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In this Letter, we propose an exotic quantum state that does not order at zero temperature in a Rydberg
atom array with antiblockade mechanism. By performing an unbiased large-scale quantum Monte Carlo
simulation, we investigate a minimal model with facilitated excitation in a disorder-free system. At zero
temperature, this model exhibits a heterogeneous structure of liquid and glass mixture. This state, dubbed
quantum slush state, features a quasi-long-range order with an algebraic decay for its correlation function,
and is different from most well-established quantum phases of matter.
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Introduction.—The search for highly correlated quantum
matters that do not order even at zero temperature has been
a focus across several disciplines of quantum physics in the
past decades. One of the best-studied examples in this
regard are the quantum spin liquids that feature long-range
quantum entanglement and topological excitations [1,2].
Recently, Rydberg atom arrays have provided promising
neutral-atom platforms for quantum simulation [3–6]. A
key element therein is the Rydberg blockade mechanism:
double excitations of adjacent atoms are strongly sup-
pressed [7,8]. The kinetic constraint, incorporating quan-
tum fluctuations, can give rise to intriguing quantum
matters in [9–15] and out [16–19] of equilibrium.
In this Letter, an exotic quantum liquid state other than

the spin liquids is proposed, which is based on a facilitation
(antiblockade) mechanism with a kinetic constraint [20,21]:
an atom can be coherently excited if and only if just one of
its neighbors has already been in the Rydberg state. In other
words, an excited atom facilitates the excitation of its
neighbors. Unlike most works in this regard, which mainly
focus on the real time evolution of this model [22–29], here
we study the equilibrium properties of a minimal model
supporting such a kinetic constraint using an unbiased
quantum Monte Carlo (QMC) simulation [30–32].
Here, we show that even for a simple disorder-free model

without frustration, the interplay between the kinetic
constraint and quantum fluctuation can give rise to an
intriguing quantum state that exhibits a heterogeneous
structure of liquid and glass mixture. Similar dynamical
heterogeneity was observed before in a classical frustrated
system [33], and the corresponding classical spin liquid
state is dubbed “spin slush” in analogy to the mixture of
solid and liquid water. The quantum slush state proposed in
this Letter does not order at zero temperature and features
an algebraic decaying in its correlation function, distin-
guishing it from most well-established quantum phases of
matter as well as the classical spin slush state.

Model.—The system we studied is a Rydberg array
where the atoms are placed in a two-dimensional (2D)
square lattice. Each atom possesses two internal states: a
ground state jgi that can be coherently excited to a Rydberg
state jri by a laser with Rabi frequency Ω and detuning Δ.
The interaction strength between a pair of nearest-neighbor

FIG. 1. (a) Each atom has two internal states (jgi and jri). jgi
can be coherently excited to jri by a laser with Rabi frequency
Ω and detuning Δ. The transition becomes resonant if the
detuning compensates the NN interaction (Δ ¼ V). (b) Exam-
ples of allowable (the lower two panels) and forbidden (the
upper two panels) transitions between different configurations
under the kinetic constraint. (c) A typical configuration gen-
erated by the importance sampling in QMC simulation for the
quantum slush phase with μ ¼ 0. (d) A trajectory of a finite
cluster generated by QMC simulation in the mobile finite
cluster phase with μ ¼ −1.1J.
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(NN) excited atoms is V, and we ignore the longer-range
interaction for simplicity. The facilitated excitation emerges
if the detuning happens to be compensated by the NN
interaction (Δ ¼ V), where the coherent transition between
jgi and jri at a particular site becomes resonant only if just
one of its neighbors is already in state jri (see Fig. 1). This
antiblockade mechanism has been realized in Rydberg
aggregates, where the strongly correlated growth induced
by this facilitated excitation has been explored experimen-
tally [34,35].
Throughout this Letter, we ignore the incoherent tran-

sition and dissipation, and the system can be considered as
a closed system. The minimal model describing the
resulting quantum many-body system is rather simple,
and its Hamiltonian reads

H ¼
X

i

½−JΞiσ
x
i − μni�; ð1Þ

where J and μ represent the amplitude of the coherent
transition and the effective detuning respectively. σ̂xi ¼
jgiihrj þ jriihgj and ni ¼ jriihrj is the density operator of
the Rydberg state on site i. Ξi is the operator projecting
onto the subspace with only one of the four neighbors of
site i being in jri state. Ξi can be expressed in terms of the
density operators of its neighbors as

Ξi ¼
X

α

�
niþeα

Y

γ≠α
ð1 − niþeγ Þ

�
; ð2Þ

where α; γ ¼ 1 ∼ 4, e1∼4 indicate the unit vectors along �x
and �y directions, and iþ e1∼4 represent the four neigh-
bors of site i. It is easy to check that Ξi ¼ 1 if and only ifP

α niþeα ¼ 1, otherwise Ξi ¼ 0. An one-dimensional (1D)
analog of this model has been investigated numerically
[26,36].
The kinetic constraint imposes additional conserved

quantities on the system. For each configuration, we define
a “cluster” as a group of connected sites occupied by jri
atoms, and the total number of these clusters is conserved
since the spin flip terms under the kinetic constraint does
not change the connectivity of a cluster [e.g., they cannot
break one cluster into two; see Fig. 1(b)]. This conserved
quantity further divides the total Hilbert space into different
subspaces, each of which is characterized by its cluster
number. In the following, we focus on the simplest sub-
space with only one cluster, and general situations will be
discussed in the Supplemental Material [37]. We will argue
that even though the lowest energy state within the one-
cluster sector is not the true ground state of Hamiltonian
(1), it can be considered as a metastable state that can be
observed in realistic Rydberg experimental setup.
Method.—We implement the QMC simulation with the

stochastic series expansion (SSE) algorithm [30–32] on a
system in a L × L square lattice. The periodical boundary

condition is chosen and the inverse temperature is set as
β ¼ L to scale to the lowest energy state in the thermo-
dynamic limit. Notably, the SSE algorithm also preserves
the cluster number. In our QMC simulation, we focus on
the single-cluster subspace by choosing the initial state with
only one “seed”: a configuration with only one site is in jri
and all others are in jgi. This cluster will keep growing and
ramifying in the QMC simulation. It is straightforward to
implement the kinetic constraint in the SSE algorithm.
Since this constraint as shown in Eq. (2) occurs in Fock
basis of the particle number representation, it does not
cause negative sign problem during the QMC sampling. As
a result, the QMC simulation can give reliable results for
systems of sufficiently large size and low temperature.
In the QMC simulation, the space-time configurations

are sampled according to their weight in the partition
function. To calculate the average value of operators, which
is diagonal in the Fock basis, one can choose the spacial
configurations at different (imaginary) time slices, calculate
the corresponding expectation values, then perform the
average over them. Two typical configurations generated in
the QMC simulation for different μ have been shown in
Figs. 1(c),(d), which are qualitatively different from each
other and suggest a phase transition between them, as we
will analyze latter. For large μ, the size of the single cluster
is compatible to the system size, and it exhibits loopless
branching structure as shown in Fig. 1(c). Similar structures
widely exist in nature, such as lungs, coral, polymers, etc.,
and also appear in dynamical processes such as particle
aggregation, crystal growth, and electrochemical decom-
position, which have been shown to produce fractal clusters
[38]. The emergent dynamical fractal has also been used to
explain the anomalous noise observed in a clean spin ice
system [39]. The fractal dimension of the typical configu-
rations in our case can be measured via the cluster-growing
method [37], which has been used to characterize the fractal
dimension for the loopless branching structure [38,40].
Spatial correlation function: A quasi-long-range order

with algebraic decay.—Here, we focus on the properties of
the lowest-energy state within the one-cluster sector for the
case with μ > −J, leaving the case with μ < −J for later
discussion. The typical configurations in this case exhibit
fractal feature, which is usually characterized by a power-
law behavior. To numerically validate this aspect, we
calculate the correlation function on the state

CðrÞ ¼ 1

L2

X

i

½hniniþri − hniihnji� ð3Þ

as well as the corresponding structure factor

SðkÞ ¼ 1

L2

X

r

CðrÞeir·k: ð4Þ

In Fig. 2, we plot CðrÞ along x direction, which exhibits an
algebraic decay accompanied by an oscillation. One can fit
the exponent of the algebraic decay as α ¼ 0.98 for μ ¼ 0,
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and it doesn’t change significantly for different μ. However,
due to the statistical error bar, the oscillating feature of the
decaying as well as the finite size effect, it is difficult to
conclude that whether this exponent α is independent on μ,
and whether it takes an integer value α ¼ 1 even though it is
close to it. Such a power-law correlation reminds us of the
algebraic decay in the Coulomb phase of classical spin ice,
which also takes integer values (α ¼ d with d being the
system dimension). However, our state is a pure quantum
state and thus is different from the classical Coulomb phase
in the spin ice. A long-range order usually indicates a sharp
peak in the structure factor, with its height diverging in the
thermodynamic limit. However, Fig. 3 reveals no such
sharp peaks in SðkÞ. Instead, SðkÞ exhibits a broad peak at
the wave vector kpeak, which corresponds to the oscillation
period in CðrÞ. We also observe that kpeak grows with the
average density ρ ¼ ð1=L2ÞPihnii (see the inset of Fig. 3).
Temporal correlation function: A dynamical hetero-

geneity of liquid and glass mixture.—The typical configu-
rations in our model exhibit branching network structure as
shown in Fig. 1(c), while the quantum fluctuations (the spin
flipped terms) create a superposition among them. For a
given configuration, the kinetic constraint dictates that the
spin flipped terms can only operate on endpoints of the
cluster, while the interior points of the cluster are immune
to quantum fluctuations. This robustness against spin
flipping indicates a glassy behavior with slow relaxation
dynamics for those interior points of the network. For such

a site, in spite of its robustness against single-spin flip, it
can slowly relax by transforming an interior point into a
endpoint via a sequence of spin flipping induced by
quantum fluctuations.
To characterize the dynamical heterogeneity of these two

types of sites (endpoints and interior points), we calculate
the on-site autocorrelation function rðτÞ in imaginary time τ
on different system sites,

riðτÞ ¼ hðnið0Þ − ρÞðniðτÞ − ρÞiτ; ð5Þ
where the average hOiτ is performed over a single trajectory
of QMC simulation. For a given site, if the quantum
fluctuation is completely frozen, riðτ → ∞Þ=rið0Þ → 1.
Conversely, for those sites whose spins are frequently
flipped, riðτÞ will decay to zero. The autocorrelation
functions on different sites are illustrated in Fig. 4(a), from
which we can find that riðτÞ=rið0Þ decays with τ for the

(a)

(b)

FIG. 2. (a) The correlation functions CðrÞ along the x direction
r ¼ ðr; 0Þ for the system with different μ (L ¼ β ¼ 64), each of
which exhibits algebraic decay with the same exponent α.
(b) CðrÞ in systems with a fixed μ ¼ 0 but different L and β.

FIG. 3. Structure factor along x direction Sðkx; 0Þ, which
exhibits a peak at kx ¼ kpeak. The inset indicates the dependence
of the peak position on the average density of the jri state.
(L ¼ β ¼ 64 and μ ¼ 0).

(a)

(b)

FIG. 4. (a) The normalized autocorrelation functions riðτÞ=rið0Þ
for the systems with the parameters μ ¼ −0.8J, L ¼ 24, and β ¼
128J−1 [different curves indicate riðτÞ on different sites]. (b) The
averaged autocorrelation function for systems with different
system size L. μ ¼ −0.8J and β ¼ 128J−1.
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majority of system sites, while for others, quantum fluctua-
tions remain frozen up to the imaginary timescale (τ ¼ β=2)
in our simulation, indicating a glassy behavior. However,
after sufficiently long time, those “frozen” sites will be
eventually flipped via the multispin flipping processes
analyzed above, which can be reflected in the averaged
autocorrelation function rðτÞ ¼ ð1=L2ÞPi riðτÞ as shown
in Fig. 4. rðτÞ keeps decaying with τ with a decay rate that
decreases withL (b). As shown in the Supplemental Material
[37], the relaxation time for those “frozen” sites will grows
exponentially with the system size, which agrees with the
glassy dynamics.
Compared to the spin glass, our model is free from

disorder. The glassy mechanism in such a translational
invariant system can be attributed to the kinetic constraints,
akin to those observed in genuine glassy systems [41].
However, the quantum fluctuation (spin flipped terms
operating on the unfrozen sites) enhances the coherence
and thus is responsible for the distinctive quasi-long-range
order [algebraic instead of exponential decay of CðrÞ],
which makes it qualitatively differ from the conventional
glass phases with only short-range order. Such a hetero-
geneous structure of liquid and glass mixture is reminiscent
of an intriguing classical spin liquid state dubbed “spin
slush,” which was first proposed by Rau et al. in a classical
spin ice system [33].
Quantum phase transition from a quantum slush to a

mobile finite-size cluster state.—Figures 1(c) and 1(d)
suggest there exists two different phases depending on
the value of μ. To characterize the phase transition between
them, we calculate the average density ρ as a function of μ.
As illustrated in Fig. 5(a), there exists a critical value at

μc ≈ −0.983J, above which ρ increases monotonically with
μ, and there is no plateau in the ρ − μ curve, indicating the
absence of a Mott insulator. The ground state energy E as a
function of μ as shown in Fig. 5(b) seems to imply a first
order quantum phase transition at μ ¼ μc, which is akin to
the dynamical large deviations transition observed in the
1D models [26,36]. However, due to the finite-site effect as
well as the statistical error bar of the numerical results, it is
difficult to preclude the possibility of a continuous quantum
phase transition.
For a sufficiently low μ, the energy cost of exciting an

atom is so substantial that the cluster cannot grow. As a
consequence, the average density ρ ∼ ð1=L2Þ thus will
vanish in the thermodynamic limit. The wave function
of this state is a superposition of those Fock states
containing only one finite-size cluster, whose size is
determined by the value of μ. This picture can be verified
numerically from its spatial and temporal correlation
function as shown in Fig. 6. The spatial correlation function
decays exponentially in distance CðrÞ ∼ e−r=l0 , where the
characteristic length scale l0 reflects the average “radius” of
the cluster and is independent on the system size. Different
from the quantum slush state, here the averaged autocor-
relation decays algebraically in time as rðτÞ ∼ τ−

1
2, a

signature of the random walk for a single cluster in a
2D lattice.
Discussion.—Throughout this Letter, we focus on a

specific subspace of Hilbert space with only one cluster.
Although our model enforces a stringent kinetic constraint,
real experimental systems implement this constraint
through an energy penalty mechanism, which allows for
potential violations in principle. Such a constraint-violating
perturbation may induce quantum tunneling between sub-
spaces characterized by different cluster numbers, and will
transform the previously studied state with a single cluster
into a metastable state. The lifetime of this metastable state
is inversely proportional to the strength of the perturbation
[37]. Consequently, as long as the lifetime of this proposed
state greatly exceeds the typical timescale of a practical
Rydberg atom system, it remains observable, permitting
experimental investigation into its properties.

(a)

(b)

FIG. 5. (a) The average density of the jri states ρ and (b) the
ground state energy E as a function of the detuning μ with
different system size and L ¼ β.

(a) (b)

FIG. 6. (a) The spatial correlation (along x direction) and (b) the
averaged autocorrelation function in the mobile finite-cluster
phase with parameter L ¼ 24, β ¼ 128J−1, and μ ¼ −1.1J.
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One may wonder whether the glassy dynamics on a few
proportion of lattice sites prevent the system from being
thermalized, and make the system be trapped into an initial
state-dependent local minimum state. To clarify this prob-
lem, we perform the ensemble average over a large number
of QMC trajectories, and carefully compare the average
over different QMC trajectories and over the QMC sim-
ulation time. The results from these two average procedures
agree with each other within the statistical error bar [37]. In
addition, to check the initial state dependence of our result,
we compare the results starting from two different initial
states, and the difference between them is also sufficiently
small [37]. The equivalence between the ensemble and time
averages as well as the initial state independence implies
thermalization in our simulation.
Conclusion and outlook.—In conclusion, the proposed

quantum slush state is different from most well-established
quantum phases of matter. It is neither an ordered phase,
nor a Mott insulator. The presence of quasi-long-range
order distinguishes it from conventional spin [42] and Bose
glasses [43,44]. This phase also stands apart from the U(1)
quantum spin liquid [45] or the Coulomb phase in the
classical spin ice [46,47] due to the absence of emergent
gauge field. It is not intrinsically tied to criticality, and
exists in a wide regime instead of at a particular point in the
parameter space.
One of the unsolved problems worthy of further study is

the physical origin of the algebraic decay and the associated
simple power exponent. In the Coulomb phase of spin ice,
the algebraic decay can be understood as a consequence of
the constraint imposed by the ice rule [46], one may wonder
whether there exists a similar mechanism associated with
kinetic constraint in our model. Another unexplored avenue
is the effect of thermal fluctuation, for instance, whether
this quasi-long-range order can persist at low temperature
analogous to the two-dimensional XY model [48], or is not
robust against any thermal fluctuation like the Coulomb
phase in the spin ice. Two related questions are what is the
nature of the elementary excitations for such a state and do
they manifest as collective excitations or individual ones?.
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