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Non-Hermitian systems can exhibit unique quantum phases without any Hermitian counterparts. For
example, the latest theoretical studies predict a new surprising phenomenon that bulk bands can localize
and dissipate prominently at the system boundary, which is dubbed the non-Hermitian edge burst effect.
Here we realize a one-dimensional non-Hermitian Su-Schrieffer-Heeger lattice with bulk translation
symmetry implemented with a photonic quantum walk. Employing time-resolved single-photon detection
to characterize the chiral motion and boundary localization of bulk bands, we determine experimentally that
the dynamics underlying the non-Hermitian edge burst effect is due to the interplay of non-Hermitian skin
effect and imaginary band gap closing. This new non-Hermitian physical effect deepens our understanding
of quantum dynamics in open quantum systems.
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Introduction.—Non-Hermitian physics provides an effi-
cient and intuitive description of open quantum systems
with dissipation, revealing many intriguing phenomena
beyond the Hermitian scenario [1–49]. The seminal non-
Hermitian skin effect (NHSE) showcases the bulk band
localization towards the boundary [8–12], which general-
izes the bulk-boundary correspondence as a fundamental
principle of topological quantum phases [8,15,17]. NHSE
has been a focused topic of contemporary research both
experimentally and theoretically [8–12,14–19,21–27,29,30,
32–38,40–43,45], unveiling many exotic statistical and
dynamical properties when interplaying with other mecha-
nisms. Regarding dissipation as a defining property of open
quantum systems, NHSE, in synergy with imaginary band
gap closing, generates a surprising result by predicting the
prominent dissipation of bulk band at the boundary, which is
dubbed the non-Hermitian edge burst effect (NHEBE) [44].
While NHEBE was originally predicted in an open
system with spatially homogeneous loss, it turns out that
a system with spatially inhomogeneous loss can also host
NHEBE [48], suggesting that NHEBE may widely exist.
Along with the rapid theoretical advance, here we report

the experimental realization of NHEBE in a Su-Schrieffer-
Heeger (SSH) lattice. The lattice is implemented with
photonic quantum walk in the time domain [26,39,45–47,
50–53], possessing spatially homogeneous dissipation.
By employing the time-resolved single-photon detection
to detect the dissipation of photon pulse from each unit cell,
we observe the chiral motion and bulk-band localization

towards the boundary in situ and determine experimentally
the underlying mechanism responsible for the birth of
NHEBE for the lattice under study.
The 1D non-Hermitian Floquet SSH model.—We con-

sider a one-dimensional lattice of size N with each cell
containing two sites A and B and denote the state at each
site respectively as jn; Ai and jn; Biwith n ¼ 1; 2;…; N, as
sketched in Fig. 1(a). We consider three types of elementary
dynamical processes which are intracell hopping between
jn; Ai and jn; Bi characterized by the operator U1, intercell
hopping between jn; Bi and jnþ 1; Ai described by the
hopping operator U2, and dissipation Γ on the super-
position state jn;−i at a rate of e−γ with jn;�i ¼
ðjn; Ai � jn; BiÞ= ffiffiffi

2
p

. The intercell hopping operator com-

prises operator RðtÞ ¼ ½
ffiffiffiffiffiffi
1−t

p
−

ffiffi
t

p
ffiffi
t

pffiffiffiffiffiffi
1−t

p � and the stagger operator
S ¼ P ðjn − 1; Aihn; Aj þ jn; Bihn; BjÞ. Hence the trans-
port behavior on the SSH lattice is governed by the Floquet
operator,

F ¼ U2U1Γ ð1Þ
where

Γ ¼ Iex ⊗ ðjþihþj þ e−γj−ih−jÞ;
U1 ¼ Iex ⊗ Rðt1Þ;

U2 ¼ S−1
"XN−1

n¼1

jnihnj ⊗ Rðt2Þ þ jNihNj ⊗ Iin

#
S; ð2Þ
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with Iin the identity operator acting on the internal degree-
of-freedom (within the unit cell), Iex ¼

P
N
n¼1 jnihnj the

N × N identity operator of the external degree-of-freedom
(between unit cells), and t1 (t2) the intra- (inter-) cell
hopping parameter.
Since an initial state prepared inside the bulk is insensi-

tive to boundary conditions before it evolves to the boun-
dary of the system, one may gain intuition of NHEBE by
examining the system under the periodic boundary con-
dition (PBC). Replacing Iin in Eq. (2) withRðt2Þ and setting
jN; ·i ¼ j0; ·i to satisfy PBC, we calculate the quasiener-
gies ϵ of the effective Hamiltonian HPBC ¼ i lnF PBC,
where FPBC is the respective Floquet operator. Some
remarks are in order. (i) FPBC has a conjugated particle-
hole symmetry supporting nontrivial 1D topological proper-
ties [54]. (ii) For γ ≠ 0, the PBC quasi-spectrum encloses a
finite area in the complex quasienergy plane [see Fig. 1(b)],
indicating the emergence of NHSE of the system under

open boundary condition (OBC) [21,24,28]. The numerical
study shows that NHSE is most significant at t1 ≈ 0.13
where the inverse localization length κ of OBC skin
eigenstates maximizes [red smooth line in the inset of
Fig. 1(b)]. (iii) The imaginary quasienergy gap Max½ImðϵÞ�
[blue smooth line in the inset of Fig. 1(b)] remains small
for t1 < t2 and closes at t1 ¼ t2. The imaginary gap closing
is associated with a topological phase transition of the
Hermitian counterpart of our model (see Supplemental
Material [54]). The imaginary gap closing of the PBC
quasispectrum implies the lossless propagation of state
toward the accumulating direction of NHSE. Accordingly,
a state with a small dissipation rate in the bulk of a finite
system may reach the boundary before it is completely
dissipated during the evolution, resulting in NHEBE.
Hence, the interplay of NHSE and imaginary gap closing
shall lead to the emergence of NHEBE in the system under
study [44].
Experimental realization of NHEBE.—The experimental

schematic to realize the Floquet-SSH model employing
quantum walk in the time domain is depicted in Fig. 2. We
recycle a single-photon pulse (walker) in an optical loop,
where the unit cell of the lattice is the time-bin (8 ns)
containing the photon pulse and the lattice constant
(τa ¼ 44 ns) is the time difference between photons tra-
versing the long and short arms of the Mach-Zehnder
interferometer (MZI). Site A (B) in the unit cell corresponds
to the horizontal (vertical) polarization state jHi (jVi). The
walker completes one-step time evolution in the lattice as
the photon pulse completes a cycle within τcð¼ 9550 nsÞ.
We create a one-dimensional lattice of size Nð¼ 17Þ
by packing N time bins with Nτa < τc. We note that a
single-photon wave function self-interferes when tunneling
between adjacent lattice sites, manifesting the quantum
effect.
Our experimental setup shares similarities with previous

experiments [26,39,45–47,50–53], but there are distinct
differences. As shown in Fig. 2(a) and illustrated in Fig. 2(b),
we introduce dissipation to the superposition state jn;−i ¼
ðjn; Ai − jn; BiÞ= ffiffiffi

2
p

by passing the photon pulse through a
customized polarizing beam splitter (CPBS), which trans-
mits photons in state jþi with unity probability and reflects
photons in state j−i with a probability of ð1 − e−2γÞ. In
order to realize the intercell hopping U2, we implement the
stagger operator S (S−1) by letting photons in state jHi step
forward (backward) by one time bin using the first (second)
MZI and implement the rotation Rðt2Þ by passing photons
through an electro-optical-modulator (EOM) and an HWP
between the two MZIs. We implement the intracell hopping
U1 by passing the photon pulse through a pair of half-wave
plates (HWP). Different from previous experiments, we
generate the OBC by controlling the time sequence of
the EOM such that Rðt2Þ only acts on (N − 1) cells of the
lattice, hence defining the first and last unit cells of the
lattice (see Supplemental Material [54]).

FIG. 1. The non-Hermitian SSH lattice model. (a) We draw the
non-Hermitian SSH lattice model as two sublattices with the
nearest neighbor coupling U1 and U2. The dissipation Γ occurs
only via the superposition state jn;−i ¼ ðjn; Ai − jn; BiÞ= ffiffiffi

2
p

.
Then we can describe the single particle transport in this lattice by
the Floquet operator F ¼ U2U1Γ. (b) The respective energy
spectra with intercell hopping paramter t2 ¼ 0.40 and γ ¼ 2.00.
Inset: the maxima of the imaginary gaps and the NHSE parameter
κ versus intercell hopping parameter t1.
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By precisely coordinating the time of a laser diode to
emit a photon pulse and the time to apply a 704 ns voltage
pulse on EOM to execute the operation Rðt2Þ, we prepare
the initial state jϕ0i ¼ jn0;þi by placing the photon pulse
in the nth0 unit cell. The accumulated 5.5 dB photon loss in
the optical loop, which includes the loss due to the beam
splitter (BS) to couple 10% energy of the photon pulse
emitted by the laser diode into the optical loop, is mitigated
using a polarization-independent erbium doped fiber ampli-
fier (EDFA) [46,47]. Finally, by applying the time-resolved
single-photon detection to the dissipation via the CPBS,
we obtain the dissipation probability of the nth0 cell after
m steps of time evolution as pðn;mÞ ¼ Nphotonðn;mÞ=P

N
n0¼1

P
M
m0¼1

Nphotonðn0; m0Þ, where Nphotonðn;mÞ is the
respective number of detected photons, and the accumu-
lated dissipation per site as PðnÞ ¼ P

M
m¼1 pðn;mÞ.

We present in Fig. 3 the dissipation measured in two
experimental scenarios, where we set commonly the initial

state of single photons to jϕ0i ¼ j10;þi, γ ¼ 2.00, N ¼ 17
and 35 time steps, and set t1 ¼ t2 ¼ 0.40 in one experiment
[left panel, Fig. 3(a)] and t1 ¼ 0.88, t2 ¼ 0.40 in the second
[left panel, Fig. 3(b)]. (We use this set of parameters
throughout unless otherwise specified in this Letter.) We
notice that the measured dissipation probabilities in both
experiments indicate that single photons walk towards the
left boundary of the lattice. This net chiral motion is
attributed to NHSE with all bulk bands of eigenstates
localized towards the left boundary. The accumulated
dissipation PðnÞ continues to decrease as the single photon
walks further away from the initial lattice site and towards
the left boundary in both experiments [Figs. 3(c) and 3(d)].
While PðnÞ is most significant at sites around n0 and
quickly becomes negligible with Pc

edge ¼ Pð1Þ ¼ 0.03% in

FIG. 3. Experimental measurements of photon dissipations.
(a) and (b) Photon dissipation probabilities pðn;mÞ with jϕ0i ¼
j10;þi, N ¼ 17, t1 ¼ t2 ¼ 0.4 in (a), and t1 ¼ 0.88, t2 ¼ 0.4 in
(b). Left (right) panel: experimental (theoretical) results with high
(low) dissipation in red (blue). (c) and (d) Accumulated dis-
sipations PðnÞ that correspond, respectively, to (a) and (b), with
experimental (thoretical) results drawn in red (blue). Error bars
stand for 1 standard deviation.

FIG. 2. Schematic of the experimental setup. (a) To implement
the photonic quantum walk, we couple 10% energy of laser
pulses (λ ¼ 1560 nm) into an optical loop via a beam splitter
(BS). We pass them through a customized polarizing beam
splitter (CPBS) to induce dissipation Γ, a pair of half-wave
plates (H1 and H2) to implement the intracell tunneling U1, then
through an unbalanced Mach-Zehnder interferometer (MZI), an
electro-optical-modulator (EOM), and the second MZI to imple-
ment the intercell tunneling U2 (see main text and Supplemental
Material [54]). We apply time-resolved single-photon detection to
the dissipation from the CPBS. We note that the time sequences
for the laser diode, the EOM, and the single-photon detecter are
precisely synchronized. Additionally, an erbium-doped fiber
amplifier (EDFA) is integrated into the loop to mitigate the
optical loss. (b) An illustration to realize the Floquet operator in
Eq. (1), here creating an edge at the boundary of the lattices to
implement the OBC.

PHYSICAL REVIEW LETTERS 132, 203801 (2024)

203801-3



the second experiment [Fig. 3(d)], the decreasing trend of
PðnÞ in the first experiment [Fig. 3(c)] is upended with
PðnÞ at the boundary suddenly jumping to a significant
value with Pb

edge ¼ Pð1Þ ¼ 13.3%. The large contrast of

Pb
edge=P

c
edge > 400 signifies NHEBE in the first experiment

[Fig. 3(c)]. We have faithfully reproduced the experimental
observations numerically (see Fig. 3).
Denote Pmin ¼ minfPð1Þ; Pð2Þ;…; Pðn0Þg, we experi-

mentally observe Pedge=Pmin ≫ 1 for a broad range of
parameter values of t1 (red solid dots) with the maximum at
t1 ¼ 0.38 as shown in Fig. 4(a). We observe similar results
for n0 ¼ 5 with the maximum at t1 ¼ 0.35 (blue solid
dots), for which the imaginary gap opens [see the inset
of Fig. 1(b)]. As shown in Fig. 4(b), the experimental
results of Pedge=Pmin versus n0 under the condition of t1 ¼
t2 ¼ 0.4 (red solid dots) indicate a power law relation for
increasing n0, Pedge=Pmin ∝ n

αη
0 with αη ¼ 1.08, which is in

reasonable agreement with αη ¼ 1 of the analytical result
and referred to as a bulk-edge scaling relation underlying
NHEBE for the system under study [44]. In contrast, the
experimental data under the condition of t1 ¼ 0.88 and
t2 ¼ 0.4 (blue solid dots) shows that Pedge=Pmin ∼ 1,

deviating from the power law relation, which is consistent
with the expectation of the absence of NHEBE in this
parameter regime. In these studies, the numerical results
(smooth lines in Fig. 4) and experimental results consis-
tently uphold a good agreement, verifying that the numeri-
cal analysis faithfully emulates our experiment. This
inspires numerical experiments with much bigger system
sizes. We plot the numerical results for n0 ¼ 20 (orange
smooth line) and n0 ¼ 100 (black smooth line) in Fig. 4(a),
which indicates that the peak position of Pedge=Pmin

monotonically converges to t1 ¼ t2 for increasing lattice
size and NHEBE is more pronounced at t1 ¼ t2 [44].
Numerical experiments with system size up to 500 lattice
sites yield αη ¼ 1.03 as shown in the inset of Fig. 4(b),
indicating that the insignificant quantitative difference
diminishes when the system is sufficiently large.
Discussion.—In our studies, we reveal that Pedge is

negligible in the non-NHEBE regime and significant in
the NHEBE regime. Compared to measuring the dissipation
properties in the bulk of the system, detecting the dissipation
effect at the physical boundary is more experimentally
accessible. Intriguingly, dissipation has been recently used
to study the bulk topological invariants of Bloch bands
below a cutoff energy [55]. This is done by filtering out the
unwanted higher-band components through dissipation. In
comparison, we find that the NHEBE in our setting, which
can be observed in a single measurement, provides a method
to detect Hermitian topological phase transitions through a
probe of the nonunitary dissipation. Explicitly, we rewrite
the Floquet operator in the momentum space,

F PBCðkÞ ¼
�
h0σ0þ i

X
α¼x;y;z

hαðkÞσα
�
Γk ¼ F̄ PBCðkÞγk; ð3Þ

where the dissipation Γk ¼ jþihþj þ e−γj−ih−j takes the
same form as in real space. For a general two-band non-
Hermitian system described by the unitary Floquet operator
F̄ PBCðkÞ, possible topological phase transitions require
gap closing between the two bands, which is determined
by hx ¼ hy ¼ hz ¼ 0. Consequently, F̄ PBCðkÞ becomes an
identity matrix and does not mix the two components of j�i
with and without dissipation, respectively. Therefore, the
dissipation-free component (jþi in our example) is governed
by a unitary evolution at the topological phase transition
point, corresponding to the closing of imaginary gap and
hence manifesting as the most prominent NHEBE. Indeed,
as shown in Fig. 4(c), a topological phase transition for the
unitary part of our Floquet operator (U2U1) occurs at
t1 ¼ t2, which manifests by the steep Pedge=Pmin around
t1 ¼ t2 in Fig. 4(a).
In summary, we have experimentally demonstrated the

observation of NHEBE in a SSH lattice possessing bulk
translation symmetry, where the birth of NHEBE is due to
the interplay of NHSE and imaginary band gap closing [44].

0 0.5 1

-2

0

2
(c)

(a) (b)

FIG. 4. Characteristic features of the non-Hermitian edge burst
effect. (a) Pedge=Pmin versus intercell hopping parameter t1.
Smooth lines from top to bottom are numerical results with
ðn0; NÞ ¼ ð100; 200Þ; ð20; 40Þ; ð10; 17Þ; ð5; 17Þ, respectively.
Filled dots: the respective experimental results. (b) The scaling
relation. Red smooth lines (numerical) and red solid dots
(experimental) are for t1 ¼ t2. Red dashed line is the scaling
relation with αμ ¼ 1.08. Inset: Red smooth line is the numerical
result and red dashed line is the scaling relation with αμ ¼ 1.03
for n ≤ 500. Respectively, blue lines (numerical) and blue solid
dots (experimental) are for t1 > t2. Error bars stand for 1 standard
deviation. (c) Quasienergy spectrum ϵ̄ under OBC for the system
described by the unitary Floquet operator U2U1 with t2 ¼ 0.4. A
pair of zero-energy edge states are seen in the parameter region of
0 < t1 < t2, and a topological phase transition occurs at t1 ¼ t2.
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We noted that a system breaking the bulk translation
symmetry may also host NHEBE, where NHSE is absent
[48]. Hence, NHEBE may widely occur in many-body
systems and is linked to different physical properties
depending on its specific realization, which needs further
exploration at both theoretical and experimental sides. In the
regime of NHEBE, the dissipation becomes significant at the
boundary and accessible to detection, which may inspire
novel utilities such as the detection of topological phase
transitions of the counterpart Hermitian system as discussed
in the above. Explicitly, a Hermitian topological phase
transition usually accompanies vanishing Pauli matrices in
its unitary Floquet operator, corresponding to the imaginary
gap closing in the counterpart non-Hermitian system with
nonunitary dissipation (see Supplemental Material [54]).

Note added.—After completing this work, we became aware
of a related experiment conducted by L. Xiao et al. [56].
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