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We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a
negatively curved plane. Because of their distinct translation group structure, such lattices are associated
with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike
conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining
diverse numerical and analytical approaches, we uncover an unconventional scaling in the density of states
at low energies, and illuminate a nodal manifold of codimension five in the reciprocal space. The nodal
manifold is topologically protected by a nonzero second Chern number, reminiscent of the characterization
of Weyl nodes by the first Chern number.
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Introduction.—Topological semimetals are gapless elec-
tronic phases with stable band-touching points at the Fermi
energy. As solid-state analogs of relativistic fermions, low-
energy excitations in semimetals are often imbued with
nontrivial topological properties. Dirac and Weyl semimet-
als in three dimensions, for instance, exhibit a range of
intriguing properties such as protected surface states,
anomalous Hall effect, chiral anomaly, and unusual mag-
neto-resistance [1–8]. Broadly, semimetals can be catego-
rized based on spatial dimension, origin of band crossings,
and properties of the nodal manifold (e.g., its degeneracy
and codimension) [9]. All existing models and material
realizations, however, are typically embedded in geo-
metrically flat Euclidean space.
Hyperbolic lattices—regular tessellations of 2D hyper-

bolic space with constant negative curvature [10]—provide
the means to study quantum matter in non-Euclidean
geometry. Recent realizations in coplanar waveguide res-
onators [11] and topoelectrical circuits [12–15] have
catalyzed the research of physical properties of hyperbolic
lattices. Theoretical studies of hyperbolic analogs of
topological insulators [14–20] show that bulk topological
invariants and protected edge modes persist in hyperbolic
space. Other celebrated condensed-matter phenomena such
as Hofstadter spectra [21,22], flat bands [23–26], higher-
order topology [27–29], strong correlations [30–33], and
fractons [34,35] have also been explored in the hyperbolic
context.
Hyperbolic lattices have unique features that unlock new

physics beyond the Euclidean paradigm. Hyperbolic

FIG. 1. Real- and reciprocal-space structure of the hyperbolic
non-Abelian semimetal. (a) The model is defined on the {8,8}
lattice, displayed in the Poincaré disk model, wherein the single-
and two-site unit cells are marked in red and blue, respectively.
Translation generators of the primitive cell are denoted by γj.
(b) Unit cell size affects the accessible reciprocal space and,
consequently, the phase diagram for jmj < 4: the primitive cell
suggests topological insulator phases with Chern numbers jC2j ¼
1 or 3, whereas the 2-supercell description exhibits a topological
semimetal. (c) Comparison to Weyl semimetals, where 2D planes
(along k⃗2D⊥ ) between the Weyl nodes have a finite first Chern
number. (d) Similarly, in the hyperbolic semimetal, when
jmj∈ ð3; 4Þ, a nodal ring separates 4D orthogonal subspaces
(along k⃗4D⊥ ) with a nontrivial second Chern number.
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translation groups, known as Fuchsians, are non-Abelian
[36]. Accordingly, their unitary irreducible representations
(IRs) can have a dimension d larger than one. Via a
generalized Bloch theorem, hyperbolic band theory
(HBT) [37,38] provides a reciprocal-space description of
hyperbolic lattices and their eigenstates. Hyperbolic
Bloch states are classified as Abelian [U(1)] [37] or
non-Abelian [UðdÞ for d > 1] [38,39] depending on the
rank d of the matrix-valued Bloch factor acquired under
lattice translations. Whereas U(1) eigenstates are labeled
by a vector analogous to crystal momentum, additional
quantum numbers are required to distinguish UðdÞ Bloch
states. The problem of accessing and characterizing non-
Abelian Bloch states constitutes an actively investigated
topic [40–43].
In this work, we present a hyperbolic lattice model

whose semimetallic topology is inherently rooted in non-
Abelian Bloch states. While the Abelian spectrum is
gapped, we demonstrate the presence of a topologically
protected nodal manifold in the non-Abelian U(2) Bloch
bands, which results in a gapless density of states (DOS).
Summarized in Fig. 1, this nodal manifold in reciprocal
space is associated with a finite second Chern number C2.
There is no Euclidean analog of such a phase because 2D
Euclidean lattices admit neither non-Abelian Bloch states
nor a second Chern number. We term this phase a hyper-
bolic non-Abelian semimetal.
Model.—HBT suggests a way to translate higher-

dimensional Euclidean models to the hyperbolic plane.
The mapping is especially lucid for 4D Euclidean
Hamiltonians because of a one-to-one correspondence
between the Euclidean BZ and the simplest [i.e., the
U(1)/Abelian] hyperbolic BZ of the {8,8} lattice—the
hyperbolic lattice where eight regular octagons meet at
each vertex. Motivated by this connection, we study the
hyperbolic counterpart of the 4D quantum Hall insula-
tor (QHI).
Conventionally, the 4D Euclidean QHI is defined

by a Dirac tight-binding model on the hypercubic
lattice [44,45]:

H ¼
X
r;j

�
ψ†
r
ℾ5 − iℾj

2
ψ rþj þ h:c:

�
þm

X
r

ψ†
rℾ5ψ r; ð1Þ

where fℾμg5μ¼1 denote the Dirac matrices, fℾμ;ℾνg ¼
2δμν1. In terms of the Pauli matrices σi, the choice
fℾμg5μ¼1 ¼ fσ1σ0; σ2σ0; σ3σ1; σ3σ2; σ3σ3g ensures that ℾμ

is real (imaginary) for μ odd (even). The four components
of the spinor ψ r correspond to internal degrees of freedom
at site r∈Z4, and j ¼ 1;…; 4 label orthogonal directions.
The {8,8} hyperbolic lattice, illustrated in Fig. 1(a),

provides a convenient setting to reinterpret the above model
[15]. Formally, the lattice is defined by its Fuchsian group
Γ, an infinite translation group with four noncommuting

generators γj [arrows in Fig. 1(a)] that obey a single
constraint [37]:

Γ ¼ hγ1; γ2; γ3; γ4jγ1γ−12 γ3γ
−1
4 γ−11 γ2γ

−1
3 γ4 ¼ 1i: ð2Þ

The “hyperbolized” 4D QHI Hamiltonian is realized with
the following reinterpretation: r is the unit cell position on
the hyperbolic plane and rþ j denotes a cell shifted by the
translation operator γj.
To obtain a reciprocal-space perspective, we proceed in

two steps. First, as in the Euclidean case, the lattice needs to
be compactified, i.e., periodic boundary conditions (PBC)
are imposed and edges of the unit cell related by translation
symmetry are identified, producing a surface of genus
g ≥ 2 [37]. Unlike the Euclidean case, choosing an
enlarged n-site unit cell (n > 1) increases the genus [43].
Second, one has to choose a d-dimensional IR Dλ of
the translation group, where λ labels a point in a
½2d2ðg − 1Þ þ 2�-dimensional space of d-dimensional IRs

of Γ [38]. A generic Bloch Hamiltonian Hðn;dÞ
λ thus

obtained determines states in the Brillouin zone BZðn;dÞ.
The integers n and d provide two handles to access different
sectors of the hyperbolic reciprocal space.
On the {8,8} lattice, the smallest unit cell (n ¼ 1 or

primitive cell) is given by the red octagon in Fig. 1(a). It
compactifies to a g ¼ 2 surface when the opposite edges are
identified. Further, in U(1) representations, λ are the crystal
momenta whose components correspond to the four non-
contractible cycles of the genus-2 surface. The mapping
DλðγjÞ ¼ DkðγjÞ ¼ eikj satisfies the constraint in Eq. (2)
and defines the U(1) Bloch Hamiltonian

Hð1;1Þ
k ¼

X
μ

dμkℾμ; ð3Þ

with dμk ¼ ðsin k1; sin k2; sin k3; sin k4; mkÞ and mk ¼
mþP

j cos kj. Evidently, these expressions are equivalent
to the Fourier transform of the Hamiltonian in Eq. (1), such
that U(1)-HBT reproduces results from the 4D Euclidean
case: at half-filling, the model undergoes topological
phase transitions at jmj ¼ 0, 2, 4, but is gapped otherwise
with a nonvanishing C2 [45], as depicted in Fig. 1(b).

U(1)-HBT

U -HBT(2)

2-supercell method

non-Abelian clusters

Abelian 

clusters

FIG. 2. Schematic summary of techniques used in this work to
access eigenstates of hyperbolic lattices. Orange (blue) indicates
real- (reciprocal-)space methods.
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The corresponding gapped DOS for m ¼ 3 is plotted with
the red curve in Fig. 3(a).
However, as foreshadowed earlier, one should also

account for d > 1 IRs of Γ. We first demonstrate the
existence of “in-gap” states by real-space diagonalization
on PBC clusters, and then show that these states originate
from non-Abelian reciprocal space using U(2)-HBTand the
supercell method (Fig. 2).
PBC clusters.—Closed hyperbolic lattices formed by

pairing open edges of a finite-sized lattice are termed PBC
clusters [46]. Efficient construction of large PBC clusters
can be achieved through computational methods in geo-
metric group theory [47]. Depending on the particular
edge pairing, PBC clusters can be classified into two
categories: Abelian or non-Abelian [38]. In Abelian clus-
ters, the non-Abelian hyperbolic translation group Γ
modulo the edge pairing becomes Abelian. In other words,
the translation generators effectively commute on Abelian
clusters, so the wavefunctions of a translationally invariant
Hamiltonian must be 1D IRs of the translation group in
Eq. (2). Here, we exclusively consider non-Abelian PBC
clusters as we are interested in higher-dimensional IRs
arising from the noncommutativity of the generators,
which are necessary to approximate the thermodynamic
limit [40–43]. We numerically diagonalize the hyperbol-
ized Hamiltonian (1) on 13 non-Abelian {8,8} PBC
clusters, with the number of primitive cells ranging from
300 to 1800. The resulting DOS averaged over these
clusters for m ¼ 3 is depicted by the black curve in
Fig. 3(a). Our first main finding is the discovery of states
within the gap of the Abelian Bloch states.
UðdÞ-HBT.—To demonstrate that these in-gap states can

be attributed to non-Abelian Bloch physics, we first
describe the corresponding BZs [56]. Here, the Bloch
states transform in representations DλðγjÞ ¼ Ujeikj , where
U ¼ fUjg4j¼1 ∈SUðdÞ are special unitary (d × d) matrices
that satisfy Eq. (2). The specification of λ requires 2d2 þ 2
parameters, of which four may be understood as hyperbolic
momenta k ¼ fkjg4j¼1 and the remaining 2d2 − 2 charac-
terize U. Focusing on a single primitive cell (n ¼ 1), the
states in BZð1;dÞ can be described by the non-Abelian Bloch
Hamiltonian

Hð1;dÞ
λ ¼

X
j

��
ℾ5− iℾj

2

�
⊗DλðγjÞþh:c:

�
þmðℾ5⊗1dÞ:

ð4Þ

Although an explicit parametrization of BZð1;dÞ is currently
lacking, one may randomly sample the subspace of SUðdÞ
matrices that obey Eq. (2) using a procedure described
in [47]. For different choices of U and k, a numerical

diagonalization of Hð1;dÞ
λ allows for a reconstruction of the

UðdÞ spectra. We here focus on the simplest nontrivial case

d ¼ 2, since spectra of small systems that could be realized
in experiments are dominated by low-dimensional repre-
sentations [38]. The DOS thus obtained is plotted in yellow
in Fig. 3(a). Consistent with our exact diagonalization
results on PBC clusters, non-Abelian states fill the band gap
of the Abelian spectrum.
Supercell method.—An alternative way to access non-

Abelian Bloch states is the supercell method [43]. Instead
of tessellating the infinite lattice with copies of the
primitive cell [red octagon in Fig. 1(a)], the lattice is
subdivided into collections of n > 1 primitive cells, called
n-supercells [blue polygon in Fig. 1(a) depicts the
2-supercell]. Copies of the primitive cell covering the
lattice are related by elements of the full translation group
of the lattice Γð1Þ ¼ Γ, while copies of an n-supercell are
related only by elements of an index-n normal sub-
group ΓðnÞ⊲ Γð1Þ.
In either case, translation symmetry allows a single-cell

description of the infinite system by going to hyperbolic
reciprocal space as described previously. In Euclidean
lattices, enlarging the unit cell introduces band folding
and a reduction in BZ size while the total number of states
remains constant. In contrast, in hyperbolic lattices, the
decomposition of reciprocal space into the generalized
BZs is changed: The BZs for the primitive cell BZð1;dÞ

are different from the ones for an n-supercell, BZðn;dÞ.
Nevertheless, their union (over IR dimensions d) is
expected to remain the same, such that both are descriptions
of the same infinite system. Specifically, as a consequence
of the negative curvature, the genus g of the compactified
manifold (and thereby the dimension of BZðn;1Þ which is a
2g-dimensional torus), grows linearly with the supercell

FIG. 3. Hyperbolic non-Abelian semimetal with Dirac mass
m ¼ 3. (a) Energy spectra computed with various numerical
approaches (cf. Fig. 2). In contrast to the hard gap predicted by
U(1)-HBT, the other approaches indicate a semimetallic DOS
symmetric about zero energy. (b) Low-energy excitations are
manifested by a nodal ring in the 2-supercell description.
Numerically obtained nodes in the 6D BZð2;1Þ have been
projected to the first three momentum components. Projection
onto the first two coordinates appears as the white curve.
Computing the second Chern number C2 as a function of
ðk1; k2Þ shows that 4D subspaces passing through the ring are
topological.
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size. In particular, BZð1;1Þ is 4D, while BZð2;1Þ is 6D, with
BZð1;1Þ passing through the center of BZð2;1Þ [47].
The advantage of working with supercells comes from

the fact that, in contrast to the non-Abelian BZs, the
U(1)-BZs are well understood and an explicit parametriza-
tion in terms of Bloch phase factors is known. Because of
ΓðnÞ being an index-n subgroup of Γð1Þ, U(1) representa-
tions of ΓðnÞ induce UðnÞ representations of Γð1Þ, which are
either reducible or irreducible [43]. Due to the growing
dimension of BZðn;1Þ with supercell size n, most of the UðnÞ
representations of Γð1Þ are non-Abelian, i.e., they do not
split into a product of U(1) representations. Therefore, by
applying U(1)-HBT to larger supercells, more non-Abelian
states are captured.
We focus again on the simplest nontrivial case of

2-supercell, thus gaining access to certain non-Abelian
U(2) Bloch states. We utilize the HyperCells package for GAP
[57–59] and the HyperBloch package for Mathematica [60],
to sample states in BZð2;1Þ. The result, plotted in blue in
Fig. 3(a), confirms our earlier findings: a semimetallic DOS
within the gap of the Abelian Bloch states.
Nodal ring.—In unison, the three methods paint a clear

picture: While the U(1) spectrum is gapped, non-Abelian
Bloch states arise inside the gap. Since the three DOS
curves in Fig. 3(b) match each other near zero energy, we
use the 2-supercell approach to derive an approximate low-
energy theory by studying the Bloch Hamiltonian Hð2;1Þ

k
analytically for jmj≳ 3. We find that its zero-energy
eigenstates form a nodal ring inside BZð2;1Þ whose projec-
tion onto a 3D subspace is shown in Fig. 3(b). This nodal
ring is protected by space-time-inversion symmetry [47].
Through a basis change of the Hamiltonian, linear trans-
formation of the momentum space from k to q, and a Taylor
expansion around the origin [47], we find that the spectral
gap vanishes when

q21þq22¼6ð4− jmjÞ and q3¼q4¼q5¼q6¼0: ð5Þ

As a circle with mass-dependent radius, the nodal manifold
shrinks to a point at the topological phase transitions
jmj ¼ 4.
To understand the nodal topology, it is useful to draw

parallels with Weyl semimetals in 3D Euclidean space.
Weyl nodes can be understood as sources and sinks of
Berry curvature in momentum space. As a consequence of
the dipolar configuration, a 2D plane situated between two
nodes of opposite charge experiences a net Berry flux and
features a finite Chern number, cf. Fig. 1(c). In a similar
spirit, one may expect the nodal ring in 6D hyperbolic
reciprocal space to encode nontrivial topology. Since our
starting point was the 4D QHI, the second Chern number
C2 [61] is the relevant topological quantity. Indeed,
integration over the four momenta k3;…;6 shows that the

nodal ring projection to the ðk1; k2Þ plane encloses a region
where C2 ¼ −1, as shown in Fig. 3(b).
While the DOS of 3D Weyl semimetals near E ¼ 0

scales as ρðEÞ ∝ E2 [2], we expect that for the hyper-
bolic non-Abelian semimetal it scales as ρðEÞ ∝ E4.
To see this, first observe that 4D QHI Hamiltonian H
carries a spinful space-time-inversion symmetry, PT ¼
ℾ2ℾ4K with ðPT Þ2 ¼ −1 and complex conjugation K.
We find [47] that the PT symmetry is inherited by

the 2-supercell Bloch Hamiltonian Hð2;1Þ
k . It follows from

the von Neumann–Wigner theorem [62,63] that Hð2;1Þ
k

generically exhibits band nodes of codimension d ¼ 5,
consistent with the observed nodal ring of dimension
dim½BZð2;1Þ� − d ¼ ð6 − 5Þ ¼ 1. Assuming the most
generic scenario where the bands disperse linearly in the
five directions perpendicular (⊥) to the nodal ring, quartic
DOS scaling ρðEÞ ¼ R

d5k⊥δðE − vjk⊥jÞ ∝ E4 follows.
Through numerical analysis [47], we find that within
the 2-supercell approximation for jmj∈ ð0; 4Þ the DOS
scales as ρðEÞ ∝ Eα with α∈ ð3.3; 4.1Þ. Specifically for
m∈ ð3; 4Þ, where a single nodal ring is present, we confirm
the predicted value α ¼ 4 within the numerical precision.
Experimental signatures.—A priori, any physical

realization of a hyperbolic lattice has states that transform
under higher-dimensional IRs. To experimentally probe
non-Abelian states, however, one needs to isolate them
from the U(1) states. The hyperbolic non-Abelian semi-
metal provides an energy window to exclusively access
these states. In coplanar waveguide resonators [11], for
instance, a gap would appear as a dip in the transmission
spectra, whereas a finite DOS at low energies would
support transmission.
To understand the physical implications of nodal topo-

logy, recall the case of Weyl semimetals. There, each 2D
slice between the Weyl nodes, carrying nonzero value of C1

[cf. Fig. 1(c)], contributes to anomalous Hall conductance
σxy ¼ ðe2=2πhÞΔk where Δk is the momentum node
separation [2–4]. Similarly, the response of the hyperbolic
non-Abelian semimetal to external fields should be
contingent on the nodal manifold geometry. We therefore
study the second Chern number Ccl

2 in small PBC clusters
(consisting of N primitive cells), which is generated
by filled states under flux insertion ðℾ5 − iℾjÞ ↦ ðℾ5 −
iℾjÞeiϕj with ϕ∈ ½0; 2πÞ×4 in Eq. (1) [47]. Practically, such
phase manipulation can be implemented with tunable
complex-phase elements [12] in topoelectrical circuits
[13–15], where the eigenstates necessary for computing
Ccl
2 can be accessed with simple oscilloscope measure-

ments. For Abelian states, the flux insertion induces
a momentum shift k ↦ kþ ϕ; therefore, all eigen-
states contribute equally to the integration, implying
Ccl
2 =N ¼ C2. In contrast, the trajectory of non-Abelian

states under flux insertion may fall outside the nodal-ring
manifold [cf. Fig. 3(b)], or pass through an additional nodal
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manifold not represented in the 6D BZð2;1Þ. In both cases,
one anticipates deviation from the linear scalingCcl

2 ¼ NC2.
Figure 4 (supplemented with further data in [47]) shows the
result of such integration for randomly selected Abelian
(red) and non-Abelian (blue) clusters, revealing agreement
with our theoretical arguments. We leave the study of the
convergence of Ccl

2 =N in the thermodynamic limit [40–43]
to future works.
Conclusion and outlooks.—Semimetals are fertile plat-

forms that emulate particle physics models on one hand and
actualize solid-state notions of topology on the other.
Conventionally, they have been studied in Euclidean space.
Extending the notion of topological band nodes to neg-
atively curved space, we investigated the hyperbolized 4D
QHI Hamiltonian. The model exhibits striking features that
have no counterpart in Euclidean crystals, such as band
nodes stabilized by a second Chern number and low-energy
excitations transforming exclusively in non-Abelian IRs of
the hyperbolic translation group.
Our findings motivate broader and more systematic

studies of band topology in hyperbolic lattices. In particular,
the semimetallic nature of the hyperbolized QHI model
inspires the search for fully gapped hyperbolic topological
insulators in which the region with a finite second Chern
number [red in Fig. 3(b)] spans the entire higher-
dimensional BZ [20]. Furthermore, while the U(1) and
U(2) representations considered here dominate the spectra
of small systems that can be realized in experiments [38],
higher-dimensional UðdÞ representations are necessary to
describe the system in the thermodynamic limit [40–43].
Our preliminary data obtained for larger n-supercells [47]
suggest not only a change in theDOS scaling exponent α but
also a gradual evolution of the non-Abelian semimetal below
(above) a critical value jmcj ≃ 2.5 to a non-Abelian metal
(insulator) phase.
On the experimental front, to probe the transport

associated with C2 [44], one needs to reconcile a
dimensionality mismatch: the hyperbolic plane is

two-dimensional, whereas four orthogonal directions enter
(via the four-component Levi-Civita symbol) the nonlinear
response to applied fields [45,64]. Experimental realiza-
tions would also benefit from a generalization of the
hyperbolic non-Abelian semimetal to fp; qg lattices with
a smaller curvature per site than the {8,8} lattice assumed
here. Furthermore, to enhance the versatility of experimen-
tal realizations, it is desirable to seek implementations of
hyperbolic lattices in other analog simulators including
silicon photonics [65], as well as in quantum platforms
such as optical tweezer arrays [66,67] and trapped
ions [68]. In a broader context, exciting open questions
arise for hyperbolic topological models in relation to the
bulk-boundary correspondence [16–18] and the holo-
graphic principle [69–72].

The code and the generated data used to arrive at the
conclusions presented in this work are publicly available
in Ref. [73].
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