
homogeneous SG inherent in the finite-gap construction of
[39],50(...) in (5) can be seen as spatial or temporal averages
over an infinite period. A linear combination of these
averages yields the value of the kurtosis for a uniform SG,

) Im{%/ﬁ+ilzs(l)}
WP wmar O

in terms of the spectral DOS.

The special case of the bound state SG is described by
the DOS f(1) = f(n)8(£) where 5(&) is the Dirac delta
function. Since the corresponding free soliton velocity
vanishes, the equation of state (3) has the solution

s(1) = 0, and the kurtosis expression (6) simplifies to

2—
K =§n3/n2, (7)

where 7% are moments of the reduced DOS ().

We now consider the application of the general result (6)
to the two fundamental scenarios of the IT development.
We first consider the problem of spontaneous MI of the
plane wave solution y(x, t) = e*’ of (1). At t = 0 the plane
wave with small random perturbation, a “noise” ¢(x),

w(x,0) =1+ ¢(x), x€ER, (8)
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with (|¢|>) < 1 and zero average, (¢) = 0, where (...)
stands for the ensemble average. The plane wave solution is
unstable with respect to long-wave perturbations that grow
exponentially with time for t < 1 [46,47]. The solution
w(x, 1) develops into an incoherent, strongly oscillating
structure, and the wave field statistics become stationary in
the long-time regime [2]. It was shown in [26] that the
asymptotic dynamics of the spontaneous MI can be
accurately modeled by the uniform, bound state SG with
the DOS

Fon) =——~—
/1=

The distribution (9), sometimes called the Weyl DOS,
corresponds to the “soliton condensate” associated with the
spectral support I't = [0,7] [39]. Substituting the Weyl
DOS in (7), we obtain k = k., = 2, which is twice the
initial kurtosis, in perfect agreement with the long-time
limit computed numerically in [26]. This result provides the
long-awaited analytical proof of the striking statistical
property of the spontaneous MI originally discovered in
the numerical simulations of [2]: the long-time dynamics
exhibits large amplitude fluctuations characterized by
Gaussian single-point statistics—a counterintuitive result
for strongly nonlinear IT.

We now consider a more general random initial
condition—a “stochastically modulated” plane wave—
with the following slow variation assumption for the
amplitude and phase:

0<n<l. 9)

Po(x)

pole) ~ O

uo(x) = O(£7"),

£>1, (10)

where po(x) = ly(x, 0 uo(x) = o, arglw(x.0)); see,
e.g., [6]. Additionally, the random process w(x,0) is
assumed to be ergodic; an example of such initial condition
is displayed in Fig. 1(d). The field y(x, 0) satisfying (10) is
called a partially coherent wave and can be regarded as an
infinite sequence of broad “humps” with random distribu-
tions for the width O(¢) (¢ > 1), the amplitude O(1), and
the position. The randomness of such a wave is realized on
the macroscopic scale L > ¢, while each slowly varying
hump corresponds to a coherent structure (details of the
numerical implementation can be found in [6,48,49]). At an
early evolution time, each single hump exhibits a smooth
evolution dominated by nonlinearity [6] that culminates in
the emergence of a gradient catastrophe followed by the
dispersive resolution via an ordered sequence of coherent
structures locally well approximated by the Peregrine
breather solutions of fNLSE [50,51]. Eventually, at
t — o0, the solution decomposes into a statistically uniform
SG as described below.

In an idealized partially coherent wave with uy(x) =0
each hump can be approximated at leading order by a
nonpropagating, bound state N-soliton solution in the

semiclassical limit (N — oo0) [52,53]. Within a physically
realistic partially coherent wave satisfying (10) each soliton
has a small but nonvanishing velocity component &; # 0
(see Refs. [54,55] for precise analytical estimates), as
depicted by the trajectories of solitons in Fig. 1(b).
However the real part of the soliton spectrum only
contributes to a small correction to the averages (5) and
can be neglected in the computation of the wave field
statistics.

Since the stochastic process y(x,0) is ergodic, the
statistics of the IST spectrum of partially coherent waves
can be determined from one representative realization of
w(x,0). In the semiclassical setting £ > 1, the spectral
distribution of the initial condition for xe&[0,L] is

approximated by the Bohr-Sommerfeld density ¢; (1) =

JEn/m\/po(x) — n*]dx [42]. Since the NLSE evolution is
isospectral, the global spectrum statistics is invariant in
time and the DOS of the homogeneous SG at 1 — oo is
given simply by f(5) ~ @, (n)/L as L — oo. Using the
change of variable x — p = po(x) and the standard geo-
metrical definition of the PDF (see Supplemental Material
[43] and [56]), we obtain that the DOS is given by the Abel
transform of the PDF of the field py(x), denoted Py(p):

nef0,00). (11)

A similar result was derived for the KdV SG in [57].
Clearly the Weyl DOS (9) for the initial data in the MI
scenario is obtained by taking Py(p) = 6(p — 1), corre-
sponding to the plane wave solution y =1 at t = 0.

We can now replace the average over randomly distrib-
uted partially coherent waves by the average over different
realizations of the SG described by (11). As an illustration,
we generate numerically partially coherent waves with
Gaussian single-point statistics implying the exponential
PDF Py(p) = exp(—p) [31]. Using formula (11) we obtain
the Rayleigh distribution f(1) ~ nexp(—n*)/+/@, which
yields by (7) k,, =4 in the long-time regime, which is
twice the kurtosis at ¢t = 0. Our theory thus explains the
largest value of the asymptotic value k., = 4 observed in
the numerical simulations performed in the large non-
linearity regime in [7]. Similar to the spontaneous MI
scenario, we can infer that the probability of high amplitude
waves drastically increases with time for partially coher-
ent waves.

The doubling of the initial kurtosis is a general feature of
partially coherent waves in the semiclassical limit, i.e.,
when the solitons’ velocity can be neglected to leading
order. Indeed (11) yields a relation between the moments of
the SG DOS f(n) and the moments of the initial PDF

Po(p). in particular, ([y(x,0)[?) =477 and (|y/(x.0)*) =

(16/3)11_3 (see Supplemental Material [43]). Thus, the
formula (7) derived for the bound state SG implies that,
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regardless of the expression for the initial PDF, the kurtosis
of the IT developing as t — oo satisfies

(lw(x. 0)*)
(lw(x.0)P)*

An alternative derivation of (12) can be found in the
Supplemental Material [43].

The general kurtosis formula (6) is also valid for non-
bound state SGs (¢ # 0). We consider the so-called circular
soliton condensate defined in [39] by the DOS supported
on a semicircle in the complex plane:

Keo = 2Ky, Where ky = (12)

g+ =1

n>0. (13)

The substitution of the DOS (13) in the equation of state (3)
yields the effective velocity s(1) = —8¢&, which is twice the
free soliton velocity, far from the bound state regime. Now
Egs. (6) and (13) yield x = 2, similar to the modulational
instability induced IT, which compares very well with the
value computed numerically for circular condensates (see
Supplemental Material [43]).

Although x = 2 for both the bound state SG generated
by MI and the circular soliton condensate, the energy
averages (Hy) and (Hy; ) are drastically different for the
two SGs. The average current (g,) vanishes for bound state
SGs [see formula (5)] implying the relation

<HNL> = —2<HL>» (14)

i.e., the average interaction energy is twice the average
kinetic energy. A dynamical analog of (14) with (...)
corresponding to a spatial integration and known as the
virial theorem, has been previously derived for 2D and 3D
fNLSEs using spatial zero boundary conditions [58,59]. In
the bound state SG context, one can assume zero boundary
conditions for any sufficiently large spatial interval due to
the cancellation of the solitons’ velocity. In contrast, we
show that (p;) =0 for the circular soliton condensate,
yielding the relation (Hy; ) = —(Hy ). This does not invali-
date the theorem formulated in [58,59] since s(1) # 0 in
that case.

Summarizing, we have formulated a general theoretical
framework for the IST analysis of IT and have shown that
statistical moments of the long-time development of IT can
be effectively computed for certain classes of random initial
conditions using the SG approximation. In particular, we
have analytically explained the asymptotic doubling of the
kurtosis for two ubiquitous nonlinear wave phenomena: the
long-time evolution of spontaneous MI [2] and partially
coherent waves [7]. Concluding, our work paves the way to
the determination of the full statistics (i.e., the PDF, the
correlations, etc.) in IT and, ultimately, to the realization of
the stochastic IST schematically shown in Fig. 2.

This publication is theoretical work that does not require
supporting research data [60].
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