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We calculate the next-to-next-to-leading-order (NNLO) QCD radiative correction to the pion
electromagnetic form factor with large momentum transfer. We explicitly verify the validity of the
collinear factorization to two-loop order for this observable and obtain the respective IR-finite two-loop
hard-scattering kernel in the closed form. The NNLO QCD correction turns out to be positive and
significant. Incorporating this new ingredient of correction, we then make a comprehensive comparison
between the finest theoretical predictions and numerous data for both space- and timelike pion form factors.
Our phenomenological analysis provides a strong constraint on the second Gegenbauer moment of the pion
light-cone distribution amplitude obtained from recent lattice QCD studies.
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Introduction.—Originally proposed by Yukawa as the
strong nuclear force carrier in 1935 [1], subsequently
discovered in the cosmic rays in 1947 [2], the 7 mesons
have always occupied central stage throughout the historic
advancement of the strong interaction. As the lightest
particles in the hadronic world (hence the highly relativistic
bound systems composed of light quarks and gluons),
x mesons entail extremely rich QCD dynamics, exempli-
fied by the color confinement and chiral symmetry break-
ing. Notwithstanding extensive explorations during the past
decades, there still remain some great myths about the
internal structure of the 7 mesons.

A classic example of probing the internal structure of the
charged =z is the pion electromagnetic (EM) form factor,

(@t (P Tglm*(P)) = FL(Q*)(P"+ P¥). (1)

with Q% =—(P—P')?. The electromagnetic current
is defined by Jpy =, esfr'f, with e,=2/3 and
ey, = —1/3 indicating the electric charges of the u and
d quarks.

During the past half century, the pion EM form factor has
been intensively studied experimentally [3-29]. From the
theoretical perspective, the pion EM form factor at small Q?
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can be investigated in chiral perturbation theory [30] and
lattice QCD [31-35]. On the other hand, at large momen-
tum transfer, the F,(Q?) is expected to be adequately
described by perturbative QCD. Within the collinear
factorization framework tailored for hard exclusive reac-
tions [36—42] (for a review, see Ref. [43]), at the lowest
order in 1/Q, the pion EM form factor can be expressed in
the following form:

5 i Uy W
Fa(0%) = / / dxdy@(x,mr(x,y@@)q>,,<y,uF>,
@)

where T(x,y) signifies the perturbatively calculable
hard-scattering kernel, and @, (x, uy) represents the non-
perturbative yet universal leading-twist pion light-cone
distribution amplitude (LCDA), i.e., the probability ampli-
tude of finding the valence u and d quark inside 7" carrying
the fractional momenta x and x = 1 — x, respectively. The
leading-twist pion LCDA assumes the following operator
definition:

dz= . . -
Olrr) = [ Goze P OO0 s

X W(0, 27 )u(z7) =" (P)), (3)

where WV signifies the lightlike gauge link to ensure the
gauge invariance. Conducting the UV renormalization for
(3), one is led to the celebrated Efremov-Radyushkin-
Brodsky-Lepage (ERBL) evolution equation [38,40],
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d®,(x, pir) /1
SEn P [ dy Vix, y) @, (v, ), 4
dingd |y (x, )@ (v, kr) (4)

with V(x,y) referring to the perturbatively calculable
ERBL kernel.

Equation (2) is expected to hold to all orders in
perturbative expansion. The hard-scattering kernel can thus
be expanded in the power series

2
T_16C_FZ”%{T<0>+%T<1>+ <“_> T<2)+...}, (5)
0 /4 /2

where Cr = [(N? = 1)/2N_], and N = 3 is the number of
colors.

The leading-order (LO) result was known shortly after
the advent of QCD [37,38,40,42,44-46]. The next-to-
leading-order (NLO) correction was originally computed
by three groups in early 1980s [47—49]. Scrutinizing the
previous calculations, in 1987 Braaten and Tse traced the
origin of the discrepancies among the earlier work and
presented the correct expression of the NLO hard-scattering
kernel [50]. In 1999, Meli¢ et al. conducted a compre-
hensive phenomenological study by incorporating the
NLO correction as well as the evolution effect of pion
LCDA [51]. The central goal of this Letter is to compute the
next-to-next-to-leading-order (NNLO) perturbative correc-
tion to the pion EM form factor and critically examine its
phenomenological impact [52].

Setup of perturbative matching.—The strategy of deduc-
ing the short-distance coefficients is through the standard
matching procedure. Since the hard-scattering kernel is
insensitive to the long-distance physics, it is legitimate to
replace the physical 7z by a free quark-antiquark pair ud
and compute both sides of (2) in perturbation theory, order
by order in a,. To make things simpler, we neglect the
transverse motion and assign the momenta of the « and d in
the incoming “pion” to be uP and #P and assign the
momenta of the  and d in the outgoing pion to be vP’ and
?P’, with u, v ranging from 0 to 1.

On the left-hand side of (2), we extract the scalar
form factor F(u,v) through the partonic reaction y*+
u(uP)d(aP) — u(vP'")d(vP"). Some typical Feynman dia-
grams through two-loop order are depicted in Fig. 1. It is
subject to a perturbative expansion,

uP § v P’ uP % v P u P v P
E E E
E E E E E
aP o P aP v P aP o P
(a) LO (b) NLO (¢) NNLO
FIG. 1. Sample parton-level Feynman diagrams for the reaction

y*z(P) = z(P') at (a) LO, (b) NLO, (c) NNLO.

On the right-hand side of (2), one can expand the
renormalized pion LCDA as

a\2
() =@+ 200 () (%) 02 ) +
)

At tree level, the fictitious pion LCDA in (3) simply
reduces to ®©(x|u) = &(x —u) [up to a normalization
factor that also appears in F(u, v)]. By equating both sides
of (2), one reproduces the well-known tree-level expression
TO(x,y) [36-42],

| Q

O(x,y) = (8)

=1

“1-0-|

e, = ey }
y X=>xy—=yl
which holds true in d = 4 — 2¢ spacetime dimensions.

Once beyond the tree level, the UV and IR divergences
inevitably arise and we use the dimensional regularization
(DR) to regularize both types of divergences. Nevertheless,
the bare pion LCDA remains intact since the scaleless
integrals vanish in DR. The renormalized pion LCDA is
related to the bare one via

®(x|u) = / dYZ(x,y)Pe(ylu) = Z(x. ). (9)

which is solely composed of various IR poles.

Z(x,y) in (9) signifies the renormalization function
in the MS scheme, which can be cast into the following
Laurent-expanded form in e:

|
Z(x,y) =6(x—1y) +Z—kaxy (10)
k=

1 €

Note that the prefactor of the single pole in (10) is related
to the ERBL kernel V(x,y) in (4) via V(x,y) = —a,0Z, /0,
[57]. Note that the two-loop [49,58-61] and three-loop
corrections [62] to V(x,y) have been available.

The two-loop renormalized pion LCDA @) also con-
tains a double IR pole. The Z, can be obtained through the
recursive relation [63]

0Z, 0Z, 0Z,
—=a,— Q® Z , 11
Ay aas A aas ® 1 +ﬂ ((ZS) aas ( )

where da,/dInu?> = —ea, + f(ay).
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With the aid of (9) and (10), we then determine the O(«a;)
and O(a?) corrections to the renormalized pion LCDA
in (7).

At one-loop order, the matching equation for a fictitious
pion state becomes

T (u, v) + @ (x|u)®T ) (x, v)

O (u,y). (12)

Q°FD(u,v) =

+ol! (I)

where ®, signifies the convolution over x. Note that the
renormalized scalar form factor F(!)(u, v) still contains a
single collinear pole. However, the renormalized ®) (x|u)
and ®()(y|v) also contain the same IR poles. Upon solving
this matching equation, one ends up with both UV- and
IR-finite 7(")(x, y). Our expressions agree with the known
NLO result [51].

To the desired two-loop order, the following matching
equation descends from (2):
Q*F (u,v) = T® (u, v) + O

(x|u)®T (x. v)

+<D(|) O (u. y)

+ o (x|u)®T )(x,v)

+®(|) W (u.y)

+ @ (xu )®T(°>(x,y)§<1>“)(y|v)- (13)

More severe IR divergences are expected to arise in both
F®)(u,v) and ®? (x|u). Clearly one also needs to compute
TW(x,y) to O(e).

Description of the calculation.—We use HepLib [64] and
FeynArts [65] to generate Feynman diagrams and the corre-
sponding amplitudes for the reaction y* + u(uP)d(aP)—
u(vP")d(vP'). We employ the covariant projector technique
to enforce each ud pair to bear zero helicity. For our purpose,
it suffices to adopt the naive anticommutation relation to
handle y5 in DR. There are about 1600 two-loop diagrams,
one of which is depicted in Fig. 1(c). We employ
the packages APART [66], to conduct partial fraction, and
FIRE [67] for integration-by-part reduction. We end up with
116 independent master integrals (Mls). The MIs are
calculated by utilizing the differential equation method
[68—70]. Note that these MIs are considerably more involved
than what are encountered in the two-loop corrections for the
x — y transition form factor [71,72]. We have attempted two
independent ways to construct and solve the differential
equation systems, one of which is based on the method
developed in [73-76]. The analytic results are expressed
in terms of the Goncharov polylogarithms (GPLs) [77].
Two independent calculations yield the identical answer.

We also numerically check our results against the package
AMFLOW [78] and found perfect agreement. Technical details
will be included in the future long write-up.

Upon renormalizing the QCD coupling in the MS
scheme, we end up with a rather lengthy expression for
F®(u,v). Being UV finite, it still contains severe IR
divergences that start at order 1/e%. Inspecting the match-
ing equation (13), piecing all the known ingredients
together, we are able to solve for the intended two-loop
hard-scattering kernel. Hearteningly, 7*)(x,y) is indeed
IR finite. Therefore, our explicit calculation verifies that
the collinear factorization does hold at two-loop level for
the pion EM form factor. The analytical expression of
T®(x,y) is too lengthy to be reproduced here. For the
sake of clarity, in the Supplemental Material [79] we
provide the asymptotic expressions of 7(!-2) (x,y) near the
end point regions.

Master formula for pion EM form factor at NNLO.—
Given a certain parametrized form of pion LCDA, the
twofold integration in (2) turns out to be difficult to conduct
numerically, mainly due to numerical instability caused by
the spurious singularity as x — y/x — y in T?)(x, y). Our
recipe to circumvent this technical challenge is to present
the two-loop results in an analytical manner, which enables
us to achieve exquisite precision.

The leading-twist pion LCDA is conveniently expanded
in the Gegenbauer polynomial basis,

D, (x. pp) 2\/2Tzn o anppwa(x),  (14a)
w,(x) = 6xxC/ 2 (2x — 1), (14b)

where the pion decay constant f, = 0.131 GeV, and Z/
signifies the sum over even integers. Note all the non-
perturbative dynamics are encoded in the Gegenbauer
moments a,(ur).

Substituting (14) into (2), we reexpress the pion EM
form factor as

chﬂz(eu - ed)flzr
3

S (E) T o T
7 (13

Q*F,(Q%) =

with T defined by

1
€,—¢€y

T7H =

Hi M
wm<x>@r<k><x,y@@)§>wn<y>. (16)

For simplicity, we will set pyr =pr=p and n; =3
from now on. The twofold integrations in (16) can be
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readily worked out at tree and one-loop levels. For instance,
we have

1
T =9, T4\ = Z (1L, +237),  (17)

with L, = In(u?/Q?).

Remarkably, the two-loop coefficients 7° ,(,f,)l can also be
computed analytically, thanks to the fact that 7>) can be
expressed in terms of the GPLs. Although the integrand
in (16) contains about O(10°) individual terms, the final
result after twofold integration becomes exceedingly com-
pact, which can be expressed in terms of the rational
numbers and Riemann ¢ function. For instance, the

expression of 7 (%) reads

72912 35722 4365
TR =270 (8ey + o~ 2 L, 4205
8 6 8
374 759¢; 182972 36559
w18, . (18)
20 2 96 32

Because of the length restriction, we refrain from
)

providing the analytical expressions for other ’Ts,i;lz .
For the reader’s convenience, in Table I we tabulate the
numerical values of 7 ,(,:,12> for 0 <m, n <6, which is
sufficient for most phenomenological analyses.

With the input from Table I, Eq. (15) constitutes our
master formula for yielding phenomenological predictions
through the two-loop accuracy. Compared with the original
factorization formula (2), we have simplified an integration
task into an algebraic one.

It is straightforward to adapt our master formula from the
spacelike region to the timelike one, provided that one
makes the replacement L, — L, + iz in Table I, with 0?
now indicating the squared invariant mass of the 7z~ pair.

Input parameters.—As the key nonperturbative input,
our knowledge on the pion LCDA is still not confirmative
enough. In the early days, it was popular to assume
asymptotic form, Chernyak-Zhitnitsky parametrization

TABLE 1. The numerical values for Tﬁ,l,), =c¢L, + ¢, and
T = d\L2 + dyL, + ds, with 0 < m,n <6.

(m, n) €1 C d, d, ds
(0,0) 20.25 59.25 91.1250  478.436 696.210
0,2) 32.75 112.473 170.118  1094.39 2025.84
0,4) 38.45 147.638 211.902  1541.23 3206.98
0,6) 422571 174.359 241.822 1901.22 4265.06
(2,2) 45.25 192.871 266472  2178.25 4953.36
2,4) 50095 240.181 316.173  2875.57 7237.52
(2,6) 547571 274974 351380 341543 9172.70
4,4) 56.65 292970 369.484  3704.29 10222.5
4,6) 60.4571 331.411 407.102  4337.65 12698.8
(6,6) 64.2643 372.282 446.331 5037.27 15588.4

[43], and the Bakulev-Mikhailov-Stefanis parametrizations
[80,81]. In recent years there have emerged extensive
investigations of the profile of the pion distribution ampli-
tude from different methodologies, including QCD light-
cone sum rule [82] with nonlocal condensate [80,83] or
fitted from dispersion relation [84] or platykurtic [85],
Dyson-Schwinger equation [86,87], basis light-front quan-
tization [88], light-front quark model [89], holographic
QCD [90], and very recently, from the lattice simulation
[91,92]. The predicted values of various Gegenbauer
moments are scattered in a wide range.

Since lattice QCD provides the first-principle predic-
tions, in this Letter we will take the most recent lattice
results as inputs. In 2019, the RQCD Collaboration
presented a precise prediction for the second Gegenbauer
moment of pion LCDA in the MS scheme, with
ay(2 GeV) = 0.116159) [91].

An important progress in lattice QCD is expedited by the
advent of the large-momentum effective theory (LaMET) a
decade ago [93,94], which allows one to access the light-
cone distributions in Euclidean lattice directly in the x
space. Very recently, the LPC Collaboration presented the
whole profile of the pion LCDA [92], from which various
Gegenbauer moments can be inferred: a,(2 GeV) =
0.258 £ 0.087, a4(2GeV)=0.122+0.056, ag(2 GeV) =
0.068 £ 0.038. It is curious that the value of a, reported by
the LPC Collaboration is about 2 times greater than that
reported by the RQCD Collaboration. This discrepancy
might be attributed to the fact that the LaMET approach
receives a large power correction in the end point region.
On the other hand, it is very challenging for the local
operator matrix element approach [91] to compute the
higher Gegenbauer moments, thus making it difficult to
reconstruct the whole profile of the LCDA.

Phenomenological exploration.—We use the three-loop
evolution equation [62,95] to evolve each a, evaluated at
2 GeV by lattice simulation to any intended scale p. We
only retain those Gegenbauer moments with n up to 6. We
also use the package FAPT [96] to evaluate the running QCD
coupling constant to three-loop accuracy.

Q[GeV?]

FIG. 2. Theoretical predictions vs data for Q>F,(Q?) in the
spacelike (left) and timelike (right) regions. We take the central
values of a,, a4, and ag determined by LPC. The red, green, and
blue curves correspond to the LO, NLO, and NNLO results, and
the respective bands are obtained by sliding x from Q/2 to Q.
Experimental data points are taken from NA7 [11], Bebek er al.
[5], Huber et al. [16], and BABAR [27].
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B o

RQCD NLO

B o

10 5 0 1 20
Q*[GeV?, Q*GeV?]

FIG. 3. Same as Fig. 2, except the predictions are made by
taking the central value of a, determined by RQCD, with a, and
ag set to zero.

For the sake of comparison, we take the pion EM
form factor data in the spacetime region from the NA7
Collaboration [11], Cornell data compiled by Bebek et al.
[5], and the reanalyzed Jefferson Lab data [16] and take
the timelike pion EM form factor data entirely from the
BABAR experiment [27]. We discard many irrelevant small-
Q? data.

In Figs. 2 and 3, we confront our predictions at various
perturbative accuracy with the available data, including
both space- and timelike regimes. One clearly visualizes
that the NNLO correction is positive and substantial.
In Fig. 2, we set the various Gegenbauer moments of pion
LCDA to the central values given by the LPC Collaboration
[92]. It appears that the NNLO predictions significantly
overshoot the experimental data at large Q° (> 5 GeV?),
especially for the timelike regime with high-statistics data.
This symptom is mainly due to the large value of a,.

In Fig. 3 we present our predictions with a, taken from
RQCD while setting the values of a, and a¢ to zero. We
find satisfactory agreement between our NNLO predictions
and the data, both in space- and timelike regimes. This may
indicate that the value of a, given by RQCD might be more
trustworthy. It is of utmost importance for RQCD and LPC
Collaborations to settle the discrepancy in the value of a, in
the future.

The prospective Electron-lon Collider (EIC) program
plans to measure the spacelike pion EM form factor with
Q? as large as 30 GeV? [97], where perturbative QCD
should be definitely reliable. We are eagerly awaiting to
confront our NNLO predictions with the future EIC data.

Summary.—In this Letter, we report the first calculation
of the NNLO QCD corrections to the pion electromagnetic
form factor. We have explicitly verified the validity of the
collinear factorization to two-loop order for this observable
and obtain the UV- and IR-finite two-loop hard-scattering
kernel in closed form. The NNLO QCD correction turns to
be positive and important. We then confront our finest
theoretical predictions with various space- and timelike
pion form factor data. Our phenomenological study reveals
that adopting the second Gegenbauer moment computed
by RQCD can yield a decent agreement with large-Q>
data (above the resonance region in the timelike case).
Nevertheless, to make a definite conclusion, it seems
imperative to resolve the discrepancy between LPC and

RQCD Collaborations on the value of a, in future study.
Furthermore, we look forward to the future high-statistics
larger-Q? pion EM form factor data for critically testing
our NNLO predictions. It will also be very interesting to
confront our NNLO predictions with the available high-
quality kaon EM form factor data.
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the Gegenbauer moment ag based on the recent LPC
study [92]. The work of L.-B.C. is supported by the
NNSFC Grant No. 12175048. The work of W.C. is
supported by National Natural Science Foundation of
China under Contract No. 11975200. The work of F.F.
is supported by the NNSFC Grant No. 12275353. The work
of Y.J. is supported in part by the NNSFC Grants
No. 11925506 and No. 12070131001 (CRC110 by DFG
and NSFC).
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