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We derive analytically for the first time the downstream evolution of the boundary layer thickness and
the friction velocity of the zero-pressure-gradient turbulent boundary layer (ZPGTBL). Lie groups were
used to derive the downstream evolution and to obtain the full set of the similarity variables and the leading-
order similarity equations. An approximate leading-order solution was obtained using matched asymptotic
expansions. The similarities and differences between ZPGTBL and turbulent channel flows in terms of the
similarity equations are discussed to support the notion of leading-order universality of the near-wall layer.
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Introduction.—The zero-pressure-gradient turbulent
boundary layer (ZPGTBL) is one of the most important
flows to understand the physics of turbulence, and has been
studied extensively (e.g., [1–12]). Essential to the under-
standing of a boundary layer is its similarity solution. The
zero-pressure-gradient laminar boundary layer (the Blasius
boundary layer, [13]) has the well-known similarity sol-
ution, a key part of which is the downstream evolution of
the boundary layer thickness and the surface stress.
Over the past decades there have been many efforts

devoted to finding a similarity solution of ZPGTBL.
Tennekes and Lumley [14] derived a leading-order mean
momentum similarity equation. Mellor [15] obtained the
log law. However, prediction of the boundary layer thick-
ness and the wall shear stress, without which the similarity
variables cannot be fully defined, has proven to be much
more challenging and has not been made successfully.
Tennekes and Lumley [14] used the boundary layer thick-
nessΔ defined by [5] using an integral quantity, not derived
from the boundary layer parameters, as done for the Blasius
boundary layer. Its downstream evolution and the friction
velocity were not predicted. A Lie group analysis was
performed in [16] to find a linear growth of the boundary
layer thickness, which is inconsistent with experimental
evidence (e.g., [17]). The same definition of Δ as [14] was
used in [18], but did not provide an expression for it. The
analysis in [19] attempted to obtain a similarity solution
using the Reynolds-averaged boundary layer equations
without the viscous terms. However, as we show in this
work, their equations do not have a valid similarity
solution.
In this work we derive analytically for the first time the

evolution of the boundary layer thickness, δ, whose
definition is not predetermined and will come from the
analysis, the evolution of the friction velocity, the full set of
similarity variables, and the ordinary differential (similar-
ity) equations. We will perform a symmetry analysis of the
Reynolds-averaged boundary layer equations and then

employ the method of matched asymptotic expansions to
obtain an approximate solution.
Parallel to the research on ZPGTBL, there also has been

much effort to investigate turbulent channel and pipe flows,
which are amenable to more rigorous asymptotic analysis
(e.g., [20,21]). The near-wall (or inner) layers of these
flows are widely believed to have much in common, i.e., the
near-wall layers are universal. There is also evidence
against universality (e.g., [10,17,22]). However, there have
been essentially no theoretical analyses on the similarities
and differences between these flows. The present work will
also help shed some light on the important issue of the
universality of the near-wall layers.
Symmetry analysis.—One of the symmetries of the

Navier-Stokes equations is invariance under a one-param-
eter Lie dilation group (e.g., [23,24]). A key requirement
for this invariance is a fixed Reynolds number. However, it
has long been recognized that energy-containing statistics
in turbulent flows at high Reynolds numbers are approx-
imately Reynolds number invariant. This approximate
invariance is associated with spontaneous breaking of
the symmetries of the Navier-Stokes equations from
laminar to turbulent flows. Therefore, while the symmetries
of laminar flows are exact, the symmetries of turbulent
flows are only approximate. The concept of spontaneous
symmetry breaking and approximate symmetry first
emerged in condensed matter physics and later were key
to predicting certain nonzero mass particles in Yang-Mills
gauge fields ([25–27]). In the present work, we seek the
leading-order symmetries and similarity properties of
ZPGTBL. Therefore, Reynolds number invariance of
energy-containing statistics is the only physical assumption
used.
We use Lie dilation groups to analyze the leading-order

symmetries (group transformation properties) of the
ZPGTBL equations: the mean momentum equation, the
Reynolds stress budget, and the mean continuity equation.
The groups will be used to derive the evolution of the
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boundary layer thickness and the Reynolds shear stress and
to obtain the similarity variables.
To obtain the leading-order symmetries, we recognize

that at high Reynolds numbers the outer layer is approx-
imately Reynolds number independent and whereas the
inner layer depends on the viscosity. Therefore, we need to
derive the leading-order equations for the two layers and
analyze their symmetries separately.
Outer layer symmetry.—For the outer layer, the leading-

order symmetries (or the symmetries of the leading-order
equations) need to be obtained with the Reynolds-number-
dependent terms dropped. These symmetries are similar in
nature to the approximate symmetries previously inves-
tigated (e.g., [28]). It is easily shown that by dropping the
viscous term in the mean momentum equation, as done by
[19], the group leads to a boundary layer thickness δ ∝ x
and uv ¼ const, inconsistent with the behaviors of
ZPGTBL. The reason is that there are other higher-order
terms in the equations that do not contain the viscosity, but
are implicitly Reynolds-number dependent. They also need
to be identified and dropped.
To identify the higher-order terms, we perform an order

of magnitude analysis of the equations. We first consider
the scaling of the velocity defect U −Ue ∼Ue proposed in
[19], whereU andUe are the mean streamwise velocity and
the free-stream velocity respectively. With this scaling, the
shear production of the turbulent kinetic energy (TKE)
would scale as −uvð∂U=∂yÞ ∼ u2�Ue=δ, where y is the wall-
normal direction (x and z are the streamwise and spanwise
directions, respectively, and u, v, and w are the correspond-
ing velocity fluctuations, respectively, hereafter). Since

shear production is the only production mechanism, the
TKE would scale as k ∼ U2

e. The dissipation would scale as
k3=2=δ ∼ U3

e=δ ([29], based on Reynolds number invari-
ance), asymptotically larger than the production, indicating
that the scaling U −Ue ∼Ue is inconsistent with the
scaling of the dissipation. Furthermore, it can be easily
seen that only U −Ue ∼ u� (and ∂U=∂y ∼ u�=δ) will result
in the same scaling for the dissipation and the shear
production.
With U −Ue ∼ u�, we perform an order of magnitude

analysis [30] to identify the leading-order terms in the
equations, which are Reynolds number invariant. The
leading-order mean momentum equation is

Ue∂xU ¼ −∂yuv: ð1Þ

Similarly, we obtain the leading-order shear stress budget
and TKE budget,

Ue∂xuv ¼ −ðu∂ypþ v∂xpÞ − v2∂yU; ð2Þ

Ue∂xk¼−uv∂yU− ∂ypv− ∂yðu2þv2þw2Þv=2− ϵ: ð3Þ

The velocity-pressure gradient term in the shear stress
budget scales the same as production. The pressure trans-
port and turbulent transport terms in the TKE budget scale
the same as production. Therefore, they should dilate in the
same way as the production terms. The finite form of the
dilation group is

x̃ ¼ eax; ỹ ¼ eby; Ũ ¼ U; Ũ − Ue ¼ egðU −UeÞ;
∂Ũ ¼ eg∂U; Ṽ ¼ ecV; ũv ¼ ed2uv;

˜
u2 ¼ ed1u2;

˜
v2 ¼ ed1v2; ð4Þ

where a, b, etc., are the group parameters. For the equations
to be invariant the exponents must satisfy g − a ¼ d2 − b,
d2 − a ¼ d1 þ g − b, and d1−a¼d2þg−b¼3d1=2−b,
respectively, leading to d2 ¼ d1 ¼ 2b − 2a and
g ¼ b − a, and hence a two-parameter dilation group.
To obtain a one-parameter group an additional relation-

ship is needed. In principle, it can be obtained by
asymptotically matching the outer and inner layers.
Here, we instead use an ansatz, the logarithmic friction
law. We will show later that the group does indeed lead to
the logarithmic friction law. The friction law dilates as

Ue

u�eg
¼ 1

κ
ln
u�δegþb

ν
þD ¼ 1

κ

�
ln
u�δ
ν

þ gþ b

�
þD: ð5Þ

Note that δ as a function of x is not yet known, and
therefore is not fully defined. Since (5) is invariant under

the dilation group, we have

Ue

u�
¼ eg

�
1

κ

�
ln
u�δ
ν

þ gþ b

�
þD

�
¼ 1

κ
ln
u�δ
ν

þD: ð6Þ

Therefore,

ðeg − 1Þ
�
1

κ
ln
u�δ
ν

þD

�
¼ ðeg − 1ÞUe

u�
¼ −

gþ b
κ

eg: ð7Þ

This equation provides an implicit relationship between g
and b. Rather than directly solving (7) we examine
infinitesimal forms of the group with exponents dg, da,
db, etc. Taylor expanding the second and third terms in (7)
and keeping the leading-order terms we have

dg
Ue

u�
¼ −

dgþ db
κ

or dg ¼ −db
κ Ue

u�
þ 1

¼ −da
κ Ue

u�
þ 2

: ð8Þ
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From the continuity equation, we have dg − da ¼ dc − db,
dc ¼ 2dg. We obtain a one-parameter group

x̃¼edax; ỹ¼edby; Ũ−Ue¼edgðU−UeÞ; Ṽ¼e2dgV;

fuv¼e2dguv;
e
u2¼e2dgu2;

e
v2¼e2dgv2; eu�¼edgu�: ð9Þ

Note that δ dilates in the same way as y. From (9) we obtain
the characteristic equations of the group

du�
u�

¼ −
dy

yðκ Ue
u�
þ 1Þ ¼ −

dδ

δðκ Ue
u�
þ 1Þ ¼ −

dx

xðκ Ue
u�
þ 2Þ

¼ dðU −UeÞ
U −Ue

¼ dV
2V

: ð10Þ

From the first and fourth terms we obtain (without the
dimensional integration constant) x ∼ u−2� eκUe=u� . Its non-
dimensional form is

Uex=ν ¼ Rex ∼ ðU2
e=u2�ÞeκUe=u� : ð11Þ

Similarly, we obtain δ ∼ u−1� eκUe=u� , V ∼ u2�. The nondi-
mensional form of δ is

Ueδ=ν ¼ Reδ ∼ ðUe=u�ÞeκUe=u� : ð12Þ

Equations (11) and (12) are functions of Ue=u�, which can
be used as a parameter to obtain the dependence of δ on x.
These are the central results of the present work and to our
best knowledge, are the first analytic derivation of the
downstream evolution of the friction velocity and the
boundary layer thickness.
The first and last two terms in (10) result in U − Ue ∼ u�

and V ∼ u2�. Nondimensionalizing the variables using x, u�,
and Ue, we obtain for the first time the full set of the
similarity variables for the outer layer Uo ¼ ðU −UeÞ=u�,
Vo ¼ VUe=u2�, yo ¼ yUe=ðxu�Þ, uvo ¼ uv=u2�, u2o ¼
u2=u2� and v2o ¼ v2=u2�. Here yo is defined using the
boundary layer parameters (x, Ue, and u�), in a similar
way to the Blasius boundary layer.
Inner layer symmetry.—We now perform a Lie group

analysis of the leading-order inner equations. The leading-
order mean momentum equation is [14]

0 ¼ −∂yuvþ ν∂2yU: ð13Þ

The dilation group is ỹ ¼ eby, Ũ ¼ egU, fuv ¼ e2guv. The
transformation for uv is identical to the outer layer because
it scales with u2� in both layers. For (13) to be invariant, the
exponents must satisfy 2g − b ¼ g − 2b, b ¼ −g. From the
continuity equation, we have g − a ¼ c − b, c ¼ −a.
These group parameters are also consistent with the dilation
properties of the Reynolds shear stress and TKE budgets.
The group now is

x̃¼eax; ỹ¼e−gy; Ũ¼egU; Ṽ¼e−aV; fuv¼e2guv;

ð14Þ

where a and g are related by (7). The characteristic
equations for the group are

du�
u�

¼ −
dy
y

¼ −
dx

xðκ Ue
u�
þ 2Þ ¼

dV

Vðκ Ue
u�
þ 2Þ : ð15Þ

The first two terms result in u� ∼ y−1. The last two terms
lead to V ∼ x−1. We obtain the similarity variables for the
inner layer Ui ¼ U=u�, Vi ¼ Vx=ν, yi ¼ yu�=ν ¼ yþ,
uvi ¼ uv=u2�:u2i ¼ u2u2�, v2i ¼ v2u2�, where Vi has not been
properly defined previously in the literature.
Approximate solution using matched asymptotic

expansions.—In a typical Lie group analysis, after the
symmetries are identified and the similarity variables are
obtained, the similarity equations are derived and their
solution is sought. In the case of turbulent flows, the
similarity equations are unclosed and cannot be solved
without a turbulence model. However, matching the outer
and inner asymptotic expansions effectively closes the
equations, allowing us to obtain an approximate solution
without a turbulence model.
We write the outer layer similarity variables as asymp-

totic expansions

Uoðyo;Re�Þ ¼ Uo1ðyoÞ þ higher-order terms;

uvoðyo;Re�Þ ¼ uvo1ðyoÞ þ higher-order terms; ð16Þ

where the similarity variables, Uo1, etc. are of order 1.
Substituting (16) into the mean momentum equation, we
obtain the leading-order similarity equation for Uo

−yodyoUo1 ¼ −dyouvo1; ð17Þ

which is identical to that obtained by [14]. However, their
definition of yo is different. Similarly, the leading-order
shear-stress budget is

−yodyouvo1 ¼ −ðu∂ypþ v∂xpÞo − v2odyoUo1: ð18Þ

Since the outer expansions are not valid in the viscous
region (the inner layer), inner expansions are also needed.
The inner similarity variables depend on yþ and Re�. We

write them as asymptotic expansions,

Uiðyþ;Re�Þ ¼ Ui1ðyþÞ þ higher-order terms;

uviðyþ;Re�Þ ¼ uvi1ðyþÞ þ higher-order terms: ð19Þ

We obtain the leading-order inner similarity equations
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0 ¼ −dyþuvi þ d2yþUi;

0 ¼ −ðu∂ypþ v∂xpÞi − v2i dyþUi1 þ d2yþuvi1: ð20Þ

We now asymptotically match the outer and inner
expansions

U ¼ Ue þ u�Uo ¼ Ue þ u�Uo1ðyoÞ þ…;

U ¼ u�Ui ¼ u�Ui1ðyþÞ þ…:; ð21Þ

for yo ≪ 1 and yþ ≫ 1, resulting the log law (see, e.g., [31]
for details)

Uo11 ¼
1

κ
ln yo þ C; Ui11 ¼

1

κ
ln yþ þ B; ð22Þ

where Uo11 and Ui11 are the leading-order expansions of
Uo1 andUi1, respectively. Inserting (22) into (21) we obtain
the dimensional outer and inner expansion as

U¼Ueþu�

�
1

κ
lnyoþCþ���

�
; U¼u�

�
1

κ
lnyþþBþ���

�
:

ð23Þ

From (23) we obtain the logarithmic friction law

Ue

u�
¼ 1

κ
ln
yþ

yo
þ B − C ¼ 1

κ
ln

u2�x
Ueν

þ B − C: ð24Þ

Using (11)–(12) we have δ ∼ xu�=Ue. The friction law
can then be written as (5), confirming the ansatz used above
to obtain the outer layer symmetry is indeed part of the
unique solution of the leading-order equations. Similarly,
we obtain the matching results for the leading-order
Reynolds shear stress as uv ¼ u2�ð−1þ y0=κÞ. One can
also write down the expansions for the velocity-pressure–
gradient terms and obtain matching results (not done here).
With (11)–(12) and the fully defined similarity variables,
(22) and uv ¼ u2�ð−1þ y0=κÞ satisfy (1) to the leading
order, verifying them [and (5) and (24)] as part of the
unique similarity solution of the ZPGTBL equations.
The solution also provide the downstream variations of
the mean velocity and shear stress profiles, which pre-
viously were not available.
We nowmake preliminary comparisons of the theoretical

prediction (11) and (12) of the nondimensional velocity
Ue=u� (equivalent to the surface shear stress) and the
nondimensional outer layer thickness Reδ ¼ Ueδ99=ν (both
as functions of the nondimensional downstream distance
Rex ¼ Uex=ν) with the experimental data of [17] (the SP40
configuration). The measured values of Ue=u� are used as
the parameter to obtain the theoretical values of Rex and
Reδ. The theoretical prediction contains several nondimen-
sional coefficients that need to be obtained using exper-
imental data: The von Kármán constant κ ¼ 0.420 and the

nondimensional coefficient for δ99 are obtained by fitting
(12) to the experimental data; The virtual origin of x ¼
−1.744 m and the nondimensional coefficient for Rex are
then obtained by fitting (11) to the data. In particular, the
values ofUe=u� and δ99 at x ¼ 1.6 m are used to determine
the nondimensional coefficients. The kinematic viscosity is
taken as the value in [17], ν ¼ 15.1 × 10−6 m=s2. The
results are

Rex¼0.06024
U2

e

u2�
eκUe=u� ; Reδ¼0.02204

Ue

u�
eκUe=u� : ð25Þ

We then have δ99 ¼ 0.3659xu�=Ue, yo ¼ 0.3659y=δ99.
Figures 1 and 2 show that with these coefficients, the

analytic prediction, especially the functional forms, has an
excellent agreement with the experiments. However, κ ¼
0.420 obtained here based on the boundary layer thickness
and the friction velocity, which are global behaviors, is
quite different from 0.384 obtained in the same experiment
and by [10] using the mean velocity profile, a local

FIG. 1. Ue=u� vs the nondimensional downstream distance
Rex ¼ Uex=ν. Circles: experimental data from Marusic [17] (the
SP40 configuration); solid line: theoretical prediction of Eq. (25).

FIG. 2. Nondimensional boundary layer thickness Reδ ¼
Ueδ=ν vs Rex. Legend: same as in Fig. 1.

PHYSICAL REVIEW LETTERS 132, 204001 (2024)

204001-4



behavior, but is much closer to that of [32] (0.40) and the
typical value of 0.421 in pipe flows ([22,33]). We empha-
size that these are preliminary comparisons with a single
experiment. It is therefore unclear whether the different
values are a coincidence or an indication of the differences
in the two ways of estimating the von Kármán. This issue
requires further attention in future studies.
Universality of near-wall layer.—The leading-order

equations allow us to compare ZPGTBL with channel
flows to examine the key question of near-wall universality.
In the inner layer the mean momentum equation is
dominated by the Reynolds stress and viscous stress terms
[ [21] and Eq. (20)] in both flows. The Reynolds shear
stress budgets also have similar properties in both flows,
being dominated by the production, pressure, and viscous
terms [ [34] and Eq. (20)] (the similarity variables are also
defined in the sameway), indicating that the two flows have
the same leading-order structure.
This issue can be further examined using the outer

equations. In channel flows, the Reynolds shear stress
budget is a balance between shear production and velocity-
gradient–pressure interaction ([34]). The mean velocity
gradient is “adjusted” to balance the Reynolds stress
budget. The leading-order mean momentum equation is
a balance between the shear stress derivative and the mean
pressure gradient ([21]), with the latter imposing the linear
variation of the leading-order (linear) variation of the
Reynolds shear stress.
In ZPGTBL the Reynolds shear stress balance [Eq. (18)]

is among the mean advection, production, and velocity
gradient-pressure interaction. However, in the log layer
(yo ≪ 1), the advection term is of higher order. Therefore
the balance in the log layer is asymptotically identical to
that in channel flows. While the mean momentum balance
(17) is between the mean advection and the shear stress
derivative, the log law ensures the leading-order (linear)
variation of the Reynolds shear stress. Therefore, from the
perspective of both the inner and outer equations, the
leading-order near-wall structure of channel flows and
ZPGTBL are the identical, supporting the notion of
universality of the leading-order near-wall turbulence.
The differences observed in experiments are potentially
due to higher-order effects, which deserve further attention.
Conclusions.—We performed a symmetry analysis of

the equations for ZPGTBL using Lie dilation groups, and
obtained local, leading-order symmetries of the equations.
We derived for the first time the evolution of the boundary
layer thickness and the shear stress, and the full set of
similarity variables. Using the asymptotic expansions the
leading-order similarity equations for the outer and inner
layers were obtained. Matching the expansions resulted in
an approximate similarity solution in the overlapping
layer, the log law. The leading-order equations for
both the channel flows and ZPGTBL show similar

properties in the near wall layer, supporting the notion
of its universality.
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