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We study geometries occurring in Feynman integrals that contribute to the scattering of black holes in the
post-Minkowskian (PM) expansion. These geometries become relevant to gravitational-wave production
from binary mergers through the classical conservative potential. At 4PM, a K3 surface is known to occur
in a three-loop integral, leading to elliptic integrals in the result. In this Letter, we identify a Calabi-Yau
threefold in a four-loop integral, contributing at 5PM. The presence of this Calabi-Yau geometry indicates
that completely new functions occur in the full analytical results.
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Introduction.—Following the groundbreaking discovery
of gravitational waves [1,2], the inspiral and eventual
merger of binary systems of compact astronomical objects
such as black holes and neutron stars has become a key
object of interest in many branches of physics. The
upcoming third-generation gravitational-wave detectors
will provide much more and higher-precision data, requir-
ing equally high-precision theoretical predictions for its
interpretation [3,4].
Many complementary approaches for the theoretical

description of these processes have been developed, rang-
ing from numerical relativity [5–7] to analytical approaches
valid in various regions, such as post-Newtonian [8–10],
post-Minkowskian [4,11], and self-force [12–15] expan-
sions as well as the effective one-body formalism [16,17].
The post-Minkowskian (PM) expansion treats the

dynamics in the inspiraling phase perturbatively in
Newton’s constant G while maintaining all orders in the
velocity, thus accounting for relativistic effects. Since
the dynamics of the bound system can also be related to
the scattering problem [11], this allows the use of Feynman
diagrams and other methods from perturbative quantum
field theory (QFT) and scattering amplitudes [18–39], see
Refs. [4,40] for an overview, while systematically taking
the classical limit ℏ → 0 to retain the classical pieces only.
As in QFTs, higher precision thus requires the computation
of Feynman integrals with more loops. In particular, the
state-of-the-art computation for the gravitational two-body

problem currently stands at three loops, corresponding to a
4PM correction for nonspinning black holes [32–35,38,39],
as well as including spin-orbit [41,42] and tidal effects [43].
With the objective of calculating Feynman integrals, one

task is to characterize the space of functions to which they
evaluate. Most Feynman integrals computed to date can be
written in terms of multiple polylogarithms [44,45], which
are iterated integrals over the Riemann sphere. However,
at high loop orders and in cases with non-negligible masses
or many physical scales, new special functions start to
appear in QFT, involving integrals over nontrivial geom-
etries. These include integrals over elliptic curves, K3
surfaces, and higher-dimensional Calabi-Yau manifolds;
see Ref. [46] for a recent review. In particular, various
L-loop families of Feynman integrals have been identified
that involve Calabi-Yau manifolds of dimensions growing
linearly with the loop order L [47–56].
Up to two loops (3PM order), the results in the PM

expansion are expressible in terms of polylogarithms.
However, at three loops they contain products of complete
elliptic integrals, which stem from a K3 surface [32,33,57].
In this Letter, we initiate an analysis beyond the current
state of the art, finding that at four loops a new geometry
appears—a Calabi-Yau threefold. This is the first instance
that this type of geometry appears in integrals relevant
for the scattering and inspiral of black holes, and it
indicates that completely new functions are needed for
the full analytical result at 5PM order.
In order to detect geometries in Feynman integrals,

we use two complementary approaches: differential equa-
tions [58] and leading singularities [59]. While leading
singularities can, in principle, be calculated using any
parametric representation of the Feynman integral as well
as the loop-momentum-space representation, we find that a
loop-by-loop Baikov representation [60,61] is particularly
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advantageous in the present case. It allows us to show that
the geometries occurring in many different PM Feynman
diagrams are identical and that further classes of diagrams
contain only trivial geometries. This vastly reduces the
number of different diagrams we need to consider for the
purpose of detecting geometries and even allows for a full
classification, as we will show in upcoming work [62].
Feynman diagrams for gravitational waves.—Our aim is

to study the classical conservative dynamics for the
two-body problem of two inspiraling, nonspinning black
holes [63]. For this, we will assume that the size of the
bodies is much smaller than their distance, such that their
internal degrees of freedom can be neglected. In the
gravitational two-body problem, this condition is satisfied
when the Schwarzschild radius rs ∼ Gm of each black hole
is much smaller than the impact parameter jbj, in momen-
tum space given as jbj ∼ 1=jqj. Therefore, there is a small
expansion parameter rs=jbj ∼Gmjqj ≪ 1 inherent to the
long-distance dynamics. This naturally defines a perturba-
tive expansion that is compatible with the PM expansion of
general relativity, corresponding to an nPM correction at
order Gn. To study this problem, we will, in this Letter,
furthermore use the modern scattering amplitudes-based
approach to the PM expansion, where the two black holes
are modeled by two massive scalars minimally coupled to
gravity [19]. In particular, we will closely follow the
conventions of [27,31,32,34], but analogous results hold
in all formulations of the PM expansion.
We study the scattering of two massive scalars with

momenta pi¼1;2, masses mi¼1;2, and momentum transfer q;
see Fig. 1(a). We decompose p1 ¼ p̄1 − q=2 and p2 ¼
p̄2 þ q=2 into components orthogonal and along q [27,64],
satisfying p̄i · q ¼ 0. In quantum field theory, such a
scattering process depends on the kinematic invariants
s ¼ ðp̄1 þ p̄2Þ2, t ¼ q2, and u ¼ ðp̄1 − p̄2Þ2 with
sþ tþ u ¼ 2m2

1 þ 2m2
2.

A classical two-body problem, however, is further
characterized by having a large angular momentum
J ≫ ℏ [11,19,24,65]. In natural units, this corresponds
to s; juj; m2

1; m
2
2 ∼ J2jtj ≫ jtj ¼ jqj2, i.e., the classical

limit corresponds to the limit of small jqj [66]. In order
to focus on the classical dynamics, we will thus system-
atically implement this limit during the perturbative

expansion. In practice, this is attained by a soft-q expansion
with the method of regions [67], where hard (quantum)
momenta ∼mi are suppressed in favor of soft momenta
∼jqj [66].
To identify the diagrams that contribute to the potential

region, a power counting in jqj is carried out within the soft
expansion. Graviton propagators scale as 1=k2 ∼ jqj−2,
where k is the loop momentum, but the scalar matter
propagators can be expanded and turn into linearized
(or eikonal) propagators ∼jqj−1. Introducing the soft
four-velocities uμi ¼ p̄μ

i =m̄i, with the soft masses being
m̄2

i ¼ p̄2
i ¼ m2

i − q2=4, so that u2i ¼ 1 and ui · q ¼ 0, the
matter propagators become

1

ðkþ p̄i � q
2
Þ2 −m2

i
¼ 1

mi

1

2ui · k
þOðq2Þ: ð1Þ

In particular, this implies that the dependence on the
masses mi factors out. Each loop integration measure
scales as jqj4, n-point graviton self-interaction vertices
scale as jqj2Gðn=2Þ−1, and the interaction of a matter line
with n gravitons scales as jqj0Gðn=2Þ.
The leading term in the post-Minkowskian expansion

(1PM) scales like jqj−2G, as can be immediately seen from
Fig. 1(a). Then, each (loop) correction in the soft limit adds
a factor of jqjG [66]. The classical contribution thus stems
from diagrams that scale as jqjL−2GLþ1 at L loops [66],
corresponding to an (Lþ 1)-PM correction. Diagrams with
more powers of jqj, which are of quantum nature, become
suppressed and can be discarded. Diagrams with fewer
powers of jqj are called superclassical (also known as
iterations), which cancel when performing the matching of
the full theory to the effective field theory [24]; they can
thus similarly be discarded.
Additionally, we will simplify the analysis by restricting

ourselves to the (conservative) potential region within
the soft expansion, where the momenta scale as kμ ¼
ðω;kÞ ∼ jqjðv; 1Þ. In other words, radiation modes kμ ¼
ðω;kÞ ∼ jqjðv; vÞ leading to radiation reaction and tail
effects will also be discarded; see Refs. [31,34,36–38]
for a discussion.
Since q2 < 0 is the only remaining dimensionful scale in

the classical limit, it can be fixed by dimensional analysis.
Thus, the classical scattering process only depends non-
trivially on y ¼ u1 · u2, often rewritten in terms of y ¼
½ðx2 þ 1Þ=2x� to rationalize the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
that

regularly appears in the results.
Detecting the geometry in Feynman integrals.—

Knowing which Feynman diagrams are relevant for the
potential region in the classical limit, we now turn to the
task of detecting the geometries in the corresponding
Feynman integrals. We use two complementary methods:
(i) differential equations and (ii) leading singularities
computed via a loop-by-loop Baikov representation.

FIG. 1. (a) Kinematics of the scattering process, exemplified by
the tree-level diagram. The arrows indicate the direction of the
momenta, thin and thick lines, respectively, denote the graviton
and scalar matter propagators. (b) A Feynman diagram containing
a Calabi-Yau threefold.
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Picard-Fuchs operators: One frequently used approach
to study the geometry in Feynman integrals is differential
equations [58]. Feynman integrals can be reduced to
so-called master integrals via integration-by-parts identities
[68], as implemented, e.g., in FIRE [69,70], KIRA [71], and
LiteRed [72]. Taking then a derivative of the vector of master
integrals I⃗ with respect to one of the kinematic variables,
e.g., x, yields a system of differential equations [58]
∂xI⃗ ¼ AI⃗, where the entries of the matrix A depend on
the dimension D and the kinematics.
By taking further derivatives, this system of coupled

first-order differential equations can be reduced to a single
higher-order differential equation for an individual master
integral Ii,

LnIi ¼ inhom; Ln ¼
dn

dxn
þ
Xn−1
j¼0

cjðxÞ
dj

dxj
: ð2Þ

The inhomogeneity stems from subsectors (also known as
subtopologies), i.e., master integrals where a number of
propagators are absent, corresponding to diagrams where
those propagators are pinched. The so-called Picard-Fuchs
operator Ln, where cjðxÞ are rational functions, describes
the corresponding homogeneous differential equation. If
the rational factorization of the Picard-Fuchs operator
produces an irreducible differential operator of order
r > 1, then this is a clear indication that the Feynman
integral of interest is not polylogarithmic, but may involve a
Calabi-Yau (r − 1)-fold [73]. The factorization of differ-
ential operators is implemented, e.g., in MAPLE, and further
studying the properties of the resulting irreducible differ-
ential operator uniquely identifies the geometry under
consideration.
A Feynman integral inherits nontrivial geometries if its

subsectors, and thus the inhomogeneity, involve them.
However, we can remove the inhomogeneity [76] in the
differential equation by considering the maximal cut, where
all propagators ½i=ðQ2

i −m2
i Þ� are replaced by on-shell δ

functions δðQ2
i −m2

i Þ. Since taking derivatives commutes
with taking cuts, the operatorLn and thus the homogeneous
differential equation yields the differential equation on the
maximal cut. As a consequence, we can look at the sectors
one at a time for the purpose of detecting geometries.
Leading singularities via loop-by-loop Baikov represen-

tation: An alternative approach to detecting geometries in
Feynman integrals is via leading singularities (LS), which
are related to the maximally iterated discontinuity of the
integral [59]. Concretely, the leading singularity is obtained
by taking the maximal cut as well as any further disconti-
nuities. It can be calculated in the original momentum-
space representation of the Feynman integral as well as
in any parametric representation. A Feynman integral is
polylogarithmic if its leading singularity—as well as the
leading singularity of all its subsectors—is algebraic. This

allows us to analyze one subsector at a time, as in the case
of differential equations. If the leading singularity contains
a nontrivial integral, this integral is indicative of the
geometry contained in the Feynman integral.
Here, we will use the Baikov representation [60] for

the calculation of the leading singularity. This representa-
tion can be obtained from the D-dimensional momentum-
space representation by making a change of variables
zi ¼ Q2

i −m2
i so that the propagators characterizing the

problem become the integration variables. For multiloop
problems, it is often necessary to introduce extra auxiliary
propagators for the change of variables to be well defined.
For a problem with nint propagators, we need to add
nISP ¼ NV − nint extra variables accounting for irreducible
scalar products (ISPs), whereNV ¼ 1

2
LðLþ 1Þ þ EL is the

number of independent scalar products that may be formed
between the L-loop momenta and the E ¼ next − 1 inde-
pendent external momenta.
Overall, the Baikov parametrization reads, for the case

where all propagators are raised to power one,

I ¼ G
−DþEþ1

2

Z
dNVz

z1 � � � znint
BðzÞD−L−E−1

2 ; ð3Þ

where we have dropped an overall factor that depends
only on the space-time dimension D. Here, BðzÞ ¼
detGðk1;…; kL; p1;…; pEÞ is known as the Baikov poly-
nomial, and G ¼ detGðp1;…; pEÞ, where GðQ1;…; QnÞ
denotes the Gram matrix, with entries GijðQ1;…; QnÞ ¼
Qi ·Qj.
The Baikov representation is particularly suitable for

calculating the maximal cut, which is simply obtained by
taking the residues at zi ¼ 0 for i ¼ 1;…; nint,

Imax -cut ∝ G
−DþEþ1

2

Z
dnISPzBð0;…; 0|fflfflffl{zfflfflffl}

nint

; zÞD−L−E−1
2 : ð4Þ

The leading singularity is then calculated by taking all
possible further residues (if any) in the remaining nISP extra
variables coming from the ISPs.
To facilitate the task of calculating the remaining

residues, we use a slight variant of the Baikov representa-
tion, the so-called loop-by-loop Baikov representation [61].
It is derived by applying (3) separately to one loop at a time,
which reduces the number of remaining integrals to
nISP ¼ LþP

L
i¼1 Ei − nint, often a considerable reduction.

However, in doing so, the external momenta for each loop
will also depend on other loop momenta; hence, the Gram
determinant G will become a function GðzÞ.
Calculating the leading singularity via an integral repre-

sentation of Feynman integrals has one important subtlety:
nontrivial changes of variables may be required to expose
all poles. To exclude the existence of additional changes
of variables that expose further poles, we always use
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differential equations as cross-checks when finding non-
trivial geometries via the loop-by-loop Baikov representa-
tion. On the other hand, an algebraic leading singularity
conclusively indicates the absence of nontrivial geometries.
Relating and restricting geometries.—Before scanning

over all relevant four-loop diagrams, we can use the leading
singularity via the loop-by-loop Baikov representation to
find general relations between the geometries in different
diagrams and show that whole classes of diagrams contain
only trivial geometries, thus vastly reducing the number of
diagrams we need to consider. We present the correspond-
ing derivations in [62] and only state the results here.
Planar and nonplanar diagrams: For the purpose of PM

Feynman integral geometries, vertices at scalar lines are
effectively orderless, see Fig. 2(a), which allows us to relate
the leading singularity of nonplanar diagrams to planar
counterparts [77].
Dangling triangles: Triangles at a matter line with only

cubic vertices such as in Fig. 2(b)—which we call dangling
triangles—have vanishing leading singularity. Thus, they
are fully reducible to subsectors.
With this knowledge, we can limit the study of the

geometries to diagrams of the Mondrian family of Fig. 3, to
their nonplanar variations that are not related by reordering
vertices at the scalar lines, as well as to their subtopologies.
A Calabi-Yau threefold at OðG5Þ.—The vast majority

of the diagrams at four loops have algebraic leading
singularities, indicating that they are polylogarithmic.
In addition, we encounter several diagrams that (more or
less trivially) contain the same K3 surface that was
identified at three loops. We will present the full results
of our systematic analysis in [62]. Here, we highlight
one particular new geometry that we identify: a Calabi-Yau
threefold.

Let us consider the scalar diagram depicted in Fig. 1(b),
a subsector of the four-loop Mondrian diagram that is
obtained by pinching two propagators. It has the following
leading singularity in D ¼ 4:

ð5Þ

with

P8ðt1; t2; t3Þ ¼ ð1þ t1Þ2ð1þ t2Þ2ðt1t2 þ t23Þ2ð1 − x2Þ2
þ 64t21t

2
2ð1þ t1 þ t2Þt23x2; ð6Þ

where we have set q2 ¼ −1 since the dependence on q2

can always be recovered via dimensional analysis; see
Supplemental Material [78] for details of the calculation. It
contains the square root of a polynomial P8ðt1; t2; t3Þ of
degree 8 in three variables. Homogenizing this polynomial
to P̃8ðt1; t2; t3; t4Þ ¼ P8ðt1=t4; t2=t4; t3=t4Þt84, we obtain a
homogeneous equation of degree 8 that defines a codi-
mension-one hypersurface in weighted projective space
½t1; t2; t3; t4; t5� ∼ ½λ1t1; λ1t2; λ1t3; λ1t4; λ4t5�∈WP1;1;1;1;4,

t25 − P̃8ðt1; t2; t3; t4Þ ¼ 0: ð7Þ

Since the degree of the equation is equal to the sum of
the weights, its solution generically defines a Calabi-Yau
threefold [79,80].
From the perspective of the differential equation, we find

an irreducible Picard-Fuchs operator of order 4 in D ¼ 4,

L4 ¼
∂
4

∂x4
þ 2 − 16x2 − 10x4

xð1 − x4Þ
∂
3

∂x3

þ 1 − 28x2 þ 46x4 þ 68x6 þ 25x8

x2ð1 − x4Þ2
∂
2

∂x2

−
1þ 11x2 − 54x4 þ 22x6 þ 37x8 þ 15x10

x3ð1 − x2Þ3ð1þ x2Þ2
∂

∂x

þ 1þ 3x2 þ 20x4 þ 3x6 þ x8

x4ð1 − x4Þ2 ; ð8Þ

further confirming the Calabi-Yau geometry found with
the leading singularity. Moreover, L4 satisfies all condi-
tions for being a Calabi-Yau operator [81–89], ultimately
confirming that the geometry we found is a Calabi-Yau
threefold [90]. We compute the solution to the correspond-
ing differential equation in D ¼ 4 − 2ε in upcoming
work [90].
Moreover, this new geometry within the PM expansion

will appear in all diagrams containing Fig. 1(b) as a
subsector, as well as in those related to it by the equiv-
alences of Fig. 2. While the full calculation of the potential
at four-loop order is beyond the scope of this Letter, no full

FIG. 2. Simplifying relations for the geometries in PM
Feynman integrals: (a) the vertices at matter lines become
effectively orderless; (b) dangling triangles have vanishing
leading singularities.

FIG. 3. The Mondrian family of Feynman diagrams.

PHYSICAL REVIEW LETTERS 132, 201602 (2024)

201602-4



cancellation of geometries in the sum of diagrams has
been observed at three-loop order, strongly suggesting
that the corresponding functions also occur in the result
at four-loop order.
Conclusion and outlook.—In this Letter, we have studied

Feynman integral geometries that contribute to the classical
conservative dynamics of black holes in the post-
Minkowskian expansion and thus to the emission of
gravitational waves in the inspiraling phase of black hole
mergers. We demonstrated that leading singularities via a
loop-by-loop Baikov representation, complemented by
differential equations on the maximal cut, provide a highly
efficient method for detecting these geometries. In particu-
lar, we identify—for the first time for gravitational waves—
a Calabi-Yau threefold at four loops, i.e., at fifth post-
Minkowskian order. While the third-order differential
equation of univariate K3 surfaces is the symmetric square
of a second-order differential equation [91–94] and can
thus be solved in terms of known functions; the fourth-
order differential equation of our Calabi-Yau threefold is
not a symmetric power [90], indicating that completely new
functions arise at fifth post-Minkowskian order.
In upcoming work [62], we will use the methods

described here to fully classify the Feynman integral
geometries that occur through fifth post-Minkowskian order.
In a second upcoming work [90], we will calculate the

Feynman integral involving the newly identified Calabi-
Yau threefold via its differential equation. This can be
achieved by bringing the differential equation into the so-
called ε-factorized form, which was recently generalized
from polylogarithms [95] to elliptic functions and Calabi-
Yau integrals [54,96–99].
One immediate question for future work is whether the

K3 surface at three loops and the Calabi-Yau threefold at
four loops are part of a family of Calabi-Yau (L − 1)-folds
at L-loop order, analogously to previously identified
integral families [47–56]. Moreover, it would be interesting
to systematically use similar techniques at higher loops,
for radiation reaction [31,34,36–38] as well as for the
waveform [100–103].
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