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When Bloch electrons in a solid are exposed to a strong optical field, they are coherently driven in their
respective bands where they acquire a quantum phase as the imprint of the band shape. If an electron
approaches an avoided crossing formed by two bands, it may be split by undergoing a Landau-Zener
transition. We here employ subsequent Landau-Zener transitions to realize strong-field Bloch electron
interferometry, allowing us to reveal band structure information. In particular, we measure the Fermi
velocity (band slope) of graphene in the vicinity of the K points as ð1.07� 0.04Þ nm fs−1. We expect
strong-field Bloch electron interferometry for band structure retrieval to apply to a wide range of material
systems and experimental conditions, making it suitable for studying transient changes in band structure
with femtosecond temporal resolution at ambient conditions.
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The band dispersion and topology of a solid govern its
optical and electrical properties, ranging from light absorp-
tion to electrical conductivity and phase transitions. Mainly
because of its peculiar band structure, the optical and
electrical properties of the semimetal graphene, for exam-
ple, are exceptional and herald a number of potential
applications [1–4]. Direct access to the Bloch electrons
residing in the bands of interest allows imaging their native
band structure. This principle has been widely applied in
angle-resolved photoemission spectroscopy (ARPES) [5–
7]. A drawback of this technique is that in the required
photoemission process the quantum mechanical properties
of electrons usually remain concealed. This way, precious
information beyond their probability distribution, such as
their sensitivity to band topology cannot be recovered.
Other recent approaches for band structure retrieval are

based on coherent, ultrafast strong-field electron dynamics.
They rely on coherently steering the quantum-mechanical
electron wave function across the bands. Various avenues
emerged to study the band structure as well as the band-
specific quantum nature of the driven electrons: band
structure tomography via harmonic sideband [8] and high-
harmonic spectroscopy [9,10] has been shown. High-
harmonic emission and time-resolved ARPES enabled
studying the electronic coherence properties [11,12].
Recently, band topology-sensitive high-harmonic emission
has caught particular attention for both the fundamental
understanding of solids aswell as their potential in lightwave
electronics [10,13–16].
A particularly intriguing situation emerges when strong

light fields drive Bloch electrons across and between the
bands, thereby realizing strong-field Bloch electron inter-
ferometry (SFBEI) [17]. Here, the optical electric field
directs electrons on a momentum trajectory where they

accumulate a quantum phase as the imprint of the respec-
tive band shape. In addition, the electron wave function is
split between adjacent bands and recombined on a sub-
optical-cycle timescale, giving rise to self-referenced inter-
ference [see Fig. 1(a)], the key to access the electron
quantum phase [18–20]. The outcome, a measurable
electric current, may be harnessed to retrieve the underlying
band structure with interferometric precision and a subcycle
timescale of the driving laser. Because this is much faster
than lattice motion, we expect this technique to allow deep
insights into band structure variations due to phononic
driving.
Here, we examine the quantum dynamics based on the

graphene band structure where the essential electron
dynamics appear close to the vertices of the Brillouin
zone, the K points, where the valence and lowest con-
duction band form a Dirac conelike dispersion relation; see
Fig. 1(b) and Refs. [18,19,21]. When an intense femto-
second laser pulse impinges, it transiently exerts momen-
tum to electrons in the valence and conduction bands.
Hence in the strong-field regime, the dynamics are no
longer directed by the laser pulse envelope but by the
optical carrier electric field EðtÞ [linearly x-polarized; see
Fig. 1(c), dashed vs full red line]. The resulting intraband
trajectory [Fig. 1(b), blue double arrows] of any coherently
driven electron can be described by Bloch’s accele-
ration theorem [22] kðtÞ ¼ k0 þ ðe=ℏÞAðtÞ with AðtÞ ¼
−
R
t
−∞ Eðt0Þdt0 the vector potential [Fig. 1(c), blue line]

associated with EðtÞ, and k0 the initial wave vector.
It is well known that such a driven electron may undergo

a Landau-Zener transition from one band to another when it
approaches an avoided crossing formed by two bands.
More precisely, while the driven electron is moving in a
certain band, a coherent electron-hole pair [Fig. 1(b), red
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and blue circles] may be created once the electron under-
goes an impulsive Landau-Zener interband transition
[23,24], where it tunnels in between the valence (v) and
conduction (c) band whenever a strong dipole coupling
Vcv
k ðtÞ ¼ EðtÞ · dcvðkÞ (instantaneous Rabi frequency

modulo ℏ) is given [Fig. 2(b), blue line and gray dashed
lines]. The transition dipole matrix element

dcvðkÞ ¼ e

�
ψ c
kðrÞ

����i ∂

∂k

����ψv
kðrÞ

�
ð1Þ

characterizes the overlap of Bloch states ψ ðαÞ
k ðrÞ (α ¼ c; v).

In the case of graphene, dcvðkÞ strongly increases toward
singular values at the K points, giving rise to substantial
excitation probability in the Dirac cones.
Because the optical driving field is oscillatory in nature,

even for few-cycle pulses, the electron is repeatedly driven
back and forth in momentum space. This combined with
the nonzero Landau-Zener transition probabilities close to
the avoided crossing gives rise to Landau-Zener-
Stückelberg-Majorana (LZSM) interferometry [23–27],
which we here dub as SFBEI in the context of a solid
[18]. Here, the Landau-Zener transition events form the
electron beam splitters, whose properties can be approxi-
mated by the LZSM formula (Eq. 7 of Ref. [27]). For any
interferometer, the phase acquired in the beam-split state
between two transition events at times t1 and t2 is

important. On the adiabatic intraband trajectory of electrons
it is given by the dynamic phase

ϕcv
k ðtÞ ¼

1

ℏ

Z
t2

t1

εcvk ðtÞdt; ð2Þ

which is just the integral over its instantaneous energy
separation εcvk ðtÞ ¼ εckðtÞ − εvkðtÞ [Fig. 2(a)].
This dynamic phase accumulation determines the out-

come of the subcycle SFBEI: In the first half of an optical
cycle [for instance, between t ¼ −0.5 and 0 cycles in
Fig. 2], the electron wave function is split into two
pathways: part of the electron undergoes a Landau-Zener
transition [Fig. 1(d), Pathway 1] and part of the electron
undergoes purely intraband motion in the valence band
[Fig. 1(d), Pathway 2]. In the second half-cycle (t ¼ 0…0.5
cycles), when the electric field reverses, intra- and inter-
band dynamics are interchanged between the two pathways
such that the identical final conduction band state is
reached [Fig. 1(d), red circles].
Depending on the difference in dynamic phase accumu-

lated on the two pathways, constructive interference, i.e.,
net conduction band excitation ρc, or destructive interfer-
ence (no excitation) may result. This example holds for a
single optical cycle. When using a few-cycle optical pulse
for driving, the residual excitation probability depends on
more than two but multiple passages through the avoided
crossing. This leads to a strongly nonmonotonic evolution
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FIG. 1. Field-driven electron dynamics in graphene and the influence of the hopping parameter γ. (a) With increasing jγj, the linear
slope, i.e., the Fermi velocity vF ¼ 3

2
ℏ−1jγja, increases. For instance, at γ ¼ −2.8 eV, vF ¼ 1.03 nm fs−1 whereas at γ ¼ −3.0 eV,

vF ¼ 1.11 nm fs−1. (b) Dirac conelike dispersion around the K point with valence (blue) and conduction band (orange). The intraband
trajectory of an exemplary electron-hole pair (red and blue circles) starting at k0 ¼ ½14.1; 6.6� nm−1 and driven by the vector potential
shown in (c) is shown as double arrows (blue in valence band, red in conduction band). (c) Electric fieldEðtÞ (red line) and its associated
vector potential AðtÞ of a few-cycle light pulse. (d) An electron starting in the valence band (blue circle) can undergo two different
pathways within one optical cycle: a Landau-Zener transition after a quarter of an optical cycle followed by three-quarters of intraband
motion, or vice versa. The final state occupation depends on the interference of both pathways with conduction (valence) band
occupation for constructive (destructive) interference.
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of ρcðtÞ [Fig. 2(c); the underlying model is outlined below].
Hence, the outcome of residual conduction band excitation
ρcðt → ∞Þ [Fig. 2(c), green circles] is a result of the
intricate interplay of inter- and intraband dynamics.
We now study the influence of both the driving laser’s

waveform and the band shape on SFBEI. For demonstra-
tion purposes we introduce a first-order perturbative rate
model derived from the time-dependent Schrödinger equa-
tion (TDSE) to provide an intuitive understanding of the
relevant dynamics. We use a nearest-neighbor tight-binding
model as described in [28].
This framework has been proven to capture the relevant

dynamics correctly compared to state-of-the-art time-
dependent density functional theory [29]. Moreover, by
employing the overlap integral matrix described in
Ref. [28], the valence and conduction band are sculpted
more precisely with their energetic symmetry lifted toward
the Γ point.

The TDSE

iℏ
dΨkðtÞ
dt

¼ HkðtÞΨkðtÞ ð3Þ

is solved using the wave function ΨkðtÞ ¼ ½avkðtÞ; ackðtÞ�
and the length gauge representation of the Hamiltonian

HkðtÞ ¼
"

0 −Vcv
k ðtÞeiϕ

cv
k ðtÞ

−Vcv
k ðtÞe−iϕ

cv
k ðtÞ 0

#
: ð4Þ

Equation (3) can be solved numerically to yield an exact
solution to ρckðtÞ ¼ jackðtÞj2 [Fig. 2(c), dashed lines].
To obtain a more intuitive understanding of the dy-

namics and the ensuing conduction band excitation, we
rewrite Eq. (3) as ΨkðtÞ ¼ UkðtÞΨkð−∞Þ with UkðtÞ ¼
T exp ½−ði=ℏÞ R t

−∞Hkðt0Þdt0� and the time ordering oper-
ator T . By expanding the above expression to first order as
UkðtÞ ≈ 1 − ði=ℏÞ R t

−∞ Hkðt0Þdt0, the first-order perturba-
tive excitation rate is obtained as [30,31]

ρckðtÞ ¼
���� − i

ℏ

Z
t

−∞
Vcv
k ðt0Þ exp ½iϕcv

k ðt0Þ�dt0
����2: ð5Þ

Its temporal evolution is shown in Fig. 2(c) as full lines. It
matches the results of the full TDSE solution well, which is
important for the discussion to follow now. Clearly, the
match can be improved further by including higher orders
in the form of a Dyson series [32], which is not
needed here.
This simplified rate reveals two key conditions for a net

excitation into the conduction band to occur at an instant t:
(1) a large dipole coupling Vcv

k ðtÞ, and (2) a constructive
phase evolution. Condition (2) is fulfilled when a phase
Δϕcv

k þ ϕ̃ ¼ 2πn is accumulated between transition events
[Fig. 2, gray dashed lines] such that the complex-valued
integrand of Eq. (5) does not vanish after time integration
[19,33,34]. In fact, this requirement is equivalent to
constructive LZSM interference [27]. ϕ̃ is a transition
phase that can be approximated by the Stokes phase
[27,35]; here, it accounts to ϕ̃ ≈ π:n is an integer and
can be linked to a multiphoton order (see detailed dis-
cussion below). Based on this model we now inspect the
band shape sensitivity of the excitation process.
The graphene tight-binding Hamiltonian depends on

three numerical parameters only: the lattice constant a,
the hopping parameter γ, and the overlap integral s (see
Ref. [28] for a definition); we use s ¼ 0.129 as a correct
representation of the bands toward the Γ point [28]. While
the lattice constant a ¼ 2.46 Å is well known from first-
principle computations [36], the value of the hopping
parameter γ is less well determined, typically ranging from
γ ¼ −3.03 eV to −2.50 eV [28,36,37]. We will show that
we can measure γ based on fitting our experimental data
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FIG. 2. Subcycle dynamics as a function of the hopping
parameter γ. For this showcase, a 1.2 cycle waveform at
800 nm (1 cycle ¼ 2.7 fs) is employed with a peak optical field
strength E0 ¼ 3 Vnm−1 and a carrier-envelope phase (CEP)
φCE ¼ −π=2 [see Fig. 1(c)]. (a) Instantaneous band gap εcvðtÞ
experienced by the electron-hole pair indicated in (a). We show
three cases for a choice of γ ¼ ½−3.0;−2.9;−2.8� eV [dark to
light green, compare to Fig. 1(a)]. Time integration over the green
shaded area yields the dynamic phase ϕcvðtÞ (modulo ℏ), which is
shown on the right axis, starting at ϕcvð−2 cyclesÞ ¼ 0. (b)
Absolute value of the associated transient interband dipole
coupling Vcv

k ¼ EðtÞ · dcvðkÞ (blue line) induced by EðtÞ (red
line). We note that dcv is independent of γ. Regions of likely
Landau-Zener tunneling events refer to the maxima in jVcv

k j,
which are indicated as gray dashed lines through all panels.
(c) Conduction band population ρc resulting from the analytical
model (full lines) and the TDSE (dashed lines). Crucially, the
residual ρc (circles) differ significantly even for slight changes in
γ due to the interferometrically high sensitivity of the electron’s
dynamic phase on band modifications.
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stemming from excitation close to the K points.
Furthermore, we note that free carrier density-dependent
renormalization effects of the band structure [38] are
neglected as we expect the underlying Coulomb inter-
actions to become dominant only after the few-fs interfer-
ometry employed here.
Figure 1(a) illustrates the influence of γ on the con-

duction band (valence band equivalently): the Fermi
velocity vF ¼ 3

2
ℏ−1jγja, i.e., the slope of the Dirac cone,

is slightly increased when we tune γ from −2.8 to −3.0 eV.
This in turn is reflected in a minor change of instantaneous
electron energy for a given k value [Fig. 2(a)]. Importantly,
the resultant dynamic phase evolution clearly encodes this
small variation of instantaneous energies within a few
femtoseconds [Fig. 2(a), wrapped lines]. While the dipole
transition matrix element is independent of γ, the resulting
excitation band probability ρc after the laser pulse has gone
is completely changed, but can be fully understood in terms
of the differing dynamic phase evolution [Fig. 2(c), green
circles].
Furthermore, by controlling the temporal symmetry of

the optical waveform by means of its carrier-envelope
phase (CEP) φCE we lift the population inversion symmetry
of the Dirac cones. For example, by choosing φCE ¼ π=2
the driving field forces electrons starting at two different
initial wave vectors k0 with k0;x < Kx and k0;x > Kx on
trajectories that lead to a different dynamic phase evolution
and sequence of interband transition events (see Ref. [39]
and detailed phase analysis in the Supplemental Material
[40]). As a consequence, the asymmetric momentum
distribution ρc gives rise to a ballistic current density

j ¼ 2e
X
α

Z
BZ

ℏ−1 ∂ε
ðαÞðkÞ
∂kx

ρðαÞk ðt → ∞Þ dk
ð2πÞ2 ; ð6Þ

which can be precisely controlled in amplitude and
direction depending on the value of φCE [4,19,41]. The
factor 2 in Eq. (6) accounts for both electron spins; the
integration is performed across the complete Brillouin
zone (BZ).
To demonstrate the feasibility of band structure retrieval

based on experimentally obtained field-driven current, we
excited epitaxial monolayer graphene on silicon carbide
with 5 fs (full width at half maximum, equal to 1.9 optical
cycles) CEP-stable laser pulses centered at 800 nm (photon
energy of 1.55 eV). We controlled the result of SFBEI, i.e.,
the residual distribution of ρck, by modulating the CEP of
the pulse train at a carrier-envelope offset frequency
fCEO ¼ 3.3 kHz and by varying the peak optical field
strength E0 from 0 to 5 Vnm−1 on the substrate surface.
The pulses are focused to a 1=e2 intensity radius of 1.8 μm
in the center of a 5 × 2 μm2 graphene strip. The graphene
strip is attached to two gold electrodes to measure the CEP-
sensitive photo-induced currents [Fig. 3(b)]. Field-induced
currents are isolated from the CEP-insensitive background

via dual-phase lock-in detection referenced to fCEO follow-
ing transimpedance current amplification with 107 VA−1.
See Ref. [4] for experimental and sample fabrication
details.
Figure 3(a) shows the measured current (red circles) as a

function of E0. Whereas in a previous experiment we were
able to show this current for up to 3V nm−1 [19], we can here
extend data to 5 Vnm−1 (0.5 VÅ−1) to reveal the peculiar
oscillatory evolution of the current. In addition to the
previously observed current reversal below 2 Vnm−1 (vis-
ible here at around 1.8 Vnm−1 from negative to positive
current), which had been identified as an onset marker of the
strong-field regime [17,19], we report a second current
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FIG. 3. Carrier-envelope phase-dependent current in monolayer
graphene. (a) Experimentally obtained CEP-dependent current
(red circles with error bars) as a function of the optical peak field
strength E0. Error bars indicate the standard deviation of the mean
of 33 independent samples. The three green lines are obtained
from numerical TDSE computations with the absolute current
magnitude as only free parameter, with hopping parameters γ as
indicated. Inset: χ2 distribution from fitting the simulated data to
the experimentally obtained data points. The dashed white ellipse
indicates the 1σ interval around the global minimum marked by
the full white lines. (b) Sketch of the experimental setup.
Epitaxially grown monolayer graphene on a SiC substrate is
illuminated with tightly focused CEP-stable 2-cycle laser pulses.
Induced CEP-dependent currents are measured via two gold
electrodes attached to the graphene.
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reversal at around 3.5 Vnm−1 followed by a steep growth to
a maximum absolute value of ð116� 2Þ pA at
ð4.8� 0.2Þ Vnm−1. Toward 5 Vnm−1, the current magni-
tude shows the onset of a decline toward zero again.
The characteristic current scaling is well reproduced by

the TDSE simulation [Eq. (3)]. We show three results with
slightly different values of γ [Fig. 3(a), green lines]. All
required numerical parameters are taken from the experi-
ment. The simulated current was obtained by averaging over
arbitrary lattice angles with respect to the laser polarization
to account for all possible orientations of epitaxial grains
within the laser focus [42]. Furthermore, focal averaging is
applied to include the spatial Gaussian field distribution in
the focal plane. Most importantly, the two sign changes as
well as the relative current amplitude between themaxima at
3 and 4.8 Vnm−1 are well reproduced. An increase in jγj,
i.e., an increase of the Fermi velocity [Fig. 1(a)], mainly
results in a shift of features to higher E0.
The qualitative and quantitative agreement together with

the clearly visible γ dependence allows us to determine the
optimal hopping parameter with a fitting procedure (see
Supplemental Material for a more detailed discussion). For
this, we sweep γ and adjust the effective magnitude Aeff to
match JTDSE ¼ Aeffj with the experimentally observed
current magnitude J. The inset of Fig. 3(a) shows the χ2

distribution

χ2ðγ; AeffÞ ¼
X
n

½JðnÞ − JðnÞTDSEðγ; AeffÞ�2
jJðnÞj ; ð7Þ

with n indicating all measured points with E0 > 1 Vnm−1,
yielding Aeff¼ð6�2Þ×10−3m and γ ¼ ð−2.9� 0.1Þ eV
as the best fit result. The corresponding Fermi velocity
equals vF ¼ ð1.07� 0.04Þ nm fs−1. We note that Aeff
incorporates the signal transmission to the electrodes and
is thus a highly setup-dependent parameter.
This Fermi velocity fits remarkably well with previously

obtained values obtained by infrared spectroscopy
[ð1.02� 0.01Þ nm fs−1] [43], scanning tunneling micros-
copy [ð1.070� 0.006Þ nm fs−1] [44], and ARPES
[ð1.00� 0.05Þ nm fs−1] [5]. We note that all these values
are obtained from epitaxial graphene on SiC, exactly like in
our case. Hence, these results prove that strong-field Bloch
electron interferometry is a viable approach for band
structure retrieval.
We expect the full potential of SFBEI-based band

structure retrieval to unfold (1) when the full quantum
phase space spanned by the dynamic and the geometric
phase is probed, and (2) when dynamic changes to the band
structure on the femtosecond timescale arise. For example,
the Berry curvature of gapped 2D materials gives rise to a
nontrivial geometric phase for electrons encircling the K
point that may be probed subsequently as a field-driven
Hall current that enables probing the underlying band

structure [10]. By adapting the applied photon energy to
the band dispersion of interest, typically 10 to few 100 eV,
the topology landscape of Weyl semimetals [45,46] and
topological insulators [13,14], as well as correlations
between Bloch electrons [47], could be probed based on
strong-field electron interferometry. As for time-resolved
band retrieval, transient deformations of the lattice, such as
coherent optical phonons [48], may become visible from
the induced currents with a time resolution given by the
optical cycle duration of the probing laser pulse.
To summarize, we extend the generation of field-driven

currents inmonolayer grapheneup to an unprecedented peak
optical field strength of E0 ¼ 5 Vnm−1, thereby revealing
an oscillating evolution of the current as a function ofE0.We
can clearly show that this current results from strong-field
Bloch electron interferometry, based on electrons under-
going complex coherent intraband motion coupled with
interband transitions. An analytical model helps us to
understand the underlying quantum dynamics, whereas
we utilize the observed current dependence matched by
TDSE computation results to retrieve the graphene Fermi
velocity as ð1.07� 0.04Þ nm fs−1, in excellent agreement
with previously experimentally obtained values. We expect
this method to measure with femtosecond temporal preci-
sion band structures with high accuracy in various recently
emerging quantum materials.
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