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We develop a practical machine learning approach to determine the disorder landscape of Majorana
nanowires by using training of the conductance matrix and inverting the conductance data in order to obtain
the disorder details in the system. The inversion carried out through machine learning using different
disorder parametrizations turns out to be unique in the sense that any input tunnel conductance as a function
of chemical potential and Zeeman energy can indeed be inverted to provide the correct disorder landscape.
Our work opens up a qualitatively new direction of directly determining the topological invariant and the
Majorana wave-function structure corresponding to a transport profile of a device using simulations that
quantitatively match the specific conductance profile. In addition, this also opens up the possibility for
optimizing Majorana systems by figuring out the (generally unknown) underlying disorder only through
the conductance data. An accurate estimate of the applicable spin-orbit coupling in the system can also be
obtained within the same scheme.
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Introduction.—Hybrid superconductor-semiconductor
(SC-SM) nanowire structures are the most extensively
studied systems for creating laboratory Majorana zero
modes (MZMs), which are localized non-Abelian excita-
tions that can be used for creating a topological quantum
computer [1–3]. A recent experiment [1] has provided
extensive tunnel conductance measurements to make the
case for the existence of small and fragile topological
regimes where MZMs should exist at the wire ends. Earlier
experiments in such nanowires were strongly adversely
affected by unintentional disorder in the system with the
MZM-like conductance signatures arising from disorder-
induced trivial Andreev bound states (and not from
topological MZMs) [2,4–10]. Although cleaner samples
are used in [1], the disorder situation even for this latest
experiment is not yet completely clarified, but the small
fragile gaps reported in [1] indicate that random disorder is
likely still playing a role [11,12]. Disorder has thus
emerged as the single most important physical mechanism
suppressing topology, certainly in Majorana nanowires, but
likely in most solid state topological platforms. Although
the possible importance of disorder in suppressing MZM
physics was pointed out early [13–24], we still do not have
any direct information about the disorder in actual samples,
hindering progress in the field. Understanding and con-
trolling unintentional (and thus, unknown) random disorder
has become by far the most important problem in the search
for MZMs in solid state platforms [2]. Progress toward the
realization of topological MZMs necessitates an under-
standing of the underlying disorder leading to cleaner and
better samples [2,11,12]. This leads to the other key
problem in the field of identifying MZMs in a device

based on its transport characterization. This is because, as
already mentioned, the unknown disorder leads to transport
signatures that are often misinterpreted as MZMs, which
often exist in a very limited part of parameter space in
moderately disordered devices [12,17]. Ultimately, this
motivates the other key challenge in the field, which is
to identify when an SC-SM nanowire device has been tuned
to support MZMs.
In the current work, we introduce an intuitively appeal-

ing machine learning (ML) approach for figuring out and
understanding the disorder landscape in Majorana nano-
wires using the tunnel conductance data, which are the
standard measurements for Majorana nanowires carried out
in every experiment (and simulated in the corresponding
theories). The disorder potential together with other para-
meters can then be used to quantitatively verify the validity
of the model, which in turn can be used to determine if the
transport signature indicates a topological superconducting
device. The idea is deceptively simple: the tunnel conduct-
ance depends crucially on disorder, and therefore, it should
be possible to invert the measured conductance to extract
the underlying disorder. Of course, the uniqueness of such
an inverse scattering problem is a key question since, in
principle, it is possible for different disorder landscapes to
give similar conductance data. We solve the uniqueness
problem a posteriori by showing that input disorder
producing the conductance agrees with the output disorder
obtained from our ML procedure. Our ML approach is
powerful, and can be used to obtain other quantities
entering the MZM physics, and we estimate the applicable
spin-orbit coupling (a key parameter directly determining
the nanowire topological gap) using our theory. As a matter
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of principle, the approach we use can be extended to
improve estimates of other parameters of the model. The
transport profile of such a complete model can be used to
verify the model and provide the most direct correspon-
dence so far of whether the specific transport profile
corresponds to a topological device. We mention that other
types of ML approaches have been used for optimizing gate
operations in Majorana nanowires [25], but our work is
totally different since we use ML to solve the inverse
scattering problem of extracting the disorder by using
tunnel conductance itself as our training data. More
significantly, our ML approach, by providing the unknown
parameters for the system, enables a direct realistic estimate
for the topological invariant as a function of system
parameters to decisively ascertain where the system is
topological with MZMs and where it is trivial with no
topological properties. This eliminates all subjective judg-
ments about the topological nature of the system as ML
itself provides an answer provided sufficient data are used
for the training.
Theory.—We use the extensively used minimal 1Dmodel

for Majorana nanowires where the system Hamiltonian is
given by a 1D Bogoliubov–de Gennes (BdG) equation and
the minimal input parameters are the effective mass (m), the
spin-orbit coupling (α), the Lande g factor (g), the parent SC
gap, the SC-SM coupling, the self-consistent chemical
potential μ, the magnetic field B, and the disorder potential
VdisðxÞ. We follow Ref. [12] where the details (which are
standard in the literature to study SC-SM Majorana nano-
wires [3,9]) can be found. Note that all quantities other than
Vdis and α are taken to be fixed and known although this
constraint can be relaxed in future works (at the cost of
needing much more data for training since the more
unknown parameters there are, the larger the training dataset
must be).We use, followingRef. [1], a 3 μm longwire for all
our results and discretize the BdG equation using a lattice
size of 10 nm as in Ref. [12]. We provide the details for the
theory and the model in Sec. 1 in the Supplemental
Material [26].
Among these SC-SM nanowire parameters, the specific

spatial dependence of the disorder potential VdisðxÞ is
completely uncontrolled and varies among devices as well
as slowly over time in the same device. In addition, some
system parameters such as α depend on the inversion
symmetry breaking of the final device structure, which in
general is unknown (and most likely varies from device to
device). Given aVdisðxÞ, we can solve the BdG equation and
generate the four-component tunnel conductance matrix
using the KWANT scattering matrix approach [29]. In
addition, we use the spin-orbit (SO) coupling α also as an
unknown parameter. We vary the disorder potential and α to
generate, using KWANT, training transport data (i.e., the four-
component conductance matrix G as a function of the
magnetic field B and the chemical potential μ) set for our
ML algorithm. We provide details of how the conductance

matrix G is computed as a function of B, μ and other
parameters in Sec. 1 of SM. TheML algorithm then predicts
Vdis and α that can be used using KWANT to reproduce a test
transport dataset. Ideally, in the test transport data would
come from experiments. In our proof of principle demon-
stration, our test transport data is generated using KWANT

with a random choice of VdisðxÞ and α. The real test of our
ML success is whether the conductance generated using the
output VdisðxÞ and α is close to the test transport dataset.
Method.—Our ML model consists of a convolutional

neural network (CNN) created by the package KERAS [30],
which builds upon tensorflow [31]. In our specific CNN
(Fig. 1), each input step consists of a measurement
operation, seven parameters consisting of a row of X (four
parameters), which are the components of the conductance
matrix Gαβ¼L;R and of K (three parameters), which are the
parameters bias voltage Vbias, chemical potential μ, and
magnetic field B. The conductance measurements are
reshaped into a 3D array based on the values of K columns.
The five Fourier components of VdisðxÞ and α are organized
into the output vector Y of the CNN in Fig. 1. As described
in Sec. 1 of SM, the conductance matrix X is generated for
each instance of K and Y using a KWANT simulation. Later
we will also discuss data where we use a 10 Fourier
component model for the disorder. In this case Y would be
an 10 component vector. The convolutional neural network
that was chosen is based on AlexNet [32] to process the
conductance plots visually and to detect hidden structures
within them. The device consists of sets of 3D convolu-
tional layers followed by a set of 2D convolutional layers,
aggregating conductance measurements for different K
parameters μ, B, Vbias) (in 3D layers) and μ, B (in the
2D layers). The CNN is sufficient for proof of principle but
can likely be enhanced with more elaborate methods, such

FIG. 1. Neural network diagram. The model combines a CNN
with dense layers. TheCNNhas three convolutional layer sets: two
with 256, three with 512, and four with 1028 filters, respectively.
Each set is followed by batch normalization and max pooling
(2 × 2 × 2 for 3D, 2 × 2 for 2D layers). The first two sets are 3D,
starting with a 5 × 5 × 5 kernel, then 3 × 3 × 3; the third set
contains four 2D layers. A reshaping layer maps to 2D before
ending with two 500-size dense layers and an output-sized dense
layer. Rectified linear unit (ReLU) functions add nonlinearity. The
output Y includes α only for the 5þ 1 component model.
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as those based on transformers [33], or an encoder-decoder
setup [34], which may scale better (See Fig. 2 for CNN
scaling). (More ML technical details are given in Sec. II
in SM.)

Results.—We use both five-component and 10-compo-
nent representations for our Gaussian random disorder,
obtaining very similar results. We measure the ML effec-
tiveness using the standard scaled R2 fidelity parameter
between the Y test and Ypredicted predicted by the trained
CNN. The standard scaling converts the data used in the
training processes into a zero mean, unit variance form.
R2 ¼ 1 implies perfect prediction, while R2 ¼ 0 is equiv-
alent to just taking the average output of the testing data,
i.e., no prediction. This scaling and R2 can be found in
details on the package scikit-learn [35].
To train the model for five disorder components we

generate a total of 8000 Y realizations for a fixed disorder
strength. We split our data such that 90% is used in the
training process and the remaining 10% used for testing.
Using the 800 test realizations we achieve a standard scaled
R2 ¼ 0.991, which is an excellent fidelity. The standard de-
viation error in the prediction is ΔVdisðxiÞ¼�0.0350 meV
and Δα ¼ �0.11 meVnm. For this model we find it
sufficient to use only five bias values of conductance data
(i.e., we only use five Vbias values in K) to obtain the 0.991
fidelity already. We emphasize that the ML algorithm
predicts Vdis, α accurately enough that the predicted values
can be used in KWANT to match a test conductance quite
accurately, as seen in Fig. 3. The good R2 value of the
predictions of the CNN are apparent from comparing the
test and predicted Fourier components of disorder and SO
coupling seen in Figs. 4 and 5. (More results are given in
the Sec. III in the SM.) The accuracy of the predicted
parameters implies that the Y values predicted by the CNN

FIG. 2. Training (Y) realizations required for R2 ¼ 0.77 by
disorder component count. It’s a log-log plot, indicating poly-
nomial scaling with the fit function fðxÞ ¼ 0.0672x4.9232

(R2 ¼ 0.9982), confirming such scaling. A fixed neural network
architecture or size is used, shown in Fig. 1,with a constant number
of measurements (20 B, 20 μ, and 5 Vbias values) except for the
five componentswhere, to prevent overfitting, 15 × 15 × 5 is used.
The deviation of the ten component point is explained by the NN
being originally fine-tuned for it, removing this point suggests
near-perfect fitting (R2 > 0.999 95). Polynomial scaling indicates
potential for n ¼ 30, n ¼ 50, and n ¼ 100. For more on disorder
components required for certain fidelities, see Sec. II-3 in SM.

(a) (b)

(c) (d)

FIG. 3. Representative input and predictions for five-component disorder potentials and α in neural network tests. (a)–(d) Two rows:
first for expected conductance (GLL, GRR, GLR, GRL) from input disorder potentials, and second for conductance measurements from
predicted potentials. Each subfigure represents different disorder and α realizations (Fig. 4). The associated topological invariant is in
Fig. S7 in SM. Inputs and predictions are based on five-component truncated disorder potentials, with conductance simulated across
various Vbias (meV) and Bx (T) values, at μ ¼ 0.
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can also be used to generate the topological invariant in
parameter (i.e., K) space. To test this we compared the
topological visibility in B − μ space between a test case and
predicted case and found good agreement as seen in
Figs. S7, S8, and S9 in the SM. Further, we find that
our model is extremely resistant to experimental errors in
conductance measurements to the point where a Gaussian
error of magnitude 0.01 e2=h yields a R2 ¼ 0.99 and

0.05 e2=h yields R2 ¼ 0.98, even going to 0.1 e2=h only
decreases to R2 ¼ 0.97. In context the noise floor in
experiment [1] is about 0.001 e2=h, making conductance
errors effectively irrelevant.
In Fig. S4 in SM we show the results of our ten-

component disorder ML results. To train for ten disorder
components we generate a total of 50 000 disorder rea-
lizations, 90% of which is used in the training process
and the remaining 10% used to test. We use a fixed
α ¼ 8.0 meVnm. Using the 5000 test realizations we
achieve a standard scaled R2 ¼ 0.95, which is great, but
can be improved with more datasets. The standard devia-
tion error in the prediction is ΔVdisðxiÞ ¼ �0.117 meV.
Because of computational limitations we only use five Vbias
values (using more values of Vbias should increase R2). This
lower fidelity is likely due to the need for more training and
potentially a slightly larger K matrix since differentiating
among ten component potentials is a more computationally
challenging task. Representative results are shown in Fig. S4
in SM, and again, visual inspection shows excellent agree-
ment between the input and output data, verifying the
success of our ML approach. When considering further
scalability, a couple of factors warrant attention. First, we
show that the data requirements do not increase exponen-
tially, making it feasible to compute additional components.
Furthermore, since we anticipate that the low-frequency
disorder components will be dominant, the number of extra
components needed to accurately represent the device’s
physics may be limited. We do an extended assessment of
the number of components required within Sec. II.3 in SM.
Additionally, our method’s disorder prediction can be

verified through the use of additional conductance mea-
surements. While we do not expect additional effects to be
necessary, in principle, if our model proves inadequate for
describing the physics of an experimental device, it is
possible that our learning scheme could produce an invalid
disorder prediction. This possibility can be significantly
mitigated by conducting measurements with a new K0

full
(see Sec. II in SM), which is not integrated into the ML
scheme, and comparing the results to the theoretical
conductance values generated by KWANT for the respective
disorder prediction. This allows for the experimental
validation of the machine-learned system parameters.
Subsequently, one could iteratively introduce additional
potential physical effects into the model until it successfully
passes allK0

full tests, leading to a better understanding of the
device’s underlying physics.
Conclusion.—We introduce a ML approach to extract

unknown system parameters, particularly the disorder
landscape, from the simulated (or measured) tunnel con-
ductance data in hybrid SC-SM Majorana nanowire struc-
tures. We validate the approach by using simulated
conductance data as the training set, establishing that such
training leads to strongly predictive results for both disorder
and spin-orbit coupling using as few as three parameters

(a)

(b)

FIG. 4. Representative ML input and predictions for five-
component disorder potentials. (a) Shows discrete cosine-
transformed components for input and predictions. (b) Real-space
disorder potentials with boundary effects. The corresponding
topological invariant is found in Fig. S7 in SM. Each sample had
a disorder amplitude of 1.5 meV and correlation length of three
sites (30 nm), with (b) having longer apparent length due to
Fourier component truncation.

FIG. 5. Representative samples of α neural network test input
and predictions. The blue points representing the input α values
(in meV nm) and the orange represent the predicted α values.
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(i.e., K) for the conductance data used in our simulations.
The accuracy of the predicted results can be verified by
comparing the predicted conductance as well as topological
visibility profiles to the test profiles. The predicted profiles,
which are functions of multiple parameters such as Vbias
and μ are generated by KWANT from the parameters that are
predicted by ML to match a given test conductance data.
The topological visibility profile as a function of B and μ is
also generated by KWANT for test conductance data gen-
erated by KWANT. Using experimental conductance data
(and a bigger computer), one should be able to generalize
our approach to obtain all the relevant parameters for
Majorana nanowires, not only the disorder and the SO
coupling as we do, but also the g factor, the superconductor,
the number of occupied sub-bands, etc., since our ML
approach is general, and only requires as inputs sufficient
amount of conductance training data that are easy to obtain
both experimentally and theoretically.
Our method, given enough training data and computing

resources, should in principle be able to decisively indicate,
just through our ML protocol, whether a set of conductance
data in a particular sample indicates an underlying topo-
logical (or trivial) system with MZMs (or not). In particular,
by determining all the relevant unknowns, one can simulate
a device and calculate its topological invariant directly
using the output parameters, decisively indicating whether
the sample is or is not topological.
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