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In the edge of an L-mode tokamak plasma, particle transport and ion energy transport are shown to
follow a strong microturbulence (SMT) scaling, whereas in the plasma core the transport is shown to follow
quasilinear turbulence scaling. The dependence of diffusivity on potential fluctuation amplitude is linear in
the SMT regime, and quadratic in the quasilinear regime. The transition to strong microturbulence results
from larger E × B drift velocities in the edge compared to the plasma core. At these larger velocities, ions
traverse the spatially correlated range faster than the stochastic evolution of the electric potential. Hence,
these particles do not experience a time-stochastic field as required by the quasilinear approximation.
Instead, scattering of particles in the SMT regime is caused by spatial stochasticity. In contrast, electron
energy transport remains quasilinear due to decorrelations caused by collisions and fast parallel motion.
Improved understanding of transport beyond quasilinear theory opens the path to more accurate modeling
of transport in the tokamak plasma edge.

DOI: 10.1103/PhysRevLett.132.205101

Introduction.—Following years of dedicated experimen-
tal campaigns in tokamaks, and employing high-fidelity
gyrokinetic (GK) simulations and transport modeling,
understanding of key aspects of the turbulence and transport
in the core of the tokamak plasma is relatively mature.
Naturally, the radial edge of plasma, for which r=a≳ 0.9
(where a is the plasma minor radius), emerges as the next
frontier for improved physics understanding and modeling
fidelity. This redirection of focus to the plasma edge has
been out of necessity: the plasma edge serves as the
boundary condition to the plasma core, and any prediction
of the fusion performance of plasma will demand an
accurate representation of the edge. One such challenge
for predictive modeling has been the calculation of the
power threshold required for the transition from the low-
confinement mode (L mode) to high-confinement mode
(H mode) [1,2]. The latter, identified by the formation of a
pedestal in the outer edge of the radial temperature and
density plasma profiles, is the high performance operational
regime intended for all future tokamaks. Prediction of the
L-H transition power threshold will naturally require a
thorough understanding of the nature of turbulent transport
and saturation mechanisms in the edge of L-mode pedestal.
While GK simulations, serving as interpretive tools, have

significantly advanced our understanding of turbulence and
transport, effectively the only tools for predictive modeling
of transport so far have been based on the quasilinear (QL)
approximation [3–7], which is the simplest practical theory
of plasma turbulence. In essence, QL theory is a mean-field,
perturbation approximation for weak turbulence, and the
equations solved are first order and linear in gyrokinetic
ordering parameter ε∼δf=F∼eδϕ=Te∼ρs=L≪1, where
δf and F are the fluctuating and the equilibrium part of the

distribution function, δϕ is the electric potential fluctuation,
Te is the electron temperature, ρs ¼ cs=Ωci is the ion sound
gyroradius, and L is a characteristic macroscopic radial
length scale; cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound speed,mi is ion

mass, and Ωci is the ion cyclotron frequency. The transport
fluxes calculated by QL models have a quadratic depend-
ence on the amplitude of the saturated potential δϕ. The
amplitude is predicted using saturation rules that are
typically based on mixing length theory [8]. Further,
physical effects critical to turbulent transport have also been
modeled and included in QL-based transport calculations
(E × B shear [9,10], zonal-flow mixing [11], geometry
effects [12], rotation and temperature anisotropy induced
poloidal asymmetry [13]). Finally, using a number of free
parameters, the QL model is calibrated to a database of
nonlinear (NL) gyrokinetic simulations [12,14], or also
using experimental observations [15]. Breakdown of a QL
model was observed in Ref. [16] for the ion energy flux in
comparison to the flux calculated by GYRO [17] for the ion-
temperature gradient turbulence with adiabatic electrons.
Departure between a QL model (QuaLiKiz) [15] and a flux
driven, full f-GK code (GYSELA) [18] has also been observed
[19], although the physics of that departure is beyond the
scope of the gradient-driven, δf-GK formalism employed in
this Letter.
In this Letter we examine the validity of QL theory, and

show that this validity is broken for deuterium ions in the
edge of an L-mode plasma. In essence, breakdown of QL
approximation in the edge is the result of larger particle
E × B drift velocities in stronger turbulence fields. These
particles traverse their spatially correlated range [20] before
the stochastic evolution of the electric potential which
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consists of an intricate landscape of irregularly spaced wells
and hills. In contrast, the validity of QL theory requires that
the potential landscape should evolve before particles leave
one spatially correlated turbulence region for another [21].
We further show that for electrons the combined effects of
parallel motion and collisional decorrelation lead to quasi-
linear turbulence scaling (QLT scaling) of transport, even
when ion transport scaling is clearly not QLT.
Comparison of NL and QL transport.—Fluxes calculated

by a QL model for turbulent transport have the form [12]

QQL
a ¼ cfreeΔKy

X

ky

WQa
ky
jΦkyðθ ¼ 0Þj2; a ¼ i; e ð1Þ

ΓQL ¼ cfreeΔKy

X

ky

WΓky jΦkyðθ ¼ 0Þj2 ð2Þ

where QQL
a is the energy flux of species a, and ΓQL is the

ambipolar particle flux calculated by the QL theory. Here
Φkyðθ ¼ 0Þ is the maximum (kx ¼ 0) normalized potential
amplitude at the outboard midplane (θ ¼ 0), ky ¼ nq=r is
the binormal mode number (q is the safety factor and r is
the minor radius of the simulation), and ΔKy is the interval
between the mode numbers. cfree is a free calibration
parameter chosen to fit QL fluxes to the calculated NL
fluxes by the Eulerian δf-GK code CGYRO [22]. Here,

the QL weights WQa
ky and WΓky are obtained from

linear CGYRO calculation (linear GK) for each mode.
Note that these weights are independent of Φky . To
evaluate the QL fluxes in Eqs. (1) and (2) we use the
Φky calculated by NL CGYRO. Comparisons of the QL
fluxes and the NL fluxes from CGYRO are shown in Fig. 1.
The NL simulations are electromagnetic (δϕ and δAk),
performed with kinetic electrons and ions, Te ¼ Ti, radial
resolution maxðkxρsÞ ¼ 11, and binormal toroidal reso-
lution maxðkyρsÞ ¼ 1. From the core to the edge, and at
selected radial locations, CGYRO-calculated NL fluxes are
shown in Fig. 1. The turbulence is predominantly electro-
static in the entire radial range with the peak of the
flux distribution in the long-wavelength ion range
0.2≲ kyρs ≲ 0.4. As an exercise for predicting the fluxes
in the edge ðr=a ≥ 0.9Þ, the calibration parameter cfree is
first determined by matching the QL and NL CGYRO

energy fluxes in the core ðr=a ≤ 0.8Þ. Choosing cfree in
this way, we observe that core QL fluxes accurately match
NL CGYRO fluxes (within %10 uncertainty) as shown in
Figs. 1(a) and 1(b) for the electron and ion heat flux,
respectively. Strong agreement between QL and NL
CGYRO in the core of L-mode plasma was recently
reported [14], although QL breakdown in the plasma core
has also been observed [19]. Moreover, electron energy
flux Qe is predicted accurately in the edge by the QL
model. However, the fluxes of ion energy and particle,
respectively Qi and Γ, are significantly underpredicted in
the edge by this QL model; that is, by a factor of 3 to 4. In
what follows, we will examine the underlying assump-
tions that permit the application of QL theory.
Fundamental physics of QL transport.—Validity of QL

theory is fundamentally determined at the microscopic
level from particle dynamics. Particles are scattered by a
complex evolving landscape of turbulent potential fields
δϕ and δAk. These fields have their own characteristic
perpendicular and parallel length scale, λ⊥ and λk, respec-
tively, and timescale τc, which are obtained from the
Eulerian correlation function. However, diffusive transport
of particles and energy is determined by the step-size
and correlation time of particle motion, not by those of the
fields. For the scales associated with particle motion, the
Lagrangian correlation function is evaluated. The time-
scale for particle motion is approximated by the flight time
τFL ¼ V=λ⊥, where V is a typical drift velocity for the
particle. τFL describes the time needed for the particle to
travel the entire span of the correlated region of length λ⊥
before leaving it for another correlated region. For a
predominantly electrostatic turbulence the drift velocity
is δVE ¼ cb ×∇δϕ=B, hence the drift velocity is propor-
tional to δϕ (c is the speed of light, B is the magnitude, and
b is the unit vector along the magnetic field). The Kubo
number is defined as the ratio of these two timescales

(a)

(b)

(c)

FIG. 1. Nonlinear fluxes of (a) electron energy Qe, (b) ion
energy Qi, and (c) particles Γ in gyroBohm units (gB) calculated
with CGYRO (black) versus quasilinear fluxes (gray) calculated
from Eqs. (1) and (2).
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K ¼ τc=τFL, and is a measure of the strength of turbulence
and nonlinearity.
For QL theory to be valid, turbulence should be weak

enough so that a particle cannot sample the whole correlated
region it resides in before the landscape evolves [23,24].
This happens if the fields evolve and scatter the particle
before it can drift across the correlated region (K < 1). In
this regime, particle motion is stochastic and the decorre-
lation is temporal (caused by the evolving landscape) with
the random time step given by τc. These random spatial
steps Δ ∼ Vτc result in perpendicular diffusion coefficient
D ∼ Δ2=τc ¼ V2τc. This quadratic dependence on V is
characteristic of the quasilinear turbulence (QLT) scaling
regime.
In stronger turbulence, a particle can quickly sample the

correlated region before the landscape changes (K > 1). In
this case the particle is scattered due to the randomness of
spatial structure of the potential landscape, not its temporal
evolution. Therefore, the decorrelations of particle trajecto-
ries are spatial (with fixed landscape) with random step size
Δ ∼ λ⊥, i.e., the length of the correlated region. Hence, the
random time step is given by τFL. The diffusion coefficient
of this stochastic motion is given by D ∼ Δ2=τFL ¼ Vλ⊥.
The linear dependence of D on V is characteristic of the
strong microturbulence (SMT) scaling regime. For macro-
scopic turbulence with Δ ∼ a, the latter regime becomes
Bohm scaling, which requires a broader definition in
transport theory [21,25–27].
Lagrangian calculation of transport.—Since CGYRO is

an Eulerian code which self-consistently calculates the
time-evolution of distribution functions and turbulence
fields, the Lagrangian correlation which requires tracking
of the particles cannot be simultaneously calculated. Hence,
to obtain the Lagrangian correlation of turbulence, we
developed a Lagrangian Gyrocenter Tracking code (LGT1).
In this code, test particles are launched into the time-
varying saturated turbulence, which is precalculated by
CGYRO using direct gyrokinetic simulation. Lagrange’s
equations of motion [28–31] adapted to the flux-tube
configuration are solved in the field-aligned coordinates
ðr; θ; αÞ (radial, poloidal, and binormal) to obtain the test-
particle gyrocenter orbits in 3D toroidal tokamak geometry
identical to that in CGYRO. These particles experience the
evolving turbulent field δϕ (electrostatic). An initial dis-
tribution of particle energy is produced by a Maxwellian
with average velocity given by the thermal velocity of the
species VTa. The initial radial and binormal particle
coordinates are randomly chosen inside the simulation
box used by CGYRO. Also, the initial poloidal location is
chosen randomly from the whole domain ½−π; πÞ.
The Lagrangian correlation is calculated by tracing of the

gyrocenters LðtÞ ¼ hδVE
r ðtÞδVE

r ð0Þi, where δVE
r ¼ δVE·

∇r, δVEðtÞ is the E × B velocity of a particle along

its orbit at time t, and h� � �i denotes an ensemble average.
We implicitly assume that the saturated turbulence is
stationary in time, meaning that the Eulerian correlation of
turbulent fields does not separately depend on two times t,
t0 but only on the difference t − t0. Practically, ensemble
averaging is achieved by random launch positioning of
gyrocenters within the initial 3D space and by time
averaging along the particle orbits. To make sure the time
averaging effectively captures the turbulence evolution,
the turbulence fields used for the simulations evolve in a
span of T ∼Oð10 τCÞ. The Lagrangian diffusivity is then
defined as DL ¼ R

∞
0 L̄ðt0Þdt0, where L̄ðtÞ ¼ F ½LðtÞ�, ½� � ��

denotes averaging over the particle energy distribution,
and F denotes averaging over the flux surface.
To verify LGT1 calculations of the gyrocenter motions,

fluxes of particle and energy are calculated from the
ensemble of test particles and compared to the fluxes
correspondingly calculated by CGYRO. Importantly, we find
that the LGT1-calculated fluxes are in good agreement with
time-averaged CGYRO fluxes for both species (within
roughly 20% uncertainty). We use LGT1 to determine the
transport regime associated with the turbulence, i.e., QLTor
SMT scaling, or something in between. To determine the
scaling regime, we introduce a numerical scaling factor αV
such that δϕ → αVδϕ. Scanning αV above (below) unity
will raise (lower) the potential peaks and make the troughs
deeper (shallower). The particles experience the amplitude-
modified potential, while the rate of turbulence evolution
and τc stay the same. Hence, this test is essentially a
systematic scan of nonlinearity strength, whereas the Kubo
number’s timescale ratio is an approximate measure of
nonlinearity strength based on dimensional arguments. For
each scaling factor αV the average drift velocity of particles
is defined as V̄r ≡

ffiffiffiffiffiffiffiffiffiffi
L̄ð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ½hðδVE

r Þ2i�
p

. The log-log
plot of the Lagrangian diffusion coefficient (DL) in
gyroBohm units versus V̄r in units of cs=ρ� for ions, shown
in Fig. 2, is obtained by scanning αV . Two radial regions are
represented in two separate plots: the plasma core is
represented at radius r=a ¼ 0.6 in Fig. 2(a), and the plasma
edge is represented at radius r=a ¼ 0.95 in Fig. 2(b). The
reference point for the scans where αV ¼ 1 is shown with a
white diamond symbol. In each plot two distinct branches
are identified by their slope: the QLT branch and the SMT
branch. The dashed straight (in log-log) lines are Y ¼
cðV̄rÞκ depicting the asymptotic slopes with scaling expo-
nent κ at the extreme limits: κ ¼ 2 for the QLT branch and
κ ¼ 1 for the SMT branch. The core turbulence shown in
Fig. 2(a) is on the QLT branch. Therefore the QL theory is a
valid approximation for this turbulence and the nonlinear
fluxes depend approximately quadratically on V̄r (or
equivalently on δϕ). This result is consistent with the region
of agreement for the QL and NL fluxes observed in Fig. 1 in
the plasma core. In contrast, edge turbulence (r=a ¼ 0.95)
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is clearly on the SMT branch, and consequently the QL
theory is not a valid approximation.
We define a local scaling exponent,

κ1 ¼
d lnDL

d ln V̄r

����
αV¼1

; ð3Þ

which measures the local slope determined from curves
fitted to scans such as the ones in Fig. 2. For all the radial
points in Fig. 1, κ1 is evaluated and shown in Fig. 3(b). It
can be seen that κ1 decreases from the deep core to the edge.
In the deep core ðr=a ¼ 0.5; 0.6Þ, we find the turbulence to
be on the QLT branch (κ1 ∼ 1.7). In the core-edge boundary,
0.7 ≤ r=a ≤ 0.8, κ1 has intermediate values κ1 ∼ 1.5, for
which turbulence has departed from the QLT branch but is
still not on the SMT branch. In the edge, 0.9 ≤ r=a ≤ 0.95,
turbulence is on the SMT branch of transport and κ1 ∼ 1.1.
We also define a Kubo number using the calculated
potential on the outboard midplane: K≡ V τc=λ⊥;r, where
V ¼ cs

P
N
n¼1ðkyρsÞδϕ̂n;rmsðθ ¼ 0Þ=N, and rms represents

the root-mean-square time average of the potential

normalized to e=Te. τc is determined by the characteristic
width of the Eulerian autocorrelation function, and λ⊥;r is
the equal-time radial correlation length calculated from the
output of nonlinear CGRYO for the time averaged field. The
evaluated K shown in Fig. 3(a) increases from values below
1 in the core (K≲ 0.2) to much larger values in the edge
(K ∼ 1). This jump in K implies that the nonlinearity
strength increases in the edge beyond the validity of the
QL approximation. This is consistent with the observed
large under-prediction of Qi and Γ by the QL model in
Figs. 1(b) and 1(c). Comparing Figs. 3(a) and 3(b), it
appears that the transition to the SMT regime happens for
κ1 ∼ 1.4. However, a broader database study is needed
to more accurately determine the QLT-to-SMT transition
value for κ1.
Largrangian analysis for electrons.—In order to per-

form a similar analysis for electrons, collisions must be
included in the physics model. Especially in the edge
region, which is much higher in collisionality, ν� > 1,
effects of collisions are non-negligible for electrons. To
recreate the test particle component of the Fokker-Planck
collision operator employed in CGYRO [22,32] velocity
changes are given to the particles in the event of collisions,
which take place based on the Monte Carlo probability
function P ¼ 1 − expð−νaΔtÞ [33–35].
Performing the potential amplitude scan for electrons,

analogous to those in Fig. 2, we find that electron
turbulence is globally on the QLT branch, which is
consistent with the good agreement between QL and
NL Qe fluxes over the entire radial range as shown in
Fig. 1(a). This is especially interesting in the edge region
(r ≥ 0.9) for which we showed that ions are on the SMT
branch of turbulence. This bifurcation in transport regime
between the two species is essentially the result of small
electron mass. We explore the electron transport regime in
Fig. 4 for the edge (r=a ¼ 0.95) which shows the potential
amplitude scan of DL for electrons in three different

(a)

(b)

FIG. 3. (a) Kubo number K and (b) scaling exponent κ1 versus
the normalized minor radius.

(a)

(b)

FIG. 2. Lagrangian diffusivity DL versus average drift velocity
V̄r for ions, for (a) core turbulence (r=a ¼ 0.6) and (b) edge
turbulence (r=a ¼ 0.95). The reference point of the scan for
which αV ¼ 1 is shown with a white diamond symbol.
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settings: collisional, collisionless, and slow collisionless.
Straight black lines show the local scaling exponent
(slope κ1) at the reference point of the scan (αV ¼ 1)
which is shown with open symbols. The gray curve
interpolates each set of scan points with a test fitting
function, shown for the purpose of better distinguishing
the different scans. Diamond symbols show the scan for
collisional electrons with the thermal velocity vTe ≈ 61cs.
Turbulence is on the QLT branch with local power
κ1 ¼ 1.77. For the collisionless scan (square symbols)
we set the collision rate to zero in LGT1. Here, we find that
diffusivity has slightly departed from the QLT branch and
the local exponent is reduced to κ1 ¼ 1.53. This departure
shows that collisions have a decorrelating effect on the
electron trajectories such that their paths are randomized
by collisions before traversing their entire correlated
regions, similar to the effect of turbulence evolution.
Because of their fast motion, electrons can escape the

correlated region in the parallel direction before they
traverse the whole perpendicular correlated region by the
E × B drift. Therefore, the fast parallel motion also has a
decorrelating effect for the particle orbits. Transport scaling
in the absence of this parallel decorrelation is shown Fig. 4
(triangles) for the slow-collisionless scan: the electrons are
again collisionless, moreover, they have been slowed down
by reducing their thermal velocity VT ¼ 0.1VTe. Reduced
electron parallel velocity has eliminated the decorrelation
effect that is present for the collisonless electrons at VT ¼
VTe (squares). We find that the slow-collisionless electrons
(triangles) experience the turbulence on the SMT branch
with local exponent κ1 ¼ 1.15.
So far QL models have been proven to be reasonably

accurate and reliable for predicting the electrostatic tur-
bulent transport in the tokamak core. However, there has

been limited progress in improving these models for the
application to the complex region of the plasma edge. This
situation is due in part to our lack of understanding of the
complex nature of NL physics of turbulence. Breaking of
the validity of QL theory, as demonstrated in this Letter,
indicates that prediction of transport in the plasma edge
requires more advanced physics-based models, beyond the
strictly QL models. Specifically, by characterizing the
dependence of transport on the turbulence strength,
advanced models should be able to capture the transition
of ion transport to the SMT regime. This work provides the
necessary understanding and quantitative tools for devel-
oping such predictive transport models that go beyond the
QL theory.

The first author (A. A.) wishes to thank R. E. Waltz for
his encouragement and valuable discussions. This work
was supported by US DOE under Grants No. DE-FC02-
06ER54873 and No. DE-FG02-95ER54309.

This report was prepared as an account of work spon-
sored by an agency of the U.S. Government. Neither the
U.S. Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or other-
wise does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the U.S. Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the U.S. Government or any agency thereof.

*ashourvana@fusion.gat.com
[1] R. J. Groebner, K. H. Burrell, and R. P. Seraydarian, Phys.

Rev. Lett. 64, 3015 (1990).
[2] P. Gohil, T. C. Jernigan, T. H. Osborne, J. T. Scoville, and

E. J. Strait, Nucl. Fusion 50, 064011 (2010).
[3] J. Menard, B. Grierson, T. Brown, C. Rana, Y. Zhai1,

F. Poli, R. Maingi, W. Guttenfelder, and P. Snyder, Nucl.
Fusion 62, 036026 (2022).

[4] D. B. Weisberg et al., Fusion Sci. Technol. 79, 320 (2023).
[5] P. Rodriguez-Fernandez, A. Creely, M. Greenwald, D.

Brunner, S. Ballinger, C. Chrobak, D. Garnier, R. Granetz,
Z. Hartwig, and N. Howard, Nucl. Fusion 62, 042003
(2022).

[6] P. Schneider et al., Nucl. Fusion 62, 026014 (2022).
[7] C. Chrystal, B. Grierson, S. Haskey, A. Sontag, F. Poli, M.

Shafer, and J. deGrassie, Nucl. Fusion 60, 036003 (2022).
[8] J. Weiland, Stability and Transport in Magnetic Confine-

ment Systems (Springer, New York, 2012).
[9] H. Biglari, P. H. Diamond, and P.W. Terry, Phys. Fluids B:

Plasma Phys. 2, 1 (1990).

FIG. 4. Lagrangian diffusivity for electrons versus average
drift velocity at r=a ¼ 0.95. Decrease in the scaling exponent κ1
(slope of solid lines) at the reference velocity of the scan
(open symbols, αV ¼ 1) shows the transition from the QLT to
SMT branch of turbulence by going from collisional to slow-
collisionless electrons.

PHYSICAL REVIEW LETTERS 132, 205101 (2024)

205101-5

https://doi.org/10.1103/PhysRevLett.64.3015
https://doi.org/10.1103/PhysRevLett.64.3015
https://doi.org/10.1088/0029-5515/50/6/064011
https://doi.org/10.1088/1741-4326/ac49aa
https://doi.org/10.1088/1741-4326/ac49aa
https://doi.org/10.1080/15361055.2022.2149210
https://doi.org/10.1088/1741-4326/ac1654
https://doi.org/10.1088/1741-4326/ac1654
https://doi.org/10.1088/1741-4326/ac3e82
https://doi.org/10.1088/1741-4326/ab6434 
https://doi.org/10.1063/1.859529
https://doi.org/10.1063/1.859529


[10] G. M. Staebler, R. E. Waltz, J. Candy, and J. E. Kinsey,
Phys. Rev. Lett. 110, 055003 (2013).

[11] G. M. Staebler, J. Candy, N. T. Howard, and C. Holland,
Phys. Plasmas 23, 062518 (2016).

[12] G. M. Staebler, E. A. Belli, J. Candy, J. E. Kinsey, H.
Dudding, and B. Patel, Plasma Phys. Contr. Fusion 61,
116007 (2021).

[13] J. Citrin, C. Bourdelle, F. J. Casson, C. Angioni, N.
Bonanomi, Y. Camenen, X. Garbet, L. Garzotti, T.
Görler, O. Gürcan, F. Koechl, F. Imbeaux, O. Linder, K.
van de Plassche, P. Strand, G. Szepesi, and J. Contributors,
Plasma Phys. Contr. Fusion 59, 124005 (2017).

[14] G. M. Staebler, J. Candy, E. A. Belli, J. E. Kinsey, N.
Bonanomi, and B. Patel, Plasma Phys. Contr. Fusion 63,
015013 (2021).

[15] C. Bourdelle, X. Garbet, F. Imbeaux, A. Casati, N. Dubuit,
R. Guirlet, and T. Parisot, Phys. Plasmas 14, 112501
(2007).

[16] R. E. Waltz, A. Casati, and G. M. Staebler, Phys. Plasmas
16, 072303 (2009).

[17] J. Candy and R. Waltz, J. Comput. Phys. 186, 545
(2003).

[18] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud,
N. Crouseilles, G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X.
Garbet, P. Ghendrih, G. Latu, M. Mehrenberger, C. Norscini,
C. Passeron, F. Rozar, Y. Sarazin, E. Sonnendrücker, A.
Strugarek, and D. Zarzoso, Comput. Phys. Commun. 207, 35
(2016).

[19] C. Gillot, G. Dif-Pradalier, Y. Sarazin, C. Bourdelle, A. B.
Navarro, Y. Camenen, J. Citrin, A. D. Siena, X. Garbet, P.
Ghendrih, V. Grandgirard, P. Manas, and F. Widmer, Plasma
Phys. Contr. Fusion 65, 055012 (2023).

[20] Correlated range is the scale describing the width the equal-
time Eulerian correlation function, beyond which the
correlation function is small.

[21] R. Balescu, Aspects of Anomalous Transport in Plasmas
(Institute of Physics Publishing, Bristol and Philadelphia,
2005), Chap. 6,14.

[22] J. Candy, E. Belli, and R. Bravenec, J. Comp. Physiol. 324,
73 (2016).

[23] J. Misguich, J. Reuss, M. Vlad, and F. Spineanu, Physicalia
Mag. 20, 103 (1998).

[24] M. Ottaviani, Physicalia Mag. 20, 95 (1998).
[25] T. Dupree, Phys. Fluids 10, 1049 (1968).
[26] R. E. Waltz, J. C. DeBoo, and M. N. Rosenbluth, Phys. Rev.

Lett. 65, 2390 (1990).
[27] J. M. Dawson, H. Okuda, and R. N. Carlile, Phys. Rev. Lett.

27, 491 (1971).
[28] R. G. Littlejohn, Phys. Fluids 28, 2015 (1985).
[29] T. S. Hahm, Phys. Fluids 31, 2670 (1988).
[30] S. Ku, C. S. Chang, R. Hager, R. M. Churchill, G. R. Tynan,

I. Cziegler, M. Greenwald, J. Hughes, S. E. Parker, M. F.
Adams, E. D’Azevedo, and P. Worley, Phys. Plasmas 25,
056107 (2018).

[31] R. Hager, C. S. Chang, N. M. Ferraro, and R. Nazikian,
Phys. Plasmas 27, 062301 (2020).

[32] E. Belli and J. Candy, Plasma Phys. Contr. Fusion 54,
015015 (2012).

[33] C. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991).
[34] P. Helander and D. J. Sigmar, Collisional Transport

in Magnetized Plasmas (Cambridge University Press,
Cambridge, 2002), Chap. 3, p. 35.

[35] E. A. Belli and J. Candy, Plasma Phys. Contr. Fusion 54,
015015 (2012).

PHYSICAL REVIEW LETTERS 132, 205101 (2024)

205101-6

https://doi.org/10.1103/PhysRevLett.110.055003
https://doi.org/10.1063/1.4954905
https://doi.org/10.1088/1741-4326/ac243a
https://doi.org/10.1088/1741-4326/ac243a
https://doi.org/10.1088/1361-6587/aa8aeb
https://doi.org/10.1088/1361-6587/abc861
https://doi.org/10.1088/1361-6587/abc861
https://doi.org/10.1063/1.2800869
https://doi.org/10.1063/1.2800869
https://doi.org/10.1063/1.3167391
https://doi.org/10.1063/1.3167391
https://doi.org/10.1016/S0021-9991(03)00079-2
https://doi.org/10.1016/S0021-9991(03)00079-2
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1088/1361-6587/acc276
https://doi.org/10.1088/1361-6587/acc276
https://doi.org/10.1016/j.jcp.2016.07.039
https://doi.org/10.1016/j.jcp.2016.07.039
https://doi.org/10.1063/1.1762220
https://doi.org/10.1103/PhysRevLett.65.2390
https://doi.org/10.1103/PhysRevLett.65.2390
https://doi.org/10.1103/PhysRevLett.27.491
https://doi.org/10.1103/PhysRevLett.27.491
https://doi.org/10.1063/1.865379
https://doi.org/10.1063/1.866544
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5144445
https://doi.org/10.1088/0741-3335/54/1/015015
https://doi.org/10.1088/0741-3335/54/1/015015
https://doi.org/10.1109/27.106800
https://doi.org/10.1088/0741-3335/54/1/015015
https://doi.org/10.1088/0741-3335/54/1/015015

