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Reliable manipulation of non-Abelian Ising anyons supported by Kitaev spin liquids may enable
intrinsically fault-tolerant quantum computation. Here, we introduce a standalone scheme for both
generating and detecting individual Ising anyons using tunable gate voltages in a heterostructure containing
a non-Abelian Kitaev spin liquid and a monolayer semiconductor. The key ingredients of our setup are a
Kondo coupling to stabilize an Ising anyon in the spin liquid around each electron in the semiconductor,
and a large charging energy to allow control over the electron numbers in distinct gate-defined regions of
the semiconductor. In particular, a single Ising anyon can be generated at a disk-shaped region by gate
tuning its electron number to one, while it can be interferometrically detected by measuring the electrical
conductance of a ring-shaped region around it whose electron number is allowed to fluctuate between zero
and one. We provide concrete experimental guidelines for implementing our proposal in promising
candidate materials like α-RuCl3.
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Introduction.—The Kitaev model on the honeycomb
lattice provides an exactly solvable realization of non-
Abelian topological order in an electrically insulating
setting [1]. While the ground state of the original Kitaev
model is a gapless quantum spin liquid, the inclusion of a
small magnetic field induces a fully gapped topological
phase, the non-Abelian Kitaev spin liquid, that harbors
Majorana fermions and Ising anyons. Because of their non-
Abelian nature, the Ising anyons support nonlocal degrees
of freedom that act like intrinsic quantum memories in
the sense that their quantum states are protected from
local perturbations up to exponentially long time scales.
Moreover, these nonlocal quantum states can be manipu-
lated in an inherently fault-tolerant manner by exchanging
the Ising anyons or moving them around each other,
which is the essence of topological quantum computation
[2,3].
Remarkably, in candidate materials of the non-Abelian

Kitaev spin liquid, like α-RuCl3 [4–12] under an in-plane
magnetic field [13–28], the topological gap that protects
quantum information could be as large as 10 K, potentially
facilitating quantum computation at elevated temperatures
compared to other platforms. As an important first step
toward anyon manipulation, it has also been recently
understood that individual anyons in the Kitaev spin liquid
can be stabilized around local defects like spin vacancies
[29–31] or dynamically generated in a magnetic tunnel
junction [32] and detected via anyonic edge interferometry
[33–37] or scanning tunneling measurements [38–44]. In a
real experiment, however, one cannot focus on anyon
generation or detection only as reliably demonstrating
either of them requires the other one, and it is not clear

how the individual setups for anyon generation and
detection above can be interfaced with each other.
In this Letter, we propose a standalone scheme for both

generating and detecting non-Abelian Ising anyons using a
gated semiconducting monolayer that is Kondo coupled to
a non-Abelian Kitaev spin liquid. The main idea is that
Ising anyons in the spin liquid can be bound to electrons in
the neighboring semiconductor by the Kondo coupling
[45–47] while the electron numbers in various gated
regions of the semiconductor can be accurately controlled
by gate voltages in the limit of a large charging energy. In
turn, each anyon stabilized at a disk-shaped region can be
detected by measuring the electrical conductance of a ring-
shaped region surrounding it, which corresponds to a bulk
version of anyonic interferometry. Since our setup relies on
tunable gate voltages, it is a natural generalization of
analogous schemes in the context of topological super-
conductors [48–51]. As such, it offers a promising pathway
toward scalable qubit architectures based on non-Abelian
anyons of quantum spin liquids.
General setup.—We consider the heterostructure in

Fig. 1 containing a single layer of a non-Abelian Kitaev
spin liquid and a monolayer semiconductor that is only
present in a circular region of radius Rring. The gating
electrodes above the semiconductor define two subregions
within this circular region, a disk inside radius Rdisk and a
ring between radii Rdisk and Rring, that have individual gate
voltages and charging energies, while the insulating layers
suppress electron tunneling between the semiconductor,
the gating electrodes above, and the grounded electrode
below.
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Since the semiconductor is connected to two metallic
leads along the outer radius of the ring [see Fig. 1(a)], the
number of electrons within each of the disk and ring re-
gions can be controlled by the corresponding gate voltage.
In turn, assuming a sufficiently strong Kondo coupling
between the semiconductor and the spin liquid (to be
specified later), each electron e in the semiconducting layer
binds a non-Abelian Ising anyon σ in the neighboring spin-
liquid layer [see Fig. 1(b)]. To stabilize these composite
particles consisting of an electron and an Ising anyon, we
also consider an array of electron dopants in the semi-
conductor that induce localized states for the electrons, thus
slowing down their dynamics. Moreover, since the Ising
anyons are gapped in the bulk and can only be created in
pairs, it is important that the metallic leads are close to the
edge of the spin liquid. This way, if an electron tunnels
from the lead into the semiconductor, one Ising anyon
can readily bind to the electron while the other one can
be left behind at the spin-liquid edge with very little
energy cost.

The Hamiltonian reads H ¼ Hstructure þHleads þHtunnel,
where Hstructure governs the heterostructure itself,

Hleads ¼
X

Λ¼L;R

X

k

X

μ¼↑;↓

ζkĉ
†
Λ;k;μĉΛ;k;μ ð1Þ

describes free electrons in the left (L) and right (R) leads
with momentum and spin indices k and μ, while

Htunnel ¼ −
X

Λ¼L;R

X

r;k;μ

�
TΛ;rc

†
r;μĉΛ;k;μ þ H:c:

� ð2Þ

corresponds to electron tunneling between the leads Λ ¼ L,
R and the sites r of the semiconductor. In turn, the hetero-
structure Hamiltonian is Hstructure¼HsemiþHKitaevþHKondo,
where Hsemi, HKitaev, and HKondo describe electron dynam-
ics in the semiconductor, spin dynamics in the spin liquid,
and Kondo coupling between them, respectively. The
Hamiltonian of the semiconducting layer,

Hsemi ¼ −t
X

hr;r0i

X

μ¼↑;↓

�
eiAr;r0c†r;μcr0;μ þ H:c:

�

−W
X

r∈D

X

μ¼↑;↓

c†r;μcr;μ − h⃗ ·
X

r;μ;ν

c†r;μτ⃗μνcr;ν

þ
X

η¼disk;ring

ðEηN2
η − eVηNηÞ; ð3Þ

contains an electron hopping amplitude t with a Peierls
phase factor eiAr;r0 representing an out-of-plane magnetic
field, a binding energy W at the dopant sites r∈D (see
Fig. 1), a Zeeman field h⃗ coupling to the total electron spin
with the Pauli matrices τ⃗ ¼ ðτx; τy; τzÞ, as well as charging
energies Eη and gate voltages Vη that couple to the total

electron numbers, Nη ¼
P

r∈ η

P
μ c

†
r;μcr;μ, inside the disk

and ring regions. The spin-liquid layer is governed by the
exactly solvable Kitaev honeycomb Hamiltonian [1]

HKitaev ¼ −K
X

hr;r0iα
σαrσ

α
r0 − κK

X

hr;r0;r00iαβ
σαrσ

γ
r0σ

β
r00 ; ð4Þ

where σαr with α ¼ x, y, z are spin-1=2 operators, ðαβγÞ is a
general permutation of ðxyzÞ, while hr; r0; r00iαβ is the path
consisting of the two bonds hr; r0iα and hr0; r00iβ on the
honeycomb lattice. The first term ∝ K corresponds to the
original Kitaev model, in which gapless Majorana fermions
are coupled toZ2 gauge fields, and the associatedZ2 gauge
fluxes are gapped excitations localized at hexagonal pla-
quettes. The second term ∝ κK represents a magnetic field
breaking time-reversal symmetry, which gaps out the
Majorana fermions and turns the gauge fluxes into non-
Abelian Ising anyons [1]. Finally, the Kondo Hamiltonian

ℓ

rL rRRdisk

Rring

Spin liquid

Semiconductor

Vring Vdisk

Lead (L) Lead (R)

(a)

e
σ

Insulator

Spin liquid

Semiconductor

Insulator Insulator

Lead

Vdisk Vring(b)

FIG. 1. Top view (a) and side view (b) of the proposed
experimental setup with the cross section shown in (b) corre-
sponding to the dashed line in (a). The monolayer semiconductor
(light gray), whose boundary is denoted by a thick line in (a), is
gated with two electrodes of voltages Vdisk and Vring above (dark
gray). The semiconductor contains dopant sites (large dots) that
(a) form a closed loop of length l (dotted line) in the ring region
with two sites rΛ being in direct contact with the leads Λ ¼ L, R,
and (b) are able to localize electrons e and, hence, Ising anyons σ
in the disk region.
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HKondo ¼ J
X

r;μ;ν

σ⃗r · ðc†r;μτ⃗μνcr;νÞ ð5Þ

introduces antiferromagnetic coupling between the local-
ized spins in the spin liquid and the electron spins in the
semiconductor. Here we assume for simplicity that the spin
liquid and the semiconductor have the same honeycomb
lattice and that their respective sites are directly on top of
each other.
Anyon generation.—In the rest of this work, we assume

that the gate voltages Vdisk and Vring are tuned such that the
disk region is deep inside a Coulomb-blockade valley with
its electron number Ndisk fixed to a small integer while the
ring region is at a Coulomb-blockade peak with its electron
number Nring readily fluctuating between 0 and 1. Thus, if
the disk is tuned into a neighboring Coulomb-blockade
valley by changing Vdisk, an electron can move between the
leads and the disk through the ring to facilitate the shift
in Ndisk.
In the limit of infinitely large W, the low-energy

eigenstates of Hstructure have electrons localized at specific
dopant sites r∈D in the semiconductor, and the spins of
these localized electrons then behave like Kondo impurities
from the perspective of the spin liquid. For the gapless
Kitaev spin liquid, corresponding to κ ¼ 0 in Eq. (4), it is
well known that a single Kondo impurity induces a
topological transition at a critical coupling J ≈ 0.35 K
beyond which a gauge flux is attached to the Kondo
impurity [45–47]. In the Supplemental Material [52], we
demonstrate that the same topological transition is also
induced for the non-Abelian Kitaev spin liquid at a
comparable critical coupling for any 0.1 ≤ κ ≤ 0.2 even
in the presence of a small Zeeman field h⃗. Furthermore,
since the non-Abelian Kitaev spin liquid is gapped, the
same conclusion is valid for multiple Kondo impurities as
long as they are further apart than the correlation length.
Therefore, in the limit of W → ∞, each electron local-

ized in the semiconducting layer has a gauge flux bound to
it in the neighboring spin-liquid layer, which in turn
corresponds to a non-Abelian Ising anyon σ. We can
then write a general low-energy eigenstate of Hstructure
for Ndisk ¼ N and Nring ¼ 0 as jN;R; χi, where R ¼
fr1;…; rNg specifies the positions of the electrons in the
disk, while χ accounts for the nonlocal low-energy degrees
of freedom that are spanned by the Ising anyons due to their
non-Abelian nature [1].
For a finite but sufficiently large W ≫ t, the electrons

can tunnel between neighboring dopant sites r∈D and
r0 ∈D through the nondopant sites in between. If the
tunneling process takes s steps, the tunneling amplitude
is on the order of t̃ ∼ ts=Ws−1. Importantly, for a suffi-
ciently small t̃ ≪ K, this electron tunneling process cannot
create any bulk excitations in the spin liquid due to an
excitation gap on the order of K. Therefore, the Ising
anyons in the spin liquid must remain bound to their

respective host electrons in the semiconductor even as the
electrons move around the disk [53].
In other words, the effective electron hopping of

amplitude t̃ simply connects different low-energy states
jN;R; χi. Thus, the ground state of Hstructure for Ndisk ¼ N
and Nring ¼ 0 must take the general form

jΩNi ¼
X

R;χ

ωN;R;χ jN;R; χi; ð6Þ

where the coefficients ωN;R;χ are determined by the precise
microscopic details. However, while the mutual braiding
processes of Ising anyons bound to electrons can change
the internal degrees of freedom χ, the transfer of electrons
in or out of the disk is forbidden by the large charging
energy Edisk ≫ t̃, which means that the electron number N
and the total anyon content a of the disk are fixed. Since
there are three kinds of anyons in the non-Abelian Kitaev
spin liquid, the total anyon content can take three different
values: trivial boson (a ¼ 1), Majorana fermion (a ¼ ψ), or
Ising anyon (a ¼ σ). Also, the possible values of a for each
N are restricted by the fusion rules of the non-Abelian
Kitaev spin liquid [1]. In particular, the disk is bosonic
(a ¼ 1) for N ¼ 0, it hosts a net Ising anyon (a ¼ σ) for
odd N, while it may be bosonic (a ¼ 1) or fermionic
(a ¼ ψ) for even N > 0. Hence, by tuning the electron
number N ¼ Ndisk of the disk via the gate voltage Vdisk,
different types of anyons can be stabilized in the disk,
including a trivial boson and a non-Abelian Ising anyon in
the simplest cases of N ¼ 0 and N ¼ 1, respectively.
Anyon detection.—The stabilization of anyons in the disk

region can be readily confirmed by measuring the electrical
conductance between the two metallic leads connected to
the semiconductor [see Fig. 1(a)]. Since the electron
number inside the disk region is fixed, while the electron
number of the ring region can fluctuate between 0 and 1,
the path of each electron traveling between the two leads is
entirely inside the ring region. In the limit of W ≫ t and
t̃ ≪ K, this electron in the ring also has an Ising anyon
bound to it, which means that the interference between
electron paths above and below the disk is sensitive to
anyons inside the disk.
To obtain the conductance between the two leads, we

must first consider the relevant low-energy states of
Hstructure for Ndisk ¼ N and Nring ¼ 1. For W → ∞, the
electrons are localized at specific dopant sites in both the
disk and the ring, each of them binding an Ising anyon, and
a general low-energy eigenstate can be written as
jr;N;R; χi, where r is the position of the electron in the
ring, while R and χ have the same meaning as earlier. At
finite W, since electron hopping inside the ring or electron
tunneling between the ring and the leads does not affect the
internal properties N, R, and χ of the disk, the low-energy
eigenstates that contribute to the conductance must take the
form
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jΨN;ni ¼
1ffiffiffiffiffi
N

p
X

r∈Dring

X

R;χ

θr;nωN;R;χ jr;N;R; χi ð7Þ

in terms of a generic label n, where N is the number of
dopant sites in the ring, r∈Dring. If these dopant sites form
a closed loop of length l [see Fig. 1(a)] with an approx-
imately uniform spacing d ¼ l=N and electron hopping
amplitude t̃ between them, the coefficient θnðxÞ≡ θr;n is a
slowly varying Oð1Þ function of the electron position 0 ≤
x ≤ l along the loop and is governed by the effective low-
energy continuum Hamiltonian H ¼ −t̃d2∇2. Importantly,
the corresponding boundary condition, θnð0Þ ¼ eiφθnðlÞ,
reflects both the magnetic flux inside the loop via the
Aharonov-Bohm effect picked up by the electron itself, and
the total anyon content a of the disk via the braiding rules
of the non-Abelian Kitaev spin liquid, as seen by the Ising
anyon attached to the electron. In particular, φ ¼ −ϕþ ϑa,
where ϕ ¼ eΦ=ℏ ¼ P

hr;r0i Ar;r0 [see Eq. (3)] is the dimen-
sionless magnetic flux, while the braiding phases ϑa for a ¼
1;ψ ; σ are given by [1] ϑ1 ¼ 0, ϑψ ¼ π, and ϑσ ¼ �π=4,
with the sign of ϑσ determined by the magnetic-field
direction. The allowed wave functions corresponding to
jΨN;ni are then given by θnðxÞ ¼ exp½ið2πn − φÞx=l�, and
the relative energies of jΨN;ni with respect to jΩNi take the
form εn ¼ δEþ t̃d2ð2πn − φÞ2=l2, where n is an integer
phase winding number, while δE is the energy difference
between the Nring ¼ 1 and Nring ¼ 0 ground states or, in
other words, a finite shift from the Coulomb-blockade peak
that can be tuned via the gate voltage Vring.
Next, we assume without loss of generality that an

electron from each lead Λ ¼ L, R can directly tunnel to a
single dopant site rΛ ∈Dring along the edge of the spin
liquid [see Fig. 1(a)] with tunneling amplitude TΛ;rΛ ¼ T0

[see Eq. (2)]. If δE > 0 such that jΩNi is the overall ground
state of Hstructure, the conductance between the two leads at
zero temperature from Fermi’s golden rule is then
G ¼ 2πðe2=ℏÞρ2 Pμ;ν jSμ;νj2, where ρ is the density of
states in each lead, while

Sμ;ν ¼ T2
0

X

n

ε−1n hΩN jcrR;μjΨN;nihΨN;njc†rL;νjΩNi

¼ T2
0MR;μM�

L;ν

X

n

θrR;nθ
�
rL;n

N εn
ð8Þ

is a spin-dependent cotunneling amplitude in terms of the
matrix elements MΛ;μ ¼ hN;R; χjcrΛ;μjrΛ;N;R; χi ∼ 1

that do not depend on the internal properties N, R, and
χ of the disk. Finally, if the dopant sites rL and rR
correspond to positions x ¼ 0 and x ¼ l=2 along the loop
of dopant sites around the ring [see Fig. 1(a)], the
conductance takes the form

G ¼ 2πe2

ℏ
ρ2T4

0ΓLΓR

N 2δE2

����
Xþ∞

n¼−∞

eið2πn−φÞ=2

1þ λ−2ð2πn − φÞ2
����
2

¼ 2πe2

ℏ
ρ2T4

0ΓLΓR

t̃δE
sinh2ðλ=2Þcos2ðφ=2Þ
½cosh λ − cosφ�2 ð9Þ

in terms of ΓΛ ¼ P
μ jMΛ;μj2, where λ ¼ ðl=dÞðδE=t̃Þ1=2 is

roughly the number of eigenstates jΨN;ni inside the lowest
energy range of width δE, while φ ¼ −ϕþ ϑa is the
effective Aharonov-Bohm phase including the dimension-
less magnetic flux ϕ ¼ eΦ=ℏ and the anyonic braiding
phase ϑa. As shown by Fig. 2, the conductance G exhibits
Aharonov-Bohm oscillations with periodicityΔΦ ¼ h=e in
the magnetic flux Φ, and the total anyon content a of the
disk region is reflected in a shift of these oscillations. In
particular, whereas the maxima ofG are at integer multiples
of h=e for a ¼ 1, they are at half-integer multiples for a ¼
ψ and shifted by h=ð8eÞ with respect to integer multiples
for a ¼ σ. We remark that the sign of this shift can be
switched by reversing the in-plane magnetic field that does
not contribute to the flux Φ.
Discussion.—The most promising candidate system for

the non-Abelian Kitaev spin liquid in our setup is α-RuCl3
[4–12] with an appropriate in-plane magnetic field [13–28],
while the monolayer semiconductor coupled to it could be a
transition-metal dichalcogenide like MoS2 or WSe2 [54]. In
these two-dimensional materials, arrays of electron dopants
can be created with atomistic precision using the focused
electron beam of a scanning transmission electron micro-
scope [55]. The crucial Kondo coupling between the two
layers may be enhanced by applying pressure to reduce the
interlayer distance [56] or appropriately engineering the
semiconductor band structure to delocalize the electron
wave function [57]. We also note that, in the presence of an
inevitable lattice mismatch between the two layers, each
electron in the semiconductor is Kondo coupled to multiple

FIG. 2. Electrical conductance G of the ring region, in units of
the conductance quantum G0 ¼ 2e2=h, against the magnetic flux
Φ if the disk region inside contains a trivial boson 1 (solid line), a
Majorana fermion ψ (dashed line), or an Ising anyon σ (dotted
line). The conductance is computed via Eq. (9) for ρT2

0 ¼ 10 meV,
t̃ ¼ 1 meV, δE ¼ 10 μeV,ΓL ¼ ΓR ¼ 0.1, andN ¼ l=d ¼ 100.
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spins in the spin liquid, potentially amplifying the effective
strength of the Kondo coupling.
For stabilizing anyons in the disk region, the effective

electron hopping amplitude t̃ must be much smaller than
both the Kitaev exchange K and the charging energy Edisk,
which implies that t̃ is around 1 meVor below. At the same
time, these anyons can only be detected in the conductance
of the ring region if λ ¼ ðl=dÞðδE=t̃Þ1=2 ≲ 10, otherwise
the interference effect is exponentially suppressed [see
Eq. (9)]. Thus, for ring length l ∼ 500 nm and dopant
spacing d ∼ 5 nm, the energy shift with respect to the
Coulomb-blockade peak is limited to δE≲ 10 μeV, which
in turn requires the gate voltage Vring to be tuned with
10 μV accuracy and the temperature to be in the 100 mK
range or below. Similarly, gapless excitations along
the edge of the spin liquid, which were ignored in our
calculation, may destroy the interference if δE is much
larger than their energy spacing, ϵ ∼ Ka0=Ledge. Thus,
for Kitaev exchange K ∼ 10 meV and lattice constant
a0 ∼ 1 nm, the edge length is constrained to be
Ledge ≲ 1 μm. At the same time, the edge of the spin liquid
must only be in contact with the ring region at the two leads
[see Fig. 1(a)], otherwise the interference may be disturbed
by interactions between the loop of dopant sites and the
spin-liquid edge. Finally, to observe a shift of h=ð8eÞ in the
Aharonov-Bohm oscillations of the conductance for a ring
length l ∼ 500 nm, an out-of-plane magnetic field of
around 100 mT is necessary. We emphasize, however, that
the conductance measured at zero flux is already sensitive
to the total anyon content of the disk region.
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