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The correlation between net baryon number and electric charge, χBQ11 , can serve as a magnetometer of
QCD. This is demonstrated by lattice QCD computations using the highly improved staggered quarks with

physical pion mass ofMπ ¼ 135 MeV on Nτ ¼ 8 and 12 lattices. We find that χBQ11 along the transition line
starts to increase rapidly with magnetic field strength eB ≳ 2M2

π and by a factor 2 at eB ≃ 8M2
π .

Furthermore, the ratio of electric charge chemical potential to baryon chemical potential, μQ=μB, shows
significant dependence on the magnetic field strength and varies from the ratio of electric charge to baryon
number in the colliding nuclei in heavy ion collisions. These results can provide baselines for effective

theory and model studies, and both χBQ11 and μQ=μB could be useful probes for the detection of magnetic
fields in relativistic heavy ion collision experiments as compared with corresponding results from the
hadron resonance gas model.
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Introduction.—Strong magnetic fields are expected to be
created in various systems, including the early universe [1],
magnetars [2], and in the laboratory of relativistic heavy ion
collisions [3–5]. In noncentral relativistic heavy ion colli-
sions, the strength of the produced magnetic field eB can
reach the order of Λ2

QCD, a typical scale of the strong
interaction. Theoretical studies showed that the maximum
magnetic field strength can reach 5M2

π and 70M2
π in Auþ

Au collisions at the top energy of relativistic heavy ion
collisions (RHIC) experiments and in Pbþ Pb collisions at
large hadron collider (LHC) energies [4,5], respectively,
where Mπ is the mass of the lightest hadron, pion at
vanishing magnetic fields. Thus, such a strong magnetic
field can affect the phase structure of the strong interaction
as described by quantum chromodynamics (QCD) [6].
One of the most interesting effects induced by the strong

magnetic field is the so-called chiral magnetic effect, which
shows the macroscopic manifestation of the chiral anomaly
of gauge fields. It was proposed in 2007 in the context of
heavy ion collisions [3], where strong magnetic field, at the
order of Λ2

QCD, and axial U(1) anomaly are present. This
has triggered intensive experimental as well as theoretical
studies [7]. However, results from searches for the chiral
magnetic effect in heavy ion collision experiments turn out
to be bewildering [8–10], and it is only in the condensed

matter experiments that evidence for the chiral magnetic
effects has been found [11]. Among many different
perspectives between these two kinds of experiments
[7,11], one of the key differences is that the magnetic
field is expected to decay fast in the former case while it is
sustainable in the latter case.
Unfortunately, it is a challenging task to determine the

lifetime of a magnetic field produced in the heavy ion
collision experiments [12,13]. Theoretically, the lifetime
depends on the electrical conductivity and types of magnet-
ism of the medium. Recent first-principle lattice QCD
studies have found that the electrical conductivity along the
magnetic field increases as the magnetic field grows [14],
and the quark-gluon plasma exhibits paramagnetic proper-
ties [15]. These two findings support the idea that the
magnetic field could live longer in the evolution of heavy
ion collisions than in the vacuum. Hints have been found
for the manifestation of magnetic field in the deconfined
quark-gluon plasma phase through recent observations of
differences of direct flows between D0 and D̄0 [16,17] and
the broadening of transverse momentum distribution of
dileptons produced through photon fusion processes
[18,19] in heavy ion collisions. On the other hand, thermal
quantities such as chiral condensates, screening masses,
and heavy quark potential have been found to be largely
affected by the strong magnetic field via the first-principle
lattice QCD studies [20–23]. Unfortunately, these quan-
tities are not directly measurable in the heavy ion collision
experiments.
Among thermodynamic quantities accessible in both

theoretical computations and experimental measurements,
fluctuations of and correlations among net baryon number

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 201903 (2024)

0031-9007=24=132(20)=201903(6) 201903-1 Published by the American Physical Society

https://orcid.org/0000-0003-0590-081X
https://orcid.org/0000-0001-9655-0186
https://orcid.org/0000-0002-5887-3803
https://orcid.org/0000-0003-0059-7778
https://orcid.org/0000-0002-6882-8846
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.201903&domain=pdf&date_stamp=2024-05-14
https://doi.org/10.1103/PhysRevLett.132.201903
https://doi.org/10.1103/PhysRevLett.132.201903
https://doi.org/10.1103/PhysRevLett.132.201903
https://doi.org/10.1103/PhysRevLett.132.201903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(B), electric charge (Q), and strangeness (S) are useful
probes to study the changes in degrees of freedom and the
QCD phase structure [24–30]. However, they are much less
explored at nonzero magnetic fields. Most of the studies
have been carried out within the framework of the hadron
resonance gas (HRG) model [31–34], the Polyakov-
Nambu-Jona-Lasinio model [35], and the Polyakov loop
extended chiral SU(3) quark mean field model [36]. The
only existing lattice QCD study on the fluctuations of and
correlations among conserved charges at nonzero magnetic
fields was conducted using the larger than physical pion
mass at one single lattice cutoff [37].
In this Letter, we present the first lattice QCD compu-

tation with physical pion mass on the quadratic fluctuations
and correlations of net baryon number, electric charge, and
strangeness in the presence of constant external magnetic
fields. Both the correlation among baryon number and
electric charge, χBQ11 , and the ratio of electric charge
chemical potential over baryon chemical potential, μQ=μB,
are found to be significantly enhanced in the magnetic field
and could be useful to detect the existence of magnetic field
in heavy ion collision experiments. Some of the prelimi-
nary results are presented in [38].
Quadratic fluctuations of conserved charges and the

HRG model in strong magnetic fields.—The quadratic
fluctuations of and correlations among B, Q, and S can
be obtained by taking the derivatives of pressure with
respect to the chemical potentials μ̂X ≡ μX=T with X ¼ B,
Q, and S from lattice calculation evaluated at zero chemical
potentials

χBQSijk ¼ ∂
iþjþkP=T4

∂μ̂iB∂μ̂
j
Q∂μ̂

k
S

����
μ̂B;Q;S¼0

; ð1Þ

where P ¼ ðT=VÞ lnZðeB; μB; μQ; μSÞ denotes the total
pressure of the hot magnetized medium, and iþjþk¼2.
For brevity, we drop the superscript when the correspond-
ing subscript is zero.
In the context of the HRG model, the thermal pressure in

strong magnetic fields arising from charged hadrons can be
expressed as follows [31,37,39]:

Pc

T4
¼ jqijB

2π2T3

Xsi

sz¼−si

X∞

l¼0

ε0
X∞

n¼1

ð�1Þnþ1
enμi=T

n
K1

�
nε0
T

�
; ð2Þ

where ε0 is the energy level of charged hadrons and has a
form of ε0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ 2jqijBðlþ 1=2 − szÞ
p

. Here qi andmi

are the electric charge and mass of the hadron i, respec-
tively, while sz is the spin factor which is summed over −si
to si for each hadron i. B is the magnetic field pointing
along the z direction, and l denotes the Landau levels. n is
the sum index in the Taylor expansion series, and K1 is the
first-order modified Bessel function of the second kind. The
“þ” in “�” corresponds to the case for mesons (si is
integer) while the “−” for baryons (si is half-integer). Note

that the HRG description of spin-3=2 baryons as well as
spin-1 mesons breaks down at some critical magnetic field,
above which the lowest energy of the particle would turn
negative. In our case, the largest eB applied is ∼8M2

π ,
which keeps ε0 always positive.
The quadratic fluctuations of and correlations among B,

Q, and S arising from charged hadrons, are thus given by
[37,40]

χX2 ¼ B
2π2T3

X

i

jqijX2
i

Xsi

sz¼−si

X∞

l¼0

fðε0Þ;

χXY11 ¼ B
2π2T3

X

i

jqijXiYi

Xsi

sz¼−si

X∞

l¼0

fðε0Þ; ð3Þ

where fðε0Þ ¼ ε0
P∞

n¼1ð�1Þnþ1nK1ðnε0=TÞ and Xi; Yi ¼
B, Q, S carried by hadron i. The fluctuations and
correlations arising from neutral hadrons are obtained
using the standard HRG model [41,42] as the masses of
neutral hadrons are assumed to be independent on eB
in the current eB window. In the current HRG model
computations, we adopt the list of resonances from
QMHRG2020 [42].
Figure 1 shows the eB dependence of normalized χBQ11 ,

χB2 , and χQ2 obtained from the HRG model. Note that both
χBQ11 and χQ2 receive contributions only from charged
hadrons, while χB2 receives contributions from both charged
and neutral baryons. It can be seen that χBQ11 increases
rapidly as eB grows and reaches a factor of ∼1.9 at
eB ≃ 8M2

π . On the other hand, χB2 has much weaker
dependence on eB and increases about 20% while χQ2
remains almost intact as eB grows.
Lattice QCD simulations.—The partition function Z of

QCD with three flavors (f ¼ u, d, s) is given by the
functional integral,

Z ¼
Z

DUe−Sg
Y

f¼u;d;s

½detMðU; qfB; μfÞ�14: ð4Þ

FIG. 1. The ratio of X ¼ χBQ11 ; χ
B
2 , and χQ2 to its corresponding

value at vanishing magnetic fields as a function of eB at three
temperatures obtained from the HRG model.
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The highly improved staggered quarks (HISQ) [43] and a
tree-level improved Symanzik gauge action, which have
been extensively used by the HotQCD Collaboration
[41,42,44–49], were adopted in our current lattice simu-
lations of Nf ¼ 2þ 1 QCD in nonzero magnetic fields on
323 × 8 and 483 × 12 lattices. The magnetic field is
introduced along the z direction and described by a fixed
factor uμðnÞ of the U(1) field. We set the quark masses to
their physical values, with mass degenerate light quarks
mu ¼ md corresponding to Mπ ¼ 135 MeV. The electric
charges of the quarks are qd ¼ qs ¼ −qu=2 ¼ −e=3, with
e denoting the elementary electric charge. To satisfy the
quantization for all the quarks in the system, the greatest
common divisor of their electric charges, i.e., jqdj ¼
jqsj ¼ e=3, is adopted, and the strength of the magnetic
field eB thus equals to ð6πNb=NxNyÞa−2 [50,51]. Here Nb

is the number of magnetic fluxes through a unit area in the
x-y plane, a is the lattice spacing, and Nσ ≡ Nx ¼ Ny are
the spatial lattice points. Further details on the implemen-
tation of magnetic fields in the lattice QCD simulations
using the HISQ action can be found in [52]. The simulated
eB ranges from ≃M2

π up to ≃8M2
π , with Nb varying from 1

to 6. The discretization error in eB should be mild as
Nb=N2

σ ≪ 1 [53].
All gauge configurations have been generated using a

modified version of the software suite SIMULATeQCD [54]
and saved every tenth time units. For each value of Nb at
temperatures below 160 MeV, about 40 000 configurations
were saved on Nτ ¼ 8 lattices and 5000 on Nτ ¼ 12
lattices. Approximately 3000 configurations are addition-
ally generated on Nτ ¼ 16 lattices at a single temperature
with Nb ¼ 3 to scrutinize the uncertainties originating from
continuum estimates. Fluctuations and correlations of
conserved charges up to the 4th order in nonzero magnetic
fields have been computed using the random noise vector
method. Details of computations and results obtained on
Nτ ¼ 16 lattices can be found in Table SI and Fig. S4 in the
Supplemental Material [55], respectively. The latter sug-
gests that quantitative results might be subject to moderate
shifts with the inclusion of additional finer lattice spacings.

For the case of Nb ¼ 0, we adopted lattice QCD results
obtained in [42].
Results.—We first present in Fig. 2 the results for χQ2 , χ

B
2 ,

and χBQ11 , as obtained from lattice QCD computations and
the HRG model at T ¼ 145 MeV, which is below the
transition temperature ∼156 MeV [57]. The lattice QCD
results are continuum estimated based on Nτ ¼ 8 and 12
lattices, and the details are presented in the Supplemental
Material [55]. By utilizing the additional results obtained
on Nτ ¼ 16 lattices, we confirm the consistency between
continuum estimated and extrapolated results, implying
minor uncertainties, as shown in Fig. S4 in the
Supplemental Material [55]. It can be seen that the
continuum estimated lattice QCD result of χQ2 remains
almost intact with eB, whereas χB2 increases by about 45%
at eB ≃ 8M2

π . Most strikingly, χBQ11 is significantly affected
by the magnetic field, increasing by a factor of ∼2.4 at
eB ≃ 8M2

π . On the other hand, while the HRG model
provides a reasonable description of χQ2 and χBQ11 for field
strengths up to eB≲ 4M2

π , it begins to undershoot con-
tinuum estimated lattice QCD results at higher eB values.
For χB2 , the HRGmodel undershoots the QCD results across
the whole eB window.
We break down the contributions from individual

hadrons in the HRG model. In the case of χQ2 , the dominant
contribution in the current window of magnetic field
strength always comes from charged pions, although it
decreases by about 30% at eB ≃ 8M2

π due to their enhanced
energy in the magnetic field. In the case of χB2 , no single
hadron overwhelmingly dominates; the largest contribu-
tion, which is less than 12%, comes from protons. For χBQ11 ,
it can be seen that protons dominate the contribution at
eB≲ 4M2

π , while doubly charged Δð1232Þ baryons start to
surpass protons at eB≳ 4M2

π . Note that the contribution
from protons almost remains constant with eB. Thus, most
of the eB dependence of χBQ11 comes from doubly charged
Δð1232Þ baryons. This follows from the fact that the energy
ϵ0 of Δð1232Þ baryons can become smaller, as they are
doubly charged and have a spin of 3=2. For other doubly

FIG. 2. Continuum estimates (yellow bands) of χQ2 (left), χB2 (middle), and χBQ11 (right) at T ¼ 145 MeV based on lattice QCD results
with Nτ ¼ 8 and 12. The blue and red bands represent the interpolated results for Nτ ¼ 8 and 12 lattice data, respectively. The total
contribution (black solid lines) as well as contributions from certain hadrons (broken lines) to χQ2 , χ

B
2 , and χBQ11 obtained from the HRG

model are also shown.
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charged baryons, e.g., Δð1600Þ, their contributions are
largely suppressed due to their larger masses.
In heavy ion collisions, correlations among conserved

charges are measured through final stable particles. For
instance, the proton (p) serves as a proxy for baryon
number, and net electric charge (QPID) is measured through
proton, pion, and kaon [58]. However, the doubly charged
Δð1232Þ baryons, which significantly contribute to the eB
dependence of χBQ11 , are not directly measurable in heavy
ion collision experiments. This is because they are short-
lived resonances, undergoing a strong decay into proton
and pion with a branching ratio close to 100%. To
determine whether the decays of Δð1232Þ baryons, i.e.,
protons and pions, retain the memory of the eB dependence
of the contribution ofΔð1232Þ to χBQ11 , we construct a proxy
σ1;1QPID;p for χBQ11 that includes contributions from all the

decays to proton and pion following the standard approach
in the framework of the HRG model [59].
It is common to investigate the ratios of fluctuations in

both theory and experiments to suppress the dependence on
the system volume [24–28]. We then focus on ratios
RðOÞ≡O½eB; TpcðeBÞ�=O½0; Tpcð0Þ� along the transition

line. In Fig. 3 (top), the continuum estimate of RðχBQ11 Þ at

TpcðeBÞ exhibits a significant eB dependence, similar to
observations in Fig. 2 at T ¼ 145 MeV. At the highest eB
value,∼8M2

π , RðχBQ11 Þ reaches about 2.1. For eB≲M2
π, both

the proxy Rðσ1;1QPID;pÞ (dashed line) and the HRG result

(solid line) are consistent with the continuum estimated
lattice QCD result. However, for eB≳M2

π, both Rðσ1;1QPID;pÞ
and HRG results begin to undershoot the continuum
estimated lattice QCD result. As depicted in the inset,
the proxy underestimates the continuum estimated lattice
QCD result by ∼22% at most at eB ≃ 5.5M2

π and by ∼16%
at eB ≃ 8M2

π. In the case of HRG, this underestimation is
by ∼15% at most at eB ≃ 5.5M2

π and by ∼9% at eB ≃ 8M2
π .

In Fig. 3 (bottom), a similar trend is observed in the double
ratio, RðχBQ11 =χQ2 Þ, where the proxy Rðσ1;1QPID;p=σ

2
QPIDÞ pro-

vides a slightly better description of the continuum esti-
mated lattice QCD result compared to the case of RðχBQ11 Þ.
Furthermore, the electric charge chemical potential can

be expanded as μ̂Q ¼ q1μ̂B þ q3μ̂3B þOðμ̂5BÞ. Since the
initial nuclei in heavy ion collisions are net strangeness
neutral, the leading order coefficient q1 can be expressed as
follows [61,62]:

q1 ¼
r
�
χB2 χ

S
2 − χBS11 χ

BS
11

�
−
�
χBQ11 χ

S
2 − χBS11 χ

QS
11

�

�
χQ2 χ

S
2 − χQS11 χ

QS
11

�
− r

�
χBQ11 χ

S
2 − χBS11 χ

QS
11

� : ð5Þ

Here r≡ nQ=nB stands for the ratio of net electric charge to
net baryon number density in the colliding nuclei. For
Auþ Au and Pbþ Pb collisions, r ¼ 0.4 is a suitable
approximation. In the case of isobar collisions, for
96
40Zr þ 96

40Zr, r is marginally higher at r ¼ 0.417, while
for 96

44Ruþ 96
44Ru, r is 10% larger, specifically r ¼ 0.458.

In Fig. 4, we show the leading order contribution to
μQ=μB, denoted as ðμQ=μBÞLO, normalized to its value at
zero magnetic fields as a function of eB along the transition

FIG. 3. Continuum estimates of ratios of χBQ11 (top) and χBQ11 =χ
Q
2

(bottom) to their corresponding values at vanishing magnetic
fields along the transition line. Interpolated bands for Nτ ¼ 8 and
12 lattice data are also shown. The insets show ratios of results
obtained from the HRG model and proxy to continuum estimated
lattice QCD results.

FIG. 4. The continuum estimated ðμQ=μBÞLO normalized to its
value at eB ¼ 0 as a function of eB along the transition line.
Bands correspond to collision systems with various values of
nQ=nB and lines are corresponding results obtained from the
HRG model.
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line for various values of r corresponding to different
collision systems. It can be seen that the double ratio
R½ðμQ=μBÞLO� increases with eB across all collision sys-
tems. In Auþ Au and Pbþ Pb collisions, R½ðμQ=μBÞLO�
reaches approximately 2.4 at eB ≃ 8M2

π . For the isobar
collision systems, designed to study the chiral magnetic
effect, R½ðμQ=μBÞLO� in Zr þ Zr collisions is comparable to
that of Auþ Au and Pbþ Pb collisions. However, in
Ruþ Ru collisions, R½ðμQ=μBÞLO� increases more rapidly,
reaching about 4 at eB ≃ 8M2

π , which is about 1.5 times
greater compared to the other three cases. Additionally, we
find that the contribution from the next-to-leading order
term q3, obtained on Nτ ¼ 8 lattices, is about 2% of that
from the leading order, as detailed in the Supplemental
Material [55]. The results obtained from the HRG model
(denoted by the broken lines) exhibit reasonably good
agreement with the lattice QCD data. This suggests that the
observation of eB dependence of μQ=μB through fits to
particle yields using the HRG model with magnetized
hadron spectrum is feasible.
Conclusions.—We have performed the first lattice QCD

computations of quadratic fluctuations and correlations of
conserved charges in nonzero magnetic fields with physical
pions. Based on these computations, we propose two
probes to detect the imprints of magnetic fields in the
final stages of heavy ion collisions: the second-order
correlation of baryon number and electric charge (χBQ11 ),
and the ratio of electric charge chemical potential to baryon
number chemical potential (μQ=μB).
Possible experimental analyses could be carried out

across various centrality classes or in different collision
systems exhibiting distinct eB values, as the strength of
magnetic fields is expected to increase from central to
peripheral collisions and in collisions of isobars with larger
number of protons [4,5]. The χBQ11 could be investigated

using its proxy [58], i.e., the proxy of χBQ11 or χBQ11 =χ
Q
2 can be

obtained in the experiments by measuring the net proton
number as the net baryon number B, and the net proton,
pion, and kaon number as the net electric charge Q,
cf. Rðσ1;1QPID;pÞ and Rðσ1;1QPID;p=σ

2
QPIDÞ as shown in Fig. 3.

On the other hand, the ratio μQ=μB can be obtained from
thermal fits to particle yields [63–65], employing the HRG
model with magnetized hadron spectrum. Here, in addition
to the normal free parameter μQ, μB and temperature, an
additional parameter eB is needed in the thermal fits to
accommodate the change in the hadron mass [66].
Moreover, it is worth noting that the strict normalization
of these quantities to the case with eB ¼ 0, corresponding
to the most central collision, may not be essential. Instead,
one can directly investigate the dependence of χBQ11 =χ

Q
2 and

μQ=μB on centrality class and collision systems. These
analyses can utilize already existing data from facilities at
LHC and RHIC [27–30].

Finally, our results also establish QCD baselines in
external magnetic fields for effective theories and model
studies [5,12,31–36], providing valuable insights into the
dynamic evolution within heavy ion collisions.
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