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A theory of anisotropic galvanomagnetic effects in single cubic crystals and its experimental
verifications are presented for the current in the (001) plane. In contrast to the general belief that
galvanomagnetic effects in single crystals are highly sensitive to many internal and external effects and
have no universal features, the theory predicts universal angular dependencies of longitudinal and
transverse resistivity and various characteristics when magnetization rotates in the (001) plane, the plane
perpendicular to the current, and the plane containing the current and [001] direction. The universal angular
dependencies are verified by experiments on Fe30Co70 single cubic crystal film. The findings provide new
avenues for fundamental research and applications of galvanomagnetic effects, because single crystals offer
advantages over polycrystalline materials for band structure and crystallographic orientation engineering.
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Anisotropic magnetoresistance (AMR) is a well-known
phenomenon that was first discovered in 1856 by Kelvin
[1]. AMR refers to dependences of the longitudinal
resistivity on magnetization direction while the depend-
ences of the transverse resistivity on the magnetization
direction are referred to as the anomalous Hall effect (AHE)
and planar Hall effect (PHE) in the Hall geometry. AHE
and PHE are, respectively, referred to as dependences on
the perpendicular and in-plane (to the Hall plane) compo-
nents of the magnetization. AMR, AHE, and PHE have
been extensively studied in magnetic polycrystalline mate-
rials [2–5] and single crystals [6–10] and their complete
understanding is a problem that has persisted for more than
150 years in the field of magnetism.
The universal angular dependencies of longitudinal

and transverse resistivity in magnetic polycrystalline mate-
rials are well known [11–14], which says ρxxðαÞ ¼ ρ0 þ
A0cos2α and ρxyðαÞ ¼ ðA0=2Þ sin 2α, where α is the angle
between the magnetization and current [15–19]. For gal-
vanomagnetic effects in single crystals, there are also many
studies [20–28] that show complicated behaviors [7,8].
However, despite the known roles of spin-orbit interaction,
spin-dependent scatterings, and electron interactions with
crystallographic directions in galvanomagnetic effects
[11,12], no universal angular dependencies of longitudinal
and transverse resistivity in magnetic single crystals have
been found to date.
The study of galvanomagnetic effects in single crystals is

important for several reasons. First, it should deepen our

understanding of the fundamental physics of magnetoresist-
ance, including the role of crystal symmetry and electronic
structure. In single crystals, galvanomagnetic effects are
directional [29], because electronic structures are different
along different crystallographic directions, leading to differ-
ent electron scattering and different group velocities.
Second, it enables the development of new materials with
tailored magnetic and electronic properties, which can be
useful for applications in spintronics such as magnetic
recording and sensing [11,12]. The in-plane AMR in single
crystals has demonstrated higher-order symmetry [7]
and phase shift [30] beyond polycrystallinematerials, which
may serve as an opportunity for discovering new effects.
In this Letter, the theory based on vector order param-

eters for galvanomagnetic effects in single cubic crystals is
presented. Through the transport measurements on
Fe30Co70 single cubic crystal film when the current is in
the (001) plane with the magnetization rotated in the (001)
plane, the plane perpendicular to the current, and the plane
containing the current and the [001] direction, the universal
angular dependencies of longitudinal and transverse resis-
tivity are verified. We find that only 8 parameters are
needed to describe all longitudinal and transverse resistivity
curves below the 4th order. We also predict several
characteristics of galvanomagnetic effects, such as that
the transverse resistivity with current along the [100] and
[110] directions is identical when the magnetization is
rotating in the above three planes. Our results provide new
insights of galvanomagnetic effects in single crystals.
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In ferromagnetic single crystals, the scattering of elec-
trons is related to crystallographic directions, which can be
characterized by three crystalline axes n⃗1, n⃗2, n⃗3, and the
magnetization M⃗ whose magnitude is a constant and
direction is along m⃗. In the linear response region, the
electric field E⃗ in response to an applied current density J⃗ in
a crystal must be

E⃗ ¼ ρ
↔ðm⃗; n⃗1; n⃗2; n⃗3ÞJ⃗; ð1Þ

where ρ
↔ðm⃗; n⃗1; n⃗2; n⃗3Þ is a Cartesian tensor of rank 2.

Although the tensor values depend on microscopic proper-
ties of the crystal and parameters that defines its thermo-

dynamic state, tensor ρ
↔

can be constructed only by m⃗, n⃗1,
n⃗2, and n⃗3. There are ten possible Cartesian tensors: m⃗ m⃗,
n⃗1n⃗1, n⃗2n⃗2, n⃗3n⃗3, m⃗n⃗1, m⃗n⃗2, m⃗n⃗3, n⃗1n⃗2, n⃗1n⃗3, and n⃗2n⃗3.
Each of them, however, is reducible [31], and can be
decomposed into the direct sum of a scalar, a vector, and a
traceless symmetric tensor. Then it is possible to construct
seven vectors and ten traceless symmetric tensors of
ranks 2: m⃗, n⃗1, n⃗2, n⃗3, m⃗ × n⃗i, m⃗ m⃗−1=3,
m⃗n⃗i þ n⃗im⃗ − 2m⃗ · n⃗i=3, and n⃗in⃗j þ n⃗jn⃗i − 2n⃗j · n⃗j=3 (i,

j ¼ 1, 2, 3). Thus, ρ
↔

should be the linear combination
of 17 direction-dependent terms together with a scalar term.
The electric field E⃗ induced by J⃗, after grouping similar
terms, must take the following most generic form

E⃗ ¼ ρ0J⃗ þ
�
B0m⃗þ

X3
i¼1

Bin⃗i þ
X3
i¼1

B3þim⃗ × n⃗i

�
× J⃗

þ
X3
i¼1

Ai½ðJ⃗ · m⃗Þn⃗i þ ðJ⃗ · n⃗iÞm⃗� þ
X3
i¼1

Aiþ3ðJ⃗ · n⃗iÞn⃗i

þ A7½ðJ⃗ · n⃗1Þn⃗2 þ ðJ⃗ · n⃗2Þn⃗1� þ A8½ðJ⃗ · n⃗1Þn⃗3
þ ðJ⃗ · n⃗3Þn⃗1� þ A9½ðJ⃗ · n⃗2Þn⃗3 þ ðJ⃗ · n⃗3Þn⃗2�
þ A0ðJ⃗ · m⃗Þm⃗; ð2Þ

where ρ0, Ak (k ¼ 0;…; 9), and Bl (l ¼ 0;…; 6) are
parameters that are determined by the extrinsic and intrinsic
properties of a sample such as the temperature, disorders,
and band structures. Of course, these parameters can, in
principle, depend on the scalars constructed from m⃗ and n⃗i.
Among them, only m⃗ · n⃗i ≡mi (i ¼ 1, 2, 3) can introduce
the anisotropic effect. For crystals with reciprocity, E⃗
should be the same under n⃗i → −n⃗i transformations.
Thus, ρ0, A0, A4, A5, A6, and B0 must be even functions
of mi (i ¼ 1, 2, 3). Ai, Bi, and Biþ3 must be odd in mi
and even inmj≠i (i ¼ 1, 2, 3) while A7 is odd inm1 andm2,

and even inm3. For example, ρ0 ¼
P

p;q;r ρ0pqrm
2p
1 m2q

2 m2r
3

and A1 ¼
P

p;q;r A1pqrm
2pþ1
1 m2q

2 m2r
3 . Expansion coeffi-

cients ρ0pqr and A1pqr measure the 2ðpþ qþ rÞ-th order
and 2ðpþ qþ rÞ þ 1-th order interactions of electrons
with magnetization and crystal order parameters, respec-
tively, because the A1 term contains already one m⃗. Similar
expansions can be done for other A’s and B’s, see
Supplemental Material [32]. Because magnetic interactions
are usually weak, we shall keep our analysis below the 4th
order of electron-magnetization interactions.
Equation (2) is the most general electric field response

of a crystal to an external current. Among all possible
physical quantities, AMR and PHE of a given crystal can be
obtained directly from it. In the absence of n⃗i such as
polycrystalline or amorphous magnets, Eq. (2) reduces to
the well-known generalized Ohm’s law of polycrystalline
materials [17,18] with only ρ0, B0, and A0 terms.
The B0 term is the usual anomalous Hall effect, and the
A0 term is the AMR and PHE for ferromagnetic poly-
crystalline. If current J⃗ is defined as the x axis and the Hall
bar is in the xy plane throughout this Letter, the longitudinal
and transverse resistivity are ρxx ¼ ρ0 þ A0 cos2 α and
ρxy ¼ B0mz þ ðA0=2Þ sin 2α, where α is the angle between

m⃗ and J⃗. Obviously, ρ0 is the longitudinal resistivity when
J⃗ is perpendicular to m⃗ and B0 is the anomalous Hall
coefficient. A0 is the amplitude of the conventional AMR
and PHE that is typically a few percent of ρ0. Interestingly,
the tensor analysis leads to the famous Einstein gravitation
field theory [33]. The analysis has also been successfully
used to predict anomalous spin Hall effects [34–36] and
unusual AMR in bilayers [37].
In order to see the implications of Eq. (2), we apply it to

cubic crystals. In this Letter, a widely used configuration in
experiments is considered, where the (001) plane lies
on the xy plane, the z axis is along the [001] direction,
and n⃗1, n⃗2, and n⃗3 are equivalent and mutually orthogonal
with each other corresponding to the [100], [010],
and [001] directions. According to Eq. (2), the longi-
tudinal and transverse resistivity are ρθxx ≡ ⃗E · x̂=J ¼
ρ0 þ A0m2

x þ P
2
i¼1ð2Aimxnix þ Aiþ3n2ixÞ þ A7n1xn2x

and ρθxy ≡ E⃗ · ŷ=J ¼ B0mz þ B3 þ B4ðmxn1y − myn1xÞ þ
B5ðmxn2y−myn2xÞþA0mxmyþ

P
2
i¼1½AiðmxniyþmynixÞþ

Aiþ3nixniy� þ A7ðn1xn2y þ n1yn2xÞ, where θ is the angle
between the [100] direction and the x axis.
Following the convention in literature, we define α

as the angle between m⃗ and J⃗ when m⃗ rotates in the xy
plane, β and γ as the angles between m⃗ and the z axis when
m⃗ rotates in the yz and zx planes, respectively, as illustrated
in Fig. 1(a). After some tedious algebra, as shown in the
Supplemental Material [32], the angular dependencies of
ρθxx and ρθxy, with terms not higher than m4

i , are
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ρθxxðαÞ¼ρ1cos2αþρ2cosð2αþ4θÞþρ3cosð4αþ4θÞ;
ρθxxðβÞ¼ðμ1−μ1cos4θÞcos2βþðρ4þρ5cos4θÞcos4β;
ρθxxðγÞ¼ðμ2þμ3cos4θÞcos2γþðμ4þμ5cos4θÞcos4γ;
ρθxyðαÞ¼ρ1 sin2α−ρ2 sinð2αþ4θÞ−ρ6 sinð4αþ4θÞ;
ρθxyðβÞ¼ρ7cosβþsin4θðμ6cos2βþμ7cos4βÞþρ8cos3β;

ρθxyðγÞ¼ρ7cosγþsin4θðμ8cos2γþμ9cos4γÞþρ8cos3γ;

ð3Þ

where ρi (i ¼ 1; 2;…; 8) are the only independent
constants that depend on material parameters. μi
(i ¼ 1; 2;…; 9) are linear combinations of ρi (i ¼ 1;
2;…; 8) and are μ1 ¼ −ðρ2 − ρ3Þ=2, μ2 ¼ μ1 − ρ1,
μ3 ¼ μ1 − ρ3, μ4 ¼ 3ρ3=4þ ρ5, μ5 ¼ ρ3 − μ4, μ6 ¼
−ðρ2 − ρ6Þ=2, μ7 ¼ ρ3=8 − ρ5 þ ρ6=8, μ8 ¼ μ6 þ
ρ2, μ9 ¼ −ρ6=4 − μ7. We have also removed the angular
independent background resistance such that averaged
ρθxxðαÞ with respect to α is zero. It should be emphasized
that the angular dependences of galvanomagnetic effects
are fully determined by these 8 coefficients. ρ1 describes
the usual twofold AMR and PHE while ρ7 is the
usual AHE.

For J⃗ along [100] (θ ¼ 0°) and [110] (θ ¼ 45° and
equivalent to θ ¼ −45° or ½1̄ 1̄ 0�), we have

ρ0°xxðαÞ ¼ ðρ1 þ ρ2Þ cos 2αþ ρ3 cos 4α;

ρ0°xxðβÞ ¼ ðρ4 þ ρ5Þ cos 4β;
ρ0°xxðγÞ ¼ −ðρ1 þ ρ2Þ cos 2γ þ ρ3 cos 4γ;

ρ0°xyðαÞ ¼ ðρ1 − ρ2Þ sin 2α − ρ6 sin 4α;

ρ0°xyðβÞ ¼ ρ7 cos β þ ρ8 cos 3β;

ρ0°xyðγÞ ¼ ρ7 cos γ þ ρ8 cos 3γ; ð4Þ
and

ρ45°xx ðαÞ ¼ ðρ1 − ρ2Þ cos 2α − ρ3 cos 4α;

ρ45°xx ðβÞ ¼ ðρ3 − ρ2Þ cos 2β þ ðρ4 − ρ5Þ cos 4β;

ρ45°xx ðγÞ ¼ ðρ3 − ρ1Þ cos 2γ þ
�
1

2
ρ3 þ 2ρ5

�
cos 4γ;

ρ45°xy ðαÞ ¼ ðρ1 þ ρ2Þ sin 2αþ ρ6 sin 4α;

ρ45°xy ðβÞ ¼ ρ7 cos β þ ρ8 cos 3β;

ρ45°xy ðγÞ ¼ ρ7 cos γ þ ρ8 cos 3γ: ð5Þ

(a)

(c) (d) (e)

(b)

FIG. 1. The longitudinal and transverse resistivity of Fe30Co70 single cubic crystal film under 6 T field. (a) The schematics of the
experimental setup. Current J⃗ is along the x axis in the (001) plane. θ is the angle between J⃗ and n⃗1, and z axis is along the [001]
direction. αH is the angle between the magnetic field H⃗ and the x axis when H⃗ is in the (001) plane. βH and γH are the angles between H⃗
and the z axis when H⃗ is in the yz and zx planes, respectively. (b) ρθxxðαHÞ (open circles) and ρθxyðαHÞ (solid circles) for
θ ¼ 0°;�15°;�30°, and �45°. The dotted (solid) lines are the fitting curves by Eq. (3) with α ¼ αH . (c) ρθxxðβHÞ (open circles) and
ρθxxðγHÞ (solid circles) for θ ¼ 0°; 15°; 30°, and 45°. The dotted (solid) lines are the fitting curves by Eq. (3) with βðγÞ ¼ βHðγHÞ þ δ. δ is
the angle of magnetization deviated from magnetic field. (d) ρθxyðβHÞ (black and blue circles) and ρθxyðγHÞ (green and red circles) for
θ ¼ 0° and 45°. The solid lines are the fitting curves by Eqs. (4) and (5) with βðγÞ ¼ βHðγHÞ þ δ. To display experimental data clearly,
only one data point is shown for every four data points collected. (e) ρ0°xxðαÞ (open black circles) and ρ0°xxð90° − γÞ (open red circles): They
are overlapped with each other and agree with Eq. (4) (solid line).
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Interestingly, there are several characteristics according
to Eqs. (4) and (5). (i) The amplitude of the twofold in

ρ0°ð45°Þxx ðαÞ is equal to that in ρ45°ð0°Þxy ðαÞ, and the amplitude of
the fourfold in ρ0°xxðxyÞðαÞ and ρ45°xxðxyÞðαÞ are always the

same. In fact, this fourfold amplitude of ρ3 does not depend
on θ, and this is exactly what was observed in L10 FePt
films [38]. (ii) ρ0°xxðβÞ have no twofold symmetry but strictly
fourfold symmetry. (iii) The results of ρ0°xyðβÞ, ρ0°xyðγÞ,
ρ45°xy ðβÞ, and ρ45°xy ðγÞ which only have a onefold and
threefold term are identical, and ρ0°xxð90° − γÞ is identical
to ρ0°xxðαÞ. Furthermore, the sum of amplitudes of the

twofold terms in ρ0°ð45°Þxx ðαÞ and ρ0°ð45°Þxx ðγÞ equals to that

in ρ0°ð45°Þxx ðβÞ. Other relationships among the angular
dependencies of longitudinal and transverse resistivity also
exist and can be used to test the theory. By inspection, early
experiments of AMR and PHE in Refs. [23] and [7] for (Ga,
Mn)As and CoxFe1−x single cubic crystal films along these
two special angles agree with our theory. Moreover, the
tensor analysis includes all possible microscopic mecha-
nisms such as spin Hall magnetoresistance [39], Rashba-
Edelstein magnetoresistance [40], and anomalous Hall
magnetoresistance [41].
To verify the theory presented above, we measured

angular dependences of ρθxx and ρθxy of Fe30Co70 single
crystal film. A 19-nm-thick Fe30Co70 single crystal film
was grown on MgO(001) substrate at room temperature by
molecular beam epitaxy. The single crystal sample is
patterned into Hall bars along different crystallographic
direction using photolithography and ion beam etching as
schematically shown in Fig. 1(a). In one batch, we
fabricated Hall bars along θ ¼ 0°;�15°;�30°, and �45°
with size of 1000 μm× 50 μm. Both the longitudinal and
transverse resistivity ρθxx and ρθxy are measured using the
four-probe method. All measurements were performed at
room temperature. The results for current in the (001) plane
of our Fe30Co70 film are plotted in Figs. 1(b)–1(d). The
symbols are experimental data (after subtracting the back-
ground resistances, and ρθxy divided by a coefficient of 1.19
due to the effect of the finite electrode size for the Hall
measurement [7,30]). The average sheet resistivity of our
films along θ ¼ 30° is 8.82 μΩcm, and a variation of
8.82� 0.47 μΩcm along different crystallographic direc-
tions exists. In order to compare the experimental results
with the theoretical prediction, α, β, and γ of magnetization
should be derived from the corresponding angles αH, βH,
and γH of magnetic field which can be determined
experimentally. A 6 T magnetic field is applied to ensure
the magnetization close to the direction of field. Then α ≃
αH because of the magnitude of in-plane magnetocrystal-
line anisotropy field is 2 orders of magnitude smaller than
the applied field strength. β ≃ βH þ δ and γ ≃ γH þ δ since
the out-of-plane shape anisotropy field is about 2 Twhich is
not much smaller than 6 T. The angle δ of magnetization

deviated from the magnetic field can be expressed
as [42,43]

δðβHÞ ¼
sin 2βH

2ðH=HK − cos 2βHÞ
; ð6Þ

where H is the magnitude of magnetic field, and HK is the
anisotropy field. Equation (6) is also applicable to γH. The
dashed and solid lines in Figs. 1(b)–1(d) are fitting curves
by Eq. (3) with 8 fitting constants given in Table I after
converting α, β, and γ to αH, βH, and γH.
The characteristics of single cubic crystals from the

theory can be verified experimentally. Figure 1(b) shows
ρxx and ρxy in the xy plane. The amplitude of ρxx gradually
decreases while that of ρxy increases with current applied

from θ ¼ 0° to θ ¼ 45°. The amplitudes of ρ45°ð0°Þxy ðαÞ and
ρ0°ð45°Þxx ðαÞ are the same as predicted. Figure 1(c) shows ρxx
in the yz and the zx plane. A fourfold term appears in ρ0°xxðβÞ
as predicted by the theory. Figure 1(d) shows ρxy in the yz
and the zx plane. All four ρθxyðβÞ and ρθxyðγÞ for θ ¼ 0° and
45° are coincident. Figure 1(e) shows ρxx in terms of α and
ð90° − γÞ using the angle conversions mentioned above.
ρ0°xxð90° − γÞ and ρ0°xxðαÞ are the same as predicted by our
theory. Our experimental measurements support unambig-
uously all characteristics summarized early.
To have a better picture of how ρxx and ρxy vary with the

current direction (θ) and the direction of m⃗, we convert αH,
βH, and γH to α, β, and γ, and plot ρθxx and ρθxy as functions
of θ and α, or β, or γ in Fig. 2. The three-dimensional
surfaces are the theoretical formula of Eq. (3) with
parameters given in Table I. The beautiful agreements of
experiments and theory in the 3D plots are a strong
testimony of correctness of the theory, meaning clearly
that only 8 independent parameters can indeed describe all
longitudinal and transverse resistivity curves.
To test how good our field and magnetization direction

correction is, we also measure AMR at different fields with
current applied along the [100] crystallographic direction.
Figure 3 is ρ0°xxðβHÞ (a) and ρ0°xxðγHÞ (b) for field at 3 T (red
squares), 6 T (green circles), and 9 T (blue triangles).
Although the AMR curves are significantly different with
increasing fields, especially around βHðγHÞ ¼ 22.5°, the
results can also be well fitted by Eqs. (4) with the same
parameters in Table I, revealing the field independence of

TABLE I. The fitting parameters in Eq. (3) for Figs. 1(b)–1(d).

×10−2 ρ1 ρ2 ρ3 ρ4

μΩcm 4.185 7.337 −0.446 −0.653

ρ5 ρ6 ρ7 ρ8

μΩcm −0.145 −0.104 3.452 −0.650
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the 8 parameters as suggested by the theory. Of course, the
angles in Eqs. (3) are converted to βH and γH by Eq. (6).
It must be mentioned that there are fundamental

differences between current tensor analysis and the sym-
metry consideration [3,44,45] widely used to understand
AMR in single crystals. Although the symmetry consid-
eration is not wrong, it does not reveal universal angular
dependencies of ρxx and ρxy and possible identities. One
obtains different results presented here when the symmetry
analysis is applied on a cubic crystal [8]. In fact, it cannot
even recover the universal behavior of ρxx and ρxy in
polycrystalline without extra inputs [8]. One recent
progress connects AMR with the magnetization-dependent
band structure near the Fermi level [7,9]. These density
functional calculations are consistent with our theory
although they cannot identify universal angular dependen-
cies and characteristics in ρxx and ρxy.

In summary, a theory of angular dependency of generic
galvomagnetic effects for single cubic crystals are pre-
sented. Only 8 independent and intrinsic parameters are
needed to describe angular dependencies of magnetoresist-
ance. These parameters are intrinsic because they must
exist in all single cubic crystals. A set of characteristics
among ρθxx and ρθxy are predicted for current along the [100]
and [110] directions and the magnetization rotating in the
xy, xz, and yz planes. The predictions are beautifully
verified by the experiments on Fe30Co70 single cubic
crystal film. We believe that the long-standing issue of
universal angular dependencies of galvomagnetic effects in
single cubic crystals is resolved.
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