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The disorder operator is often designed to reveal the conformal field theory (CFT) information in
quantum many-body systems. By using large-scale quantum Monte Carlo simulation, we study the scaling
behavior of disorder operators on the boundary in the two-dimensional Heisenberg model on the square-
octagon lattice with gapless topological edge state. In the Affleck-Kennedy-Lieb-Tasaki phase, the disorder
operator is shown to hold the perimeter scaling with a logarithmic term associated with the Luttinger liquid
parameter K. This effective Luttinger liquid parameter K reflects the low-energy physics and CFT for
ð1þ 1ÞD boundary. At bulk critical point, the effective K is suppressed but it keeps finite value, indicating
the coupling between the gapless edge state and bulk fluctuation. The logarithmic term numerically
captures this coupling picture, which reveals the ð1þ 1ÞD SUð2Þ1 CFT and ð2þ 1ÞD Oð3Þ CFT at
boundary criticality. Our Letter paves a new way to study the exotic boundary state and boundary criticality.
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Introduction.—Quantum critical behaviors are important
and long-historical topics in quantum many-body physics.
The unconventional phase transitions can go beyond the
Landau-Ginzburg-Wilson paradigm and have attracted
many analytical and numerical studies, such as deconfined
quantum critical point (DQCP) [1–3] and topological phase
transition [4–8]. In addition, when the bulk undergoes
the phase transition, the boundary can also show exotic
critical behaviors, dubbed as surface critical behaviors
(SCBs) [9–12]. The exotic surface criticality draws
renewed attention, which is induced by the coupling
between the gapless boundary state and critical bulk
fluctuation. The edge-bulk coupling is widely found to
play an important role in the nontrivial surface criticality
of different quantum antiferromagnetic Heisenberg
models [13]. The gapless edge state composed of dangling
spin-1=2 is considered as the origin of unconventional
SCBs [9,10,14–16]. However, the exotic boundary criti-
cality is also observed without gapless edge state in the
spin-1 model [17], which leads to more controversial
problems in the boundary criticality and requires more
useful detecting methods.
In recent years, the nonlocal operators have been widely

used to reveal the entanglement and categorical symmetry
for quantum many-body systems, such as symmetry

domain walls or field lines of emergent gauge fields
[18–22]. They pave a new path to probe the phases and
phase transitions from the viewpoint of high-form sym-
metry or domain wall. The disorder operator is a nonlocal
observable that is proposed to extract the high-form
symmetry of quantum many-body systems [23–25]. It
has been successfully used to detect the high-form sym-
metry breaking at Ising transition [26]. The current central
charge can be extracted from the disorder operator at
ð2þ 1ÞD Oð2Þ and Oð3Þ phase transition in the conformal
field theory (CFT) [27,28]. Fermion disorder operators
are also designed to explore the universal feature of Fermi
liquid, Luttinger liquid, and fermion quantum critical
points (QCPs) and to reflect the nonunitary CFTof fermion
DQCP [29–31]. The disorder operator satisfies the new
universal scaling behaviors, where the subleading loga-
rithmic term reflects the general feature of CFT at the
conformal invariant QCP.
Since the exotic boundary criticality is combined by both

edge and bulk modes, which seems to contain either the
CFT information of edge excitation or bulk branch, how
to extract the composite CFTs at the special criticality is a
core problem to be solved when we want to study the
mechanism of the exotic edge class. In this Letter, we first
introduce the disorder operator to probe the boundary state
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and boundary criticality by taking the S ¼ 1=2 Heisenberg
model on the square-octagon lattice as an example. The
scaling behaviors also hold the perimeter law with sub-
leading logarithmic term in the Affleck-Kennedy-Lieb-
Tasaki (AKLT) phase. This logarithmic term is related to
the Luttinger liquid (LL) parameter K at small angle value,
which demonstrates that the boundary is governed by LL in
the IR limit. The most intriguing case is that the logarithmic
term sðθÞ can capture the LL parameterK for boundary and
current central charge J for bulk at QCP. This logarithmic
term scaling is different from the bulk disorder operator at
ð2þ 1ÞDQCP, which provides a new tool to understand the
boundary physics.
Model and method.—We investigate the spin-1

2
J1-J2

Heisenberg model on a square-octagon lattice via quantum
Monte Carlo (QMC) simulations [32–34], also known as
the AKLT model,

H ¼ J1
X
hiji

Si · Sj þ J2
X
hiji0

Si · Sj; ð1Þ

where J1 is the inter-unit-cell coupling and J2 is the intra-
unit-cell coupling. We define g ¼ J2=J1 and set J1 ¼ 1.
This model can host rich phase diagram via tuning the
coupling J2, which includes the S ¼ 2 Néel state, AKLT
state, S ¼ 1=2 Néel state, and plaquette valence bond crystal
[9,35,36]. These phases are all separated by Oð3Þ quantum
critical points. The AKLT state is a symmetry-protected
topological phasewhose boundary is protected by translation
symmetry and spin-rotation symmetry [37,38]. So the gapless
boundary is governed by an effective S ¼ 1=2 Heisenberg
chain in the low-energy physics. At the bulk Oð3Þ quantum
critical point, the boundary gapless mode is coupled to the
bulk fluctuation, which induces the unconventional boundary
criticality. This demonstrates that the boundary can have
richer physics and more critical behaviors than bulk.
Disorder operator.—For a quantum system with U(1)

symmetry, the disorder operator can be constructed by
U(1) rotation angle UðθÞ ¼ Q

i e
iθðSzi−1

2
Þ, where Szi is the

U(1) charge on site i. Given a region M on the lattice, we
can define the disorder operator XMðθÞ ¼

Q
M eiθðS

z
i−1

2
Þ. The

ground-state expectation jhXðθÞij is the module of hXðθÞi
defined as the disorder parameter that can extract the order
and high-form symmetry of the disorder phase. The scaling
behaviors of XðθÞ rely on whether the phase is ordered or
disordered. In the disordered phase, jhXðθÞij is proportional
to e−aðθÞl [23,27,39], where l is the perimeter of the region
M, meaning it obeys the perimeter law. In the U(1)
symmetry breaking ordered phase, it usually satisfies
jhXðθÞij ∼ e−bðθÞl ln l [23,24,27]. More interestingly, the
logarithmic correction term will appear in the scaling
behavior of jhXðθÞij at QCP. The previous analytical and
numerical works pointed out that jhXðθÞij can hold
the following form for a rectangle region at ð2þ 1ÞD
QCP [23,27,28]:

ln jhXðθÞij ¼ −a1lþ s ln lþ a0; ð2Þ

where all the coefficients are as functions of θ. This
logarithmic term sðθÞ originates from the corner of the
region M, which is also a universal function of operator
angle θ and the open angle α of the corner in region M
(α ¼ π=2 in rectangle region). This corner correction s can
be used to detect the universal feature at QCP. Some
previous works [27,28] have suggested that this term has a
simple form as sðθÞ ¼ ½CJ=ð4πÞ2�θ2 (θ → 0), where CJ is
the current central charge depending on the universality in
the CFT. For a pure ð1þ 1ÞD gapless system, the leading
term of jhXðθÞij becomes a logarithmic term rather than a
linear term l, due to the fact that the boundary of the
disorder operator is a pointlike domain wall. So the scaling
of jhXðθÞij takes the following form [29,40]:

ln jhXðθÞij ¼ s ln lþ a0: ð3Þ

Here, the logarithmic term can be connected to the LL
parameter K in the region of small angle value, which can
be derived from the LL theory [40]. In the LL system, such
as the spin-1=2 XXZ chain, the analytical results have
suggested sðθÞ ¼ −ðK=2π2Þθ2 (θ → 0), where K is the LL
parameter of systems. For a one-dimensional spin-1=2
XXZ chain, K can be exactly solved from the anisotropic
parameterK ¼ ðπ=2Þ=½π − arccosðΔÞ� (Δ is the anisotropic
parameter) [41]. In this way, the disorder operator provides
a simple way to measure the LL parameter.
In the past, the disorder operator is usually defined on the

bulk, which captures the universal feature of bulk criticality
or the bulk phase. Meanwhile, it has been found that
the boundary contains richer physics, especially at QCP
[10,14,42–45], but it has not been explored widely via
nonlocal operators. When the disorder operator is defined
on the boundary, similarly, it seemingly can also extract the
universal feature of the gapless state and even boundary
criticality, which should be demonstrated through a loga-
rithmic term. For disorder operator on edge, it has a
perimeter l of the measurement region M between the
edge and bulk, which contributes to the leading term ∼l in
the disorder phase [46]. The perimeter l of region M gives
contribution to the leading term for the disorder operator.
So it may take a similar form as Eq. (3). The logarithmic
term actually captures the boundary physics. At the same
time, two kinds of definitions for the disorder operator on
the edge are performed in Figs. 1(a) and 1(b). We use
method 1 to measure the boundary disorder operator in
most of the QMC simulations, as it can reflect the effective
Heisenberg chain on the boundary in our previous
study [35].
Results.—In the 1D XXZ chain, the disorder operator

successfully extracts the LL parameter K, which is well
consistent with the theoretical value (more details can
be found in Appendix A). For the 2D AKLT model,
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the gapless boundary is equivalent to an effective 1D
Heisenberg chain in the AKLT phase, which can be
considered as a ð1þ 1ÞD system due to the gapped bulk.
Naturally, the disorder operator on the boundary may have
similar scaling behavior as in pure ð1þ 1ÞD systems. As
shown in Fig. 2, we obtain the boundary disorder operator
value with g ¼ 0.3 and L ¼ 80. The scaling behavior
satisfies Eq. (2), where the leading term l originates from
the touch between the boundary disorder operator and bulk
in the disorder phase. The small angle value of sðθÞ can be
fitted well by sðθÞ ¼ −ðK=2π2Þθ2 rather than sðθÞ ¼
½CJ=ð4πÞ2�θ2 at small angle value (Fig. 2), which is
different from the ð2þ 1ÞD disorder operator result. The
LL parameterK is obtained from the fitting sðθÞwith system
size from L ¼ 32 to 128 with β ¼ 2L (β ¼ 4L for g ¼ 0.2
due to the small energy scale of interaction). For small g, the
extrapolation of fitting K will converge to 0.5, which is
consistent with the LL parameter of S ¼ 1=2 Heisenberg
chain. Thus, the unique ð1þ 1ÞD SUð2Þ1 can be well
captured in the deep AKLT state. When g gets closed to
QCP, the extrapolation of K becomes smaller, such as
g ¼ 0.5 and g ¼ 0.6035 results in Fig. 2(d). The feature
of LL on the boundary becomes weaker and weaker, and
the boundary cannot be considered as a pure ð1þ 1ÞD
system, which is not described well by the unique
ð1þ 1ÞD CFT anymore.
In order to verify the results of the disorder operator, we

calculate the boundary spin correlation function CjjðrÞ to
obtain the effective LL parameter. Here CjjðrÞ means that
the spins we measure are along the boundary with r parallel
to the boundary. According to the LL theory, the two-point

spin correlation function in S ¼ 1=2 Heisenberg chain
satisfies CðL=2Þ ∼ L−2K [40] (L is the system size and
K is the LL parameter), as depicted in Figs. 3(a) and 3(b).
Although the boundary for the Néel state cannot be
regarded as a pure ð1þ 1ÞD system, the effective K can
still be obtained from the correlation function. In the AKLT
state, the fitting K obtained from the disorder operator

FIG. 2. (a) Disorder parameter jhXðθÞij as a function of edge
length l with system size L ¼ 80 for g ¼ 0.3ðaÞ. (b) Shows the
subleading term s(θ) obtained from (a), with system size L ¼ 32,
48, 64, 80. (c) The coefficient of the logarithmic correction sðθÞ
for small value of θ with system size L ¼ 32, 48, 64, 80, 96, 128
at g ¼ 0.3. (d) The finite size extrapolation of Luttinger liquid
parameter K with increasing system size L with different g.

M

J2

M

J1

method 1

(a) (b) M
J2

M

J1

method 2

1 gc1=1.064gc2=0.6035

AKLT S=1/2 Néel state

gc3=-0.9343 0 g=J2/J1

(c)

FIG. 1. J1-J2 Heisenberg model on the square-octagon lattice.
There are two different measurement region M’s (orange region)
for disorder operator on the edge, dubbed as method 1 (a) and
method 2 (b). (c) Ground-state phase diagram of this model. We
mainly consider the phase transition between the AKLT state and
S ¼ 1=2 Néel state.

FIG. 3. Spin correlation functions CjjðrÞ at r ¼ L=2 on the
surface are shown at the (a) AKLT state and (b) Néel state. (c) The
Luttinger parameter K from disorder operator (method 1) in
the AKLT state from L ¼ 80 to 128. (d) The change of K from
disorder operator (method 1) at quantum phase transition from
AKLT state to Néel state from L ¼ 32 to 80.

PHYSICAL REVIEW LETTERS 132, 206502 (2024)

206502-3



is consistent with the correlation function in small g, as
Fig. 3(c) illustrated for method 1 of the disorder operator
(system size up to L ¼ 128). As g gets closed to QCP, K
obtained from the correlation function is close to 0.5 and
suddenly decreases until around QCP. However, The K
fitted by the disorder operator gradually decreases and
deviates from 0.5 when g > 0.4, suggesting that the bulk
fluctuation influences the disorder operator near the QCP.
The effective K from the correlation function looks sharp,
while the disorder operator looks much smoother. As
Fig. 3(d) shows for method 1 of the disorder operator
(system size up to L ¼ 80), from the AKLT state to the
Néel state, the fitting K gradually becomes smaller and
decays to 0 as g increases, indicating the boundary cannot
be well described by ð1þ 1ÞD LL theory due to the
coupling between the edge and bulk. Meanwhile, the
disorder operator clearly shows that the boundary goes
from the ð1þ 1ÞD physics to the ð2þ 1ÞD physics,
indicating the bulk displays a phase transition.
Moreover, the unconventional boundary criticality

behavior is induced when the gapless topological edge
mode is coupled to the gapless bulk fluctuation [13]. When
we revisit the disorder operator at QCP, we find that the
bulk fluctuation has a significant influence to the disorder
operator physically. At bulk QCP, the logarithmic correc-
tion sðθÞ in the scaling of disorder operator captures the
QCP feature, which is contributed by the corners of
measurement region M. For the boundary disorder oper-
ator, we note that there are also two corners in the regionM
with opening angle π=2. Because the bulk QCP belongs to
the Oð3Þ universality class, these corner contributions can
be equal to one half of ½CJ=ð4πÞ2� at small angle value in
CFT. Therefore, according to this boundary criticality
feature, we suggest that the logarithmic term s takes the
following form at small angle value:

sðθÞ ¼
�
−

K
2π2

þ CJ

2ð4πÞ2
�
θ2: ð4Þ

Here the LL parameter K captures the ð1þ 1ÞD SUð2Þ1
CFTand CJ captures the ð2þ 1ÞDOð3Þ CFT. As we know,

the theoretical value of ½CJ=ð4πÞ2� is 0.011 47 from
numerical bootstrap [47] in the Oð3Þ CFT. When we refit
the logarithmic term sðθÞ via Eq. (4) with the theoretical
value of ½CJ=ð4πÞ2�, it is surprising to find that the disorder
operator of fitting K is almost consistent with the results of
the correlation function as shown in Fig. 4. The extrapo-
lation of fitting K is 0.2579(2), which is very close to
0.261(3) obtained fromCðL=2Þ. Also, we use measurement
method 2 to capture the effective K at QCP (Fig. 4). The
fitting K from method 2 converges to 0.2720(2) as L → ∞,
which also agrees well with the results of CðL=2Þ. Because
the boundary couples with the bulk, there may be high-
order corrections in the subleading term. Therefore, it is
reasonable that the fitting K from the disorder operator may
deviate a little from the correlation function.
Discussion.—The boundary criticality can be controlled

by the bulk interaction or boundary interaction, which is
also well captured by the boundary conformal field theory
[48–50]. The boundary of the AKLT state is governed by
the unique ð1þ 1ÞD SUð2Þ1 CFT, which exactly contrib-
utes to the logarithmic term. As bulk approaches the critical
point, The SUð2Þ1 CFT is unstable against the bulk
fluctuation, where LL parameter K is suppressed by the
Néel order. This boundary criticality is a special transition
fixed point under the renormalization group, which is
similar to the phase transition between Néel order and
valence bond solid order in a one-dimensional system with
nonlocal interaction [13,51,52]. However, it is difficult to
derive the analytical expression for sðθÞ from the boundary
critical correlation function at QCP. According to the
physics picture for the disorder operator, we suggest that
it will take the above form as Eq. (4). The correlation
function results further confirm this conjecture that it
captures the composite CFT at QCP, as Fig. 4 shows. As
we know, the Luttinger parameter of the edge mode can also
be extracted from the correlation function; meanwhile the
Luttinger parameter K represents the ð1þ 1ÞD SUð2Þ1 CFT
information. According to the numerical results, the
Luttinger parameter K from the disorder operator is con-
sistent with the value of correlation function. This means that
the disorder operator indeed captures the physics and CFT

FIG. 4. The refitting logarithmic correction sðθÞ for small value θ for (a) method 1 and (b) method 2 at quantum critical point with
system size from 32 to 128. (c) The refitting LL parameter obtained from disorder operator are compared with the correlation function.
The blue dot is the result of correlation function.

PHYSICAL REVIEW LETTERS 132, 206502 (2024)

206502-4



information of the ð1þ 1ÞD SUð2Þ1 boundary [29] (details
about the relationship between disorder operator and
Luttinger parameter K can be found in the Appendix of
Ref. [29]). For the ð2þ 1ÞD Heisenberg model, the boun-
dary gapless state often exists at QCP that couples to the bulk
mode, which leads to the unconventional SCB. Therefore,
the LL parameter K keeps finite value in the thermodynamic
limit. Moreover, if the gapless edge state is suppressed to 0
by bulk fluctuation at QCP, the LL parameter K will also
decay to 0 rather than the finite value at QCP. It is interesting
to explore how LL parameter K disappears while the central
charge term ½CJ=ð4πÞ2� remains at QCP in this case, which
we leave for future work.
Conclusion.—In summary, we first apply the disorder

operator to study the boundary state and boundary criticality
in the two-dimensional AKLT model. In the AKLT state, the
boundary gapless state can be considered as an effective
S ¼ 1=2 Heisenberg chain, which has a well-defined LL
parameter K. The effective K can be obtained from the
logarithmic term sðθÞ at small angle value, which is close to
the K obtained from the correlation function. As the bulk
undergoes the phase transition between AKLT state and Néel
state, the LL parameter K gradually decreases and then
decays to about 0 in the Néel state, which is clearly shown in
the disorder operator and correlation function. More impor-
tantly, the disorder operator can capture the current central
charge CJ of Oð3Þ CFT and LL parameter K of ð1þ 1ÞD
SUð2Þ1 CFT, which can be confirmed via correlation
function too. These results demonstrate that the boundary
gapless state couples to the bulk fluctuation in the AKLT
model, which can be numerically considered as composite
CFT in the disorder operator. Our Letter shows that the
nonlocal disorder operator can detect the boundary state and
criticality, which provides a new window to understand the
CFT information on the boundary.
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Appendix A: Disorder operator in XXZ chain.—In
order to show the disorder operator can extract the feature
of a ð1þ 1ÞD system, we first perform the numerical
calculations in the S ¼ 1=2 XXZ chain with β ¼ 2L.
Generally, the XXZ chain can be mapped to the free
fermion chain with interaction by a Jordan-Wigner
transformation. The scaling of the disorder operator should
be equivalent to the fermion disorder operator in the free
fermion chain. In the XXZ chain with Δ ¼ 0, jhXðθÞij
satisfies the scaling behavior of Eq. (3), as shown in
Fig. 5. And now the system becomes an XY chain with

FIG. 5. Disorder parameter jhXðθÞij of S ¼ 1=2 XXZ chain
with Δ ¼ 0. (a) jhXðθÞij as a function of system size L. (b) The
logarithmic correction sðθÞ obtained from (a). (c) Small angle
value of sðθÞ. (d) Finite size extrapolation of Luttinger liquid
parameter K.

FIG. 6. Disorder parameter jhXðθÞij of S ¼ 1=2 XXZ chain
with Δ ¼ 1. (a) jhXðθÞij as a function of system size L. (b) The
logarithmic correction sðθÞ obtained from (a). (c) Small angle
value of sðθÞ. (d) Finite size extrapolation of Luttinger liquid
parameter K.
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Δ ¼ 0, which can be mapped to a free fermion chain
without interaction. Therefore, the logarithmic term sðθÞ
can be obtained from the fitting of Eq. (3) at any angle
value. As we know, sðθÞ holds the simple form sðθÞ ¼
−ðK=2π2Þθ2 at small angle value [29], where the LL
parameter K ¼ 1 when Δ ¼ 0, according to the analytical
results. The fitting LL parameter K is found to converge
to 1, which is well consistent with the theory.
And the XXZ chain becomes an isotropic Heisenberg

chain which is also at a Kosterlitz-Thouless phase transition
withΔ ¼ 1. The scaling of jhXðθÞij can be fitted by Eq. (3),
in which the logarithmic term s reflects the LL parameter.
The fitting LL parameter K converges to 0.52, which is
close to the theoretical value K ¼ 0.5 as Fig. 6 shown. For
the Heisenberg chain, there is a marginal operator in the
field form of Hamiltonian [40], which causes much strong
finite size effect in the simulations. So the extrapolation of
fitting K is hard to converge to exact 0.5.

Appendix B: Scaling behaviors in the AKLT state.—
For g ¼ 0.4 and g ¼ 0.5, the scaling behavior of the
disorder operator also satisfies the same form as Eq. (2) as
shown in Figs. 7(a) and 7(c) with β ¼ 2L. This further
demonstrates that the leading term is the perimeter l in the
AKLT phase, and the logarithmic term sðθÞ is negative at
full angle value θ, which reflects the ð1þ 1ÞD physics.
Similar to the g ¼ 0.3 case, the logarithmic term can be
used to extract the effective LL parameter K by fitting the
same equation at small angle limit [Figs. 4(c) and 4(f)].

These results further confirm that the disorder operator
can capture the only one ð1þ 1ÞD SUð2Þ1 CFT in the
deep AKLT state, which is distinguished from the case of
composite CFT at QCP.
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