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Nonequilibrium thermal machines under cyclic driving generally outperform steady-state counterparts.
However, there is still lack of coherent understanding of versatile transport and fluctuation features under
time modulations. Here, we formulate a theoretical framework of thermodynamic geometry in terms of full
counting statistics of nonequilibrium driven transports. We find that, besides the conventional dynamic and
adiabatic geometric curvature contributions, the generating function is also divided into an additional
nonadiabatic contribution, manifested as the metric term of full counting statistics. This nonadiabatic metric
generalizes recent results of thermodynamic geometry in near-equilibrium entropy production to far-from-
equilibrium fluctuations of general currents. Furthermore, the framework proves geometric thermodynamic
uncertainty relations of near-adiabatic thermal devices, constraining fluctuations in terms of statistical
metric quantities and thermodynamic length. We exemplify the theory in experimentally accessible driving-
induced quantum chiral transport and Brownian heat pump.
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Introduction.—In the past decade, significant advances
have been achieved in both experiments and theories that
allow for direct manipulations of thermodynamics of small
setups [1-9]. These systems are subject to large fluctuations
that are detrimental to their stable output. Recently, it has
been shown that cyclically driven thermal devices can be
tuned to be more stable and perform better than their
steady-state counterparts [10-12], igniting a surge of
interest into the stochastic thermodynamics of this regime.

The concept of geometry provides deep insights into the
nonequilibrium cyclic driving. Its manifestation in transport
was originally introduced in the Thouless pump, relating the
quantization of pumped charge with the overall integral of
the underlying nontrivial Berry curvature [13,14]. This idea
also generalizes to open systems [15-17]. In thermal
devices, the geometric-phase-like contribution provides a
way of directing heat flow [18-27] and constructing heat
engines [28-31] and thermoelectric pumps [32]. These
geometric results, ranging from quantum Markovian sys-
tems [18] to classical diffusive dynamics [27], were mainly
restricted to the adiabatic slow driving protocols. By utiliz-
ing controls, nonadiabatic pump effect can be eliminated at
the expense of extra dissipations [33,34]. The leading order
nonadiabatic dissipation in the finite but small driving
frequency regime [35] is captured by the concept of
thermodynamic metric [36-39]. Yet, in the arbitrarily fast
regime, the average entropy production assumes another
geometric interpretation that is lower bounded by the
Wasserstein distance [40-43], providing insights into the
optimal control of the dissipation during finite-time
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processes [44—46]. The above thermodynamic metric struc-
tures, defined on the probability manifold, make the deri-
vation of efficiency-power trade-off [31,47—49] and the
optimal protocol design [50-62] straightforward.

However, previous nonadiabatic results based on the
metric structure are merely restricted to the analysis of
average work or entropy production without temperature
bias. This leads to little understanding of the generic
transport behaviors in open systems with nonequilibrium
reservoirs, let alone the transport fluctuations thereof.
Therefore, important questions arise naturally. How does
one analyze general currents and fluctuations in nonadia-
batic cyclic thermal devices? Can the nonadiabatic driven
transport be characterized by a nonequilibrium thermody-
namic metric structure? If so, what are the general con-
straints on transport fluctuations caused thereby?

In this Letter, we solve the problems by formulating a
geometric scheme of the generating function of currents,
representing the nonadiabatic effects on each order of
current cumulants as a metric term of full counting
statistics. Based on this statistical metric structure of
nonequilibrium transport, we then derive geometric
thermodynamic uncertainty relations (geometric TURS)
to constrain the current fluctuations under the near-adia-
batic driving in terms of statistical metric quantities and
thermodynamic length. Originally, the TUR was proposed
[63] and proved theoretically [64,65] and experimentally
[66,67] within the steady states of classical Markovian
dynamics, which bounds the precision of fluctuating
current Q in terms of the entropy production. The TUR
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was subsequently generalized to the finite-time regime
[68-70], quantum systems endowed with coherence
effects [71-73], setups with broken time-reversal symmetry
[74,75], and even systems with feedback controls [69,76].
Also, the well established fluctuation theorems [77,78]
prove the fluctuation theorem uncertainty relations [79].
For reviews on TUR, see Ref. [80]; for subsequent applica-
tions to the thermodynamic inference, see Refs. [81-83].
Importantly, Koyuk, Seifert, and Pietzonka have derived a set
of modified TURs, applicable to driven systems, by taking
into account the dependence of currents on the driving
frequency [84-86].

Our results in this Letter advance the understanding of
nonadiabatic geometric effects in parametrically driven
thermal devices, which can be far from equilibrium. This
allows for a study of fluctuating devices with various
thermal functionalities regarding both average performance
and fluctuation strength, paving the way toward designing
precise thermal devices under nonequilibrium reservoirs
and nonadiabatic cyclic modulations.

Setups.—We consider a cyclically driven open system
coupled to multiple reservoirs B,, which is schematically
shown in Fig. 1(a). The protocol parametrized as
A(t +7,) = A(t) forms a closed curve d€2 in the parameter
space A, with 7, being the driving period. Without loss of
generality, we here take the discrete state case as an
example. Similar discussions also apply for continuous
cases. As such, the system distribution function is
Ip(0)) = (p1,...,pn)T, with p;(1 <i < N) describing
the probability of occupying state i. The transition rate
along j — i induced by the vth reservoir is kj; (i # )),
which can be time dependent under the protocol A(7). The
master equation is thus written as d,|p(r)) = L(1)|p(r))
with L;; = > (k¥; = 8;; >,z ki;) conserving the probabil-
ity during transitions by >, L;; = 0.

(a) (b)

Py (0))

FIG. 1. Metric geometry in cyclically driven transport. (a) Non-
equilibrium cyclically driven system S coupled to multiple
reservoirs B, (v=1,2,...,N). (b) Metric structure of the
cumulant generating function (CGF) Qmeu(rp) = forp dtgﬂyl'\ﬂ/'\y
in the curved parameter space A. The dashed line represents a
metric CGF contribution G, () to the twisted distribution
|p,(t)) and describes the fluctuations in the nonadiabatic regime
with an arbitrary driving speed, with y being an auxiliary
counting parameter for the interested current.

To each transition path k7;, we associate an increment
of the accumulated current AQ = d;f]- [80]. Stochastic
exchanges between the system and reservoirs, like the
current of particle number, heat, or work, are described by
the antisymmetric tensor d7; = —d;. While, the symmetric
counterpart d;; = d; corresponds to time-reversal invariant
quantities like dynamic activity (d’{j = 1) [87]. The evolu-
tion of the full counting statistics of accumulated currents
can be considered by the twisted operator IAAI with the

counting field y:

9l p, (1) = L, (1) p, (1) (1)

where the matrix elements are L, ;; = > kY je"d?f fori # j
and L, ; = L;. By defining the cumulant generating
function (CGF) G := In Z = In(1|p, (1)), the nth cumulant
of stochastic accumulated current Q at time ¢ is obtained
by taking the n-order derivative of CGF with respect
to y, as (Q"). = 9,G|,_. Here, (1] is a vector with all
elements being 1 and Z is the moment generating function
encoding each order of moments by (Q") = d}Z|,_,,
The non-Hermitian lA,X can be decomposed into lA,I =
SN o Enlra)(l,|, where the left and right eigenvectors are
biorthogonal (l,,|r,) = 8,,,, and n = 0 corresponds to the
unique steady state (we assume the ground state of ltz is
nondegenerate). For details of the dynamics of the twisted
master equation, see Sec. I of [88].

Thermodynamic geometry of full counting statistics.—
Here, we sketch the derivation scheme of our most general
geometric formulation. For derivation details, see Sec. II
of [88]. After several driving cycles, the system enters its
cyclic state, satisfying the Floquet theorem

[P, (1)) = e9O|p(1)) = e+ lgp(r)),  (2)

where |¢(t + 7,,)) = |¢(t)) is acyclic state and |p, (¢)) only
accumulates a CGF G(7,) = Gayn (7)) + Geeo(7,) during one
driving period. It shows clearly that in addition to the
dynamic-phase-like steady states contribution Ggy,(7,) =

o7 dtEy(t), there is a general geometric contribution,

G () = — f dA, (o]0, (1)). 3)

where we define 9, :=d,, for short. Gy, is formally
analogous to the Aharonov-Anandan phase in driven quan-
tum systems [90], containing both the adiabatic and non-
adiabatic effects. Gy, is simply an average over
instantaneous steady states, while G, has no static analogs.
Specifically, one can decompose the state |¢) into the
adiabatic and nonadiabatic components, which are respec-
tively the instantaneous steady state |ry) and the transverse
states perpendicular to |ry) as
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[6(1)) = Iro(0) + Glog(1)). (4)

where the operator G := (ﬁ){ — Ey)T(1 = |#)(Ip|), with the
pseudoinverse (Iix —Ey))*t = Z#O[l/(En — Ep)||ru){L,]-
The first term is the adiabatic trajectory and the second
term signifies the nonadiabatic excitations.

By substituting Eq. (4) into Eq. (3), we find that the
geometric CGF is generally divided into two parts: Gy, =
Geurv + Gmetr- The first part is the adiabatic Berry-curvature-
like CGF Gy = $50 dNA, = [o dS,,F,, [18,24,27-30]
with the geometric connection A, = —([y|d,r;) and the
antisymmetric curvature F,, = (d,1|d,ro) — (9,1y|0,79),
governing the current statistics in the adiabatic regime.
This regime is fertile in constructing precise and efficient
adiabatic thermal machines [9-12].

Of our prime interest is actually the second part, the
nonadiabatic metric component

gmetr(Tp) :/Opg/wAyApdtv
1

5 [(0b]Glo,@) + (0,10]Glo)].  (5)

with g, =

from which the full nonadiabatic effect on each order
of fluctuation cumulants can be derived (QF..). =
% Gmetrly—0 = fo7 9% A, A, dt, with the corresponding met-
ric for cumulants being g,,Q: = 09, ,—o- This metric
structure in CGF is illustrated in Fig. 1(b). In contrast to
the time-antisymmetric G, that reverses upon time
reversal, the time-symmetric metric tensor (also symmetric
in the sense of g,, = g,,) indicates that the nonadiabatic
component G, provides a time-reversal invariant contri-
bution of each current and the corresponding fluctuations.
We note that although Eq. (5) is merely a formal solution,
the following concrete results follow from it.

The statistical metric Eq. (5) describes the full non-
adiabatic effect on arbitrary transport fluctuations. In the
near-adiabatic regime, the state |¢(¢)) reduces to |ry(z))
and the metric simplifies to the leading order of non-
adiabaticity as

g :Z<aﬂl()|rn><ln|avr0>+(/"<_>V) (6)
" n#0 2(En - EO) '

which describes the near-adiabatic currents and fluctua-
tions. Here, (4 <> v) means interchanging indices. Previous
works on the thermodynamic geometry can be derived by
restricting to this near-equilibrium regime and considering
only the average entropy production [37,39,48] and work
variance [52] in setups with a single equilibrium reservoir.

It is worth noting that, in the geometry of optimal
transport, the cost of changing between distributions,
i.e., the average entropy production, is determined by other

metrics on the probability manifold [41-43], both for
the overdamped [40,44], underdamped Brownian [46],
and discrete master equation case [43,45]. The minimiza-
tion of average entropy production naturally reduces to
finding the geodesic between initial and final distributions,
whose length is bounded from below by the Wasserstein
distance [40,43], leading to the optimal Landauer erasure
[40,54,62]. Distinct from the above regime, the metric
Eq. (5) here works in the geometry of parameter space,
which is valid for any currents and fluctuations of interest
under cyclic parametric driving. In what follows, we will
discuss implications of the statistical metric of CGF on
average currents and fluctuations, separately.

Metric structure and average currents.—Here, we con-
sider consequences of the CGF metric on the average
current. Details of calculation are summarized in Sec. III
of [88]. We show that the average current during one period
is (Q) =0,G(,)],—0 = OT" dt(11J(¢)|p(r)), with the cur-
rent operator being J := dxlA,Z | ,—o and the cyclic distribution
being |p(1)) = |p,(1))],—o- Particularly, we derive the
nonadiabatic metric structure for current Q as

<Qmetr> = a}(grnetr<7p)|)(:0 = /0 ' gﬂQl/AﬂAbdt’

1

with g == [(1TL 0, (L*(0,p) + (w < v)].  (7)

where g,% = 01
the average accumulated current (Q) and L™ is the pseu-
doinverse of i‘;{ | ,—o- Itis worth noting that Eq. (7) works for
arbitrary nonadiabatic driving speed. If onereplaces | p) by the
instantaneous steady states [z) = [ry)|,_o in Eq. (7), one will
enter in the near-adiabatic regime and obtain the correspond-
ing metric g% = [(1|7L%0,(LT|0,7)) + (u < v)]/2,
which describes the leading order finite-time effect.

Here, we discuss the application of Eq. (7) to thermo-
dynamic optimization. In the instantaneously unbiased
case, the metric of total entropy production can be
expressed as G, = g5 + 0,(0, —0,), where time-depen-
dent metric g7 describes the reservoir entropy production
due to heat currents and 9,(c,, — o,) is the system entropy
production rate, with 6, = —>_, p, In p,. Note that over

G| ,—o 18 a symmetric metric with respect to

one whole period, (X) := [, dtg5 = [;" dt§, since |p) and
|z) is cyclic in time. The positivity of total entropy
production guarantees g, > 0, which allows us to obtain
a thermodynamic speed limit 7, > £2/(X), bounding the
system evolution speed with entropy production and non-
equilibrium thermodynamic length £ = fg" dt\/G,,. The
sign of equality is obtained when the entropy production
rate is constant and this endows us an entropy minimization
principle 9,3, = 0.

We note that the pseudo-Riemannian metric g,% is
not promised to be positive-definite. Nevertheless, this
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“nonpositive definiteness” sacrifice allows us to generalize
the previous thermodynamic geometry framework to non-
equilibrium transports for generic currents in finite-time
driving regimes. For example, in the near-adiabatic regime,
we can obtain the vector field in the parameter space
along which the nonadiabatic pump current vanishes
g,%/\”[\” = 0. This provides us a geometric view point
of the nonadiabatic control over the time-dependent pump
effect. For details of this optimization principle, see Sec. IV
of [88]. The concise average current expression Eq. (7) is
simply a consequence of our general result Eq. (5), which
generally encodes the statistical information of each order
fluctuation cumulants (Q" ..)..

Geometric TURs and fluctuations.—Here, by restricting
to the near-adiabatic regime, we show that the fluctuations
encoded by Eq. (6) are constrained by a kind of geometric
TURs, wherein the two geometric terms originated from
Goco = Geurv T Gmer Play a central role. Based on the
fluctuation-response inequality [89], which is a nonlinear
generalization of the Cramer-Rao bound, we obtain the
geometric TURs (see Sec. V of [88] for details) as

(<Qdyn> - <Qmetr>)2 o
).

where X is the entropy production during one driving
period, Qg and Oy, are respectively the dynamic and
nonadiabatic metric components of an arbitrary current
with df; = —dj; (that can be particle number, heat, or

(=) >2 (8)

work). Both the variance {Q?), and entropy production ()
contain separate contributions of the dynamic, adiabatic
curvature, and nonadiabatic metric origins. Equation (8),
consistent with Ref. [85], generalizes the adiabatic limit
results in a thermoelectric heat engine [91]. It clearly
unveils the role played by the near-adiabatic metric
structure and paves the way toward geometric inference
and optimization.

Now let us show some direct consequences of the
geometric TURs on the near-adiabatic but finite-time
processes. If the reservoirs are instantaneously isothermal
with each other, the dynamic components vanish in the
sense of mean values (Qayn) = (Zaya) = 0, but not neces-
sarily for the fluctuation (QF, ). of an arbitrary current.
Meanwhile, (X.,,) =0 due to the vanishing quasistatic
entropy production. By rewriting Eq. (8) as (Q?). >
2(<Qdyn> - <Qmetr>)2/(<zdyn> + <2curv> + <Zmetr>), we can
obtain a geometric bound for the current fluctuation

<Qmetr>2
(0% > 2ma )

which becomes tighter for faster drivings. By taking the
entropy production as the current (Q := X) and considering
the positive definiteness of gf,,, we can bound the

fluctuation of entropy production X by the thermodynamic
length £ as

(52), 2, (10)

where L= §,, /gEDdAﬂdA,, is a geometric quantity

independent of the parametrization of protocol. Here, we
have used both Eq. (9) and the Cauchy-Schwarz inequality
[37.48]:  (Z2)¢ > 2(Zpen) = 2 Jo" 0 A A, dt > 2L 1,
This result can be understood as a kind of fluctuation-
dissipation inequality. The geometric bound Eq. (10)
connects the entropy production fluctuation in near-
equilibrium finite-time processes to previously defined
thermodynamic length [36,37], providing a basis for
inferring the statistical distribution of entropy production
in cyclically driven processes.

In the following, we will validate the metric structure
Eq. (6) and the geometric TURs [Egs. (8) and (10)] using
two examples.

Discrete master equation system.—Our first model is the
nonequilibrium quantum tricycle generating the chiral
current by the cyclic driving, illustrated in Fig. 2(a),
which is inspired by the classical stochastic pump model
[17,92] and steady-state continuous thermal devices [93].

Zg/(T)
0.5f

0.0 s - .
10 10 10° -1 0.2
(z) Tp(2%),

FIG. 2. Nonequilibrium quantum tricycle model with energy
levels €,, of quantum dots being driven. (a) The system setup and
its transition graph. Three quantum dots with tunable energy
levels are mediated by three thermal photonic or phononic
reservoirs. The level |3) is in addition coupled to an electron
reservoir. (b) The nonadiabatic average heat flux versus
the inverse period (¢ =2x/3 and T, =T, = T3 = Tg). The
dot-dash line is for the adiabatic component and the dash line is
for the optimal period. (c) The geometric TUR [Z, :=
2((Qayn) = (Omerr))?/(Q?)]1is verified. (d) The geometric bound
on the fluctuation of entropy production (£?).7, >2L? is
verified.
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The system Hamiltonian A = Hg+ Hy + Heg + Hp +
Hgp is composed of the three quantum dot levels
Hy = >3, ené,tén, the electron reservoirs Hp =
Sy €xdrdy, the tunneling term Hgp = 37, 1,(dj &5 + &5d,),
the Bosonic thermal reservoir ﬁB = Zﬁjik ey.k&;k&y’k,
and the system-reservoir coupling term Hgp = Z’;ji « Tok
(ayp + @ )(@e, 4 +¢,,¢,). Here, v=4 denotes the
same site as v = 1. Hp mediates the transitions between
quantum dots |i) and |i + 1) (1 <i <3) and Hg enables
electrons to hop into (out of) the system through the
transition [0) — [3) (|3) — |0)). We restrict ourselves to
the Coulomb blockade and the weak coupling regime. For
the twisted master equation and driving protocols, see
Sec. VIA in [88].

By driving the energy level of quantum dots €, out of
phase, e.g., €,(1) = €) + 5sin[2xt/7, + (n — 1)¢] with &
being the driving amplitude, we realize the driving-induced
chiral current even in the absence of biases. As shown in
Fig. 2(b), (Q)/7, is decreased by the nonadiabatic effect
and reaches its maximum —(Qcyy)?/ (47, (Qmer)) at the
optimal period —27,(Qpmer)/(Qcurv) as denoted by the
dashed lines. In contrast to the nonzero pumping here in
quantum regime, by merely driving the energy level (the
well depth) of the classical analog satisfying the Arrhenius
law of transition rates, the chiral current is prohibited by the
no-pumping theorem in classical systems [17,94]. As
shown in Fig. 2(c), the average entropy production can
be bounded and inferred by the chiral current fluctuations,
satisfying Eq. (8). Also, as shown in Fig. 2(d), the
fluctuation of the entropy production itself is bounded
from left by the thermodynamic length, validating the
geometric bound Eq. (10).

Continuous Brownian system.—Here, we show that
Eq. (10) can be saturated in a Brownian heat pump engine.
We consider two linearly coupled harmonic oscillators
between two reservoirs of temperature 7; [19]. The
Langevin dynamicsis'x = Kx + &(), where x = (x;,x,)"
is the oscillators’ position and & = (&;,&,)" is a vector of
independent Gaussian white noise satisfying (&;) =0,
(&:(11)¢;(12)) = 27,T;6,;6(t; — 1,). The viscosity and stiff-
ness matrices are I' = (ng), K = k(7).

By analytical calculation, when A = (k,y;)7 is driven,
the metric for the average entropy production gfw and

entropy variance gf,f in the isothermal case (T| =T,)
satisfies g%, = 2g%,. Our bound Eq. (10) is saturable by
reparametrizing the protocol in terms of the thermodynamic
length, i.e., the time spent around a parameter point being
dt = (z,/L)y/85,dN,dA, [37.48]. For details, see the

Sec. VIB of [88].

Summary.—We have proposed a general framework of
nonequilibrium thermodynamic geometry in terms of full
counting statistics for analyzing the transport fluctuations

in cyclically driven systems. Our theory can study the
fluctuation properties of arbitrary currents among multiple
reservoirs under finite-time modulations. As an illustration,
we have proved and validated the geometric TURs, relating
the current fluctuations and entropy production in near-
adiabatically driven systems. We have verified the results in
a quantum chiral transport and Brownian heat pump, both
analytically and numerically. This geometry framework can
be readily adopted to study the effect of quantum phenom-
ena (like quantum coherence [95-97], squeezing [98,99])
on the performance and TURs of heat engines in the finite-
time regime. Also, deriving optimal protocols with minimal
fluctuations under cyclic parametric driving with arbitrary
speed is an important future direction.
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