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One of the simplest examples of noninvertible symmetries in higher dimensions appears in 4D Maxwell
theory, where its SLð2;ZÞ duality group can be combined with gauging subgroups of its electric and
magnetic 1-form symmetries to yield such defects at many different values of the coupling. Even though
N ¼ 4 supersymmetric Yang-Mills (SYM) theory also has an SLð2;ZÞ duality group, it only seems to
share two types of such noninvertible defects with Maxwell theory (known as duality and triality defects).
Motivated by this apparent difference, we begin our investigation of the fate of these symmetries by
studying the case of 4D N ¼ 4 U(1) gauge theory, which contains Maxwell theory in its content.
Surprisingly, we find that the noninvertible defects of Maxwell theory give rise, when combined with the
standard U(1) symmetry acting on the free fermions, to defects that act on local operators as elements of the
U(1) outer automorphism of the N ¼ 4 superconformal algebra, an operation that was referred to in the
past as the “bonus symmetry.” Turning to the non-Abelian case ofN ¼ 4 SYM theory, the bonus symmetry
is not an exact symmetry of the theory, but is known to emerge at the supergravity limit. Based on this
observation, we study this limit and show that, if it is taken in a certain way, noninvertible defects that
realize different elements of the bonus symmetry emerge as approximate symmetries, in analogy to the
Abelian case.
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Introduction.—A recent exciting development in quan-
tum field theory is the understanding that symmetries are
represented by topological defects with properties that
might go beyond the traditional notion of a symmetry.
Noninvertible symmetries, in particular, correspond to
defects with exotic non-group-like fusion rules and by
now have been identified and investigated in diverse setups
in different areas of physics (see [1,2] for reviews).
One of the simplest instances of such noninvertible

symmetries in higher dimensions appears in 4D Maxwell
theory. As shown in [3,4], when its SLð2;ZÞ duality is

combined with gauging a Zð1Þ
N subgroup of its electric 1-form

symmetry (with a Dirichlet boundary condition for the Zð1Þ
N

2-form gauge field, and possibly with stacking an SPT phase,
or symmetry-protected topological phase, for it), one is able to
construct noninvertible defects, known as duality and triality
defects, at special values of the complexified coupling τ. Later
[5] (see also [6]), employing the observation that gauging a
subgroup of the electric or magnetic 1-form symmetry results
again in Maxwell theory, but with a different coupling, the
SLð2;ZÞ duality was combined with gauging such subgroups

(in a nonanomalous way) to yield an SLð2;QÞ operation on
the theory that acts in an analogous way to SLð2;ZÞ (this
construction will be reviewed in the next section). This, in
turn, enabled use to find a new noninvertible defect at any
value of τ that is fixed by an element of SLð2;QÞ (which acts
on τ in the standard way by a fractional transformation),
thereby generalizing the results of [3,4].
It is natural at this point to ask what part of this

construction has a counterpart in non-Abelian theories.
Because of the central role played by SLð2;ZÞ duality, the
natural candidate to examine, which will also be the main
focus of this Letter, is N ¼ 4 supersymmetric Yang-Mills
(SYM) theory. Considering for concreteness the theory
with SUðNÞ gauge group, even though it is part of an
SLð2;ZÞ duality orbit, it only has an electric 1-form

symmetry which is Zð1Þ
N and whose gauging changes the

global structure of the theory and cannot be associated with
an action on the coupling τ. As a result, we do not seem to
have an SLð2;QÞ operation as in Maxwell theory, and a
noninvertible defect of the type we discuss only has the
chance of being found at values of τ that are fixed by
SLð2;ZÞ [7]. Indeed, previous works [4,10] only found the
duality and triality defects in N ¼ 4 SYM theory, with the
additional defects discussed in [5] being absent.
Here, in order to investigate this apparent difference

between Maxwell and N ¼ 4 SYM theories in a more
systematic way, and to try to extract a clue that will guide us
toward the fate of these additional symmetries in N ¼ 4

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 201601 (2024)

0031-9007=24=132(20)=201601(5) 201601-1 Published by the American Physical Society

https://orcid.org/0000-0002-8200-9863
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.201601&domain=pdf&date_stamp=2024-05-14
https://doi.org/10.1103/PhysRevLett.132.201601
https://doi.org/10.1103/PhysRevLett.132.201601
https://doi.org/10.1103/PhysRevLett.132.201601
https://doi.org/10.1103/PhysRevLett.132.201601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


SYM theory, we begin by examining more closely a theory
that is, in a sense, the intersection of these two: 4D N ¼ 4

Abelian U(1) gauge theory. This theory has an N ¼ 4
superconformal algebra and contains free Maxwell theory
in its content. Surprisingly, we will find that the additional
symmetries of [5], when combined with the standard U(1)
symmetry acting on the free fermions in the theory, realize
at different values of the coupling different elements of a
noninvertible U(1) R symmetry that acts on the local
operators as the U(1) outer automorphism of the N ¼ 4
superconformal algebra. Moreover, since correlators of
local operators do not depend on the coupling in a non-
trivial way in this theory (i.e., one can normalize the
operators such that the correlators are coupling indepen-
dent), they will satisfy the selection rules of the entire U(1)
at any value of the coupling.
A priori, the U(1) outer automorphism of the N ¼ 4

superconformal algebra may or may not be a symmetry of
the theory. This question was discussed in detail in the past
in [11,12] (see also [13–16]), where this potential sym-
metry was referred to as the bonus symmetry. It was
demonstrated that in the Abelian theory we consider, the
various local operators have definite charges under this
U(1) and that it is respected by the equations of motion and
supersymmetry transformations. However, the nature of
this symmetry seemed to be mysterious, as it was clearly
not a symmetry of the Lagrangian and the field strength
appeared to be charged under it. One of the observations
made in this Letter is therefore the identification in modern
terms of the bonus symmetry of the U(1) gauge theory as a
noninvertible symmetry, with different elements realized at
different values of the coupling. These elements, in turn,
mainly correspond to the defects discovered in [5], and
while their action on local operators is the one identified in
the past in [11,12], their action on line operators is highly
nontrivial [5].
Once we have identified the noninvertible defects of

Maxwell theory discussed above as the key ingredient
giving rise to the bonus symmetry of the N ¼ 4 theory
with U(1) gauge group, it is time to turn to the non-Abelian
theory and use the bonus symmetry of its algebra as our
guide in searching for new noninvertible symmetries
analogous to those of Maxwell theory. Unlike the
Abelian case, in N ¼ 4 SYM theory the bonus symmetry
is not an exact symmetry of the theory [11,12]. This is
indeed consistent with the fact that only the duality and
triality defects have been identified as exactly topological
defects in the past. However, as discussed in detail in [11],
based on holographic duality the bonus symmetry is
expected to emerge as an approximate symmetry in the
limit where the gravity dual of N ¼ 4 SYM theory is
approximated by type IIB supergravity (i.e., when both N
and g2YMN are very large). This emergence, in turn, follows
from the enhancement of the SLð2;ZÞ duality symmetry of
type IIB string theory to SLð2;RÞ in this supergravity limit

(at least when the fields are not treated as quantized) [17],
of which the U(1) bonus symmetry is the maximal compact
subgroup. This observation then suggests that the place in
N ¼ 4 SYM theory in which we should look for new
defects analogous to those of Maxwell theory is exactly at
this limit. Indeed, as we will show below, when this limit is
taken in an appropriate way, such noninvertible defects
emerge as approximate symmetries and the picture we
obtain is analogous to the Abelian case.
N ¼ 4 Abelian U(1) gauge theory.—In this section, we

would like to investigate the way in which the noninvertible
defects of Maxwell theory that include SLð2;ZÞ duality
transformations appear in the 4D N ¼ 4 theory with U(1)
gauge group. As discussed in the previous section, we are
mainly interested in the relation between these defects and
the bonus (or outer-automorphism) symmetry of theN ¼ 4
theory.
Before beginning with reviewing the noninvertible

defects of Maxwell theory, let us first identify the following
hint for them in the classical theory. Defining the self-
dual and anti-self-dual field strengths F�

mn ¼ 1
2
ðFmn�

1
2
ϵmnpqFpqÞ, we observe that the classical operation F� →

e�iφF� leaves the stress tensor invariant (see Supplemental
Material [19] for more details). Since our modern under-
standing of symmetries in quantum field theory is in terms
of topological defects, which act trivially on the stress
tensor (alternatively, the displacement operator on the
defect vanishes), this suggests that such an operation might
correspond to an exact symmetry in the quantum theory.
Notice that this operation is also a symmetry of the
equations of motion, but a bit strange at first sight since
it is not a symmetry of the Lagrangian (see Supplemental
Material [19]) and the field strength is charged under it.
To understand if and how this U(1) symmetry can appear

in the quantum theory, we notice that its action on F�
implies that it rotates between the electric and magnetic
fields. This suggests that if this symmetry (or a part of it) is
realized at the quantum level, it involves the SLð2;ZÞ
duality of Maxwell theory. This was indeed shown to be the
case in [5], by observing that combining (nonanomalous)
gauging of discrete subgroups of the electric and magnetic
1-form symmetries with the usual SLð2;ZÞ duality extends
it to the following SLð2;QÞ operation (see Supplemental
Material [19]):

�
e

m

�
→

�
q1 q2
q3 q4

��
e

m

�
; τ →

q1τ þ q2
q3τ þ q4

ð1Þ

with the corresponding matrix being an element of
SLð2;QÞ. Then, every coupling of the form

τ ¼ q1 − q4 þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðq1 þ q4Þ2

p
2q3

ð2Þ
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with q1, q3, and q4 any rationals satisfying 2 > q1 þ q4
and q3 ≠ 0 (such that the coupling g is kept real) is in-
variant under the corresponding SLð2;QÞ element, with
q2 ¼ ðq1q4 − 1Þ=q3. We therefore see that topological
defects corresponding to different elements of SLð2;QÞ
are realized at different values of the coupling. Moreover,
such defects rotate between the electric and magnetic fields
with different rotation angles, and since correlators of local
operators do not depend on τ in a nontrivial way in this
theory [and since rational rotations are dense inside U(1)],
such correlators will respect the selection rules of the entire
U(1) operation discussed above. Notice, however, that this
U(1) is not really a symmetry of the theory and is not
associated with a topological operator.
Turning now to the N ¼ 4 U(1) gauge theory, the status

of its U(1) bonus symmetry [11] is very similar to that of
the U(1) “symmetry” of Maxwell theory we discussed
above. To see it, let us begin with the basic description of
the theory. We consider a free theory consisting of a U(1)
gauge field with field strength FðαβÞ, fermions ψ Iα, ψ̄ I

α̇, and
real scalars ϕ½IJ�, where I is the index of the fundamental
representation of SUð4ÞR and α, α̇ are the usual indices of
SUð2ÞL;R. The Lagrangian is simply given by the sum of
the kinetic terms of the fields, with the exactly marginal
coupling τ (and τ̄) an overall factor. Since this theory
contains Maxwell theory, it also contains the defects we
discussed above, realizing when acting on local operators
different elements of a U(1) symmetry, which we will
denote by Uð1ÞF. As its name suggests, among the basic
fields of the theory only the field strength is charged under
Uð1ÞF (with charge 1 for FðαβÞ and −1 for F̄ðα̇ β̇Þ). In
addition, there is a Uð1Þψ symmetry under which the free
fermions ψ Iα are charged with charge 1, and a particularly
natural combination of these two symmetries is Uð1ÞY ¼
−Uð1Þψ − 2Uð1ÞF under which the supercurrent has a well-
defined charge of −1 (indeed, this will be the charge of
terms like FðαβÞψ̄ I

α̇ and ∂αα̇ϕ
½IJ�ψJβ in it). Since the super-

charges are charged under Uð1ÞY, it is an R symmetry, and
in fact this is exactly the bonus symmetry as defined in [11].
We therefore see that, in thisN ¼ 4 U(1) gauge theory, the
bonus symmetry appears as an ordinary 0-form U(1)
symmetry at the level of local correlators, but is in fact
given by (in general) noninvertible defects realizing at
different values of the coupling different elements of it.
Motivated by this link between the noninvertible defects

in Maxwell theory associated with its SLð2;QÞ operation
and the bonus symmetry of the N ¼ 4 U(1) gauge theory,
we continue in the next section to non-Abelian N ¼ 4
theories with the aim of using their bonus symmetry as a
guide for finding new analogous defects.
N ¼ 4 supersymmetric Yang-Mills theory.—As dis-

cussed in the Introduction, the bonus symmetry is not an
exact symmetry ofN ¼ 4 SYM theory, in the sense that the
corresponding selection rules are clearly violated, in

general, by local correlators. However, in the supergravity
limit of the theory (when both N and g2YMN are very large),
we obtain a description in terms of type IIB supergravity on
five-dimensional Anti-de Sitter space (or AdS5 × S5), and
when the fields are not treated as quantized there is a well-
known SLð2;RÞ symmetry acting on them [enhancing the
standard SLð2;ZÞ duality of IIB string theory]. The bonus
symmetry then emerges as the U(1) subgroup of this
SLð2;RÞ that fixes a given value of the coupling τ, and the
corresponding selection rules are expected to be satisfied by
correlators of local operators that can be computed using the
supergravity approximation [11].
This suggests that defects analogous to the ones dis-

cussed in the previous section might emerge as approxi-
mate symmetries in the supergravity limit. For this to be the
case, the possible global structures of the theory at this limit
should allow for transformations analogous to the SLð2;QÞ
of Maxwell theory. As we will show, such a description can
indeed be obtained if the large-N limit is taken in a
certain way.
Let us begin with recalling the case of finite N,

considering for concreteness the gauge group SUðNÞ.
Here there is an electric Zð1Þ

N 1-form symmetry associated
with the ZN center of SUðNÞ, acting on Wilson lines
according to the N-ality of their representation. Gauging
this 1-form symmetry or a subgroup of it, possibly with
stacking an SPT phase, changes the spectrum of line
operators in the theory and correspondingly also the 1-
form symmetry. The way these different global forms are
encoded holographically is through the topological theory
[21] (also known as the SymTFT [22–24] of the theory),

S ¼ 2π

N

Z
AdS5

BN ∪ δCN ð3Þ

obtained near the boundary of AdS5, where ∪ is the cup
product and BN and CN are both ZN 2-cochains. The
different global forms then correspond to different topo-
logical boundary conditions for the theory (3), which in
turn are classified by the Lagrangian subgroups of its
surface operators

Sðe;mÞðσÞ ¼ eð2πie=NÞ
R
σ
BNeð2πim=2πimÞ

R
σ
CN : ð4Þ

Surfaces that can end on the boundary (that is, the ones in
the chosen Lagrangian subgroup) then correspond to the
line operators of the boundary theory that are charged under
the 1-form symmetry, while the rest of the surfaces give rise
to the symmetry generators when pushed to the boundary.
Let us now examine the large-N limit of this story.

Instead of considering a specific value of N that is finite but
large (in which case the discussion remains the same as
above), we will take the limit in a way that formalizes
more precisely the intuition that combinations such as
ðe Rσ BNmodNÞ=N [which appears in the expression for the
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surface Sðe;mÞ, see (4)] are approximately valued in all of
Q=Z as N is taken to be very large. In order to do it, let us
focus on the ZN center of SUðNÞ and begin by discussing
two different natural ways of taking such a large-N limit of
it (limits of these types have been recently discussed in a
physical context in [25]).
The first, known as the “direct limit” and denoted by

lim
⟶

, results in the limit group of the family [26]

fð1=NÞZNgN ∈N being Q=Z, corresponding to the fact
that it can be written as the union of all cyclic groups. The
second, called the “inverse limit” and denoted by lim

⟵
, is the

Pontryagin dual of the direct limit and results in the group

lim
⟵

ZN ¼
�
a⃗∈

Y
N ∈N

ZN jaM ¼ aNmodM ∀ MjN
�
: ð5Þ

This simply means that any element in the resulting group
is specified by the set of its residues modulo N for all N, in
a way that is consistent with the mod map relating different
residues. This group is called the “profinite integers” and is
denoted by Ẑ. It is a certain completion of the integers Z
and contains them as a subgroup. In particular, there are
profinite integers that are not ordinary integers.
The natural question at this point is what type of limit

should be used for the large-N limit of the ZN center of the
SUðNÞ gauge group. In taking this limit, we would like to
keep the fields BN and CN on equal footing such that the
SLð2;ZNÞ symmetry of the action in (3) is maintained.
Leaving an analysis of the general case for future work, we
will here focus on gauge groups of the form SUðN2Þ. Then
in order to take such a limit of the ZN2 center, we view it as
the following extension:

0 → ZN → ZN2 → ZN → 0 ð6Þ

where the second arrow denotes multiplication by N.
Defining the bilinear pairing ða; bÞN2 ¼ ab=N2mod1 in
ZN2 [which is a map ð; ÞN2∶ ZN2 × ZN2 → Q=Z], we
observe that the first ZN group in the sequence (6) is a
Lagrangian subgroup with respect to it, and that the two ZN
groups can be regarded as Pontryagin dual to each other using
it since an element a∈ZN can be understood as a∈
HomðZN2=ZN;Q=ZÞ with aðbÞ ¼ ða; bÞN2 for b∈ZN2=ZN
(which is well defined since ZN is Lagrangian). We can then
take the large-N limit of the sequence (6) in such away that the
inverse limit is taken for the first ZN group, while the direct
one is taken for the otherZN (i.e., forZN2=ZN). This, in turn,
is possible due to the fact that the two ZN groups are
Pontryagin dual to each other and by using the property that
Pontryagin duality exchanges direct and inverse limits,
Homðlim→An; BÞ ¼ lim←HomðAn; BÞ. We then end up at
this large-N limit with the sequence

0 → Ẑ → Q̂ → Q=Z → 0; ð7Þ

where the extension ZN2 turns at the limit to the extension Q̂
of Q=Z by Ẑ. The group Q̂ is called the group of profinite
rationals and is defined in an analogous way to the profinite
integers in (5),

Q̂ ¼
�
q⃗∈

Y
N ∈N

ðQ=NZÞjqM ¼ qNmodM ∀ MjN
�
: ð8Þ

It is self-dual under Pontryagin duality and has a natural ring
structure extending that of Ẑ. Moreover, it includesQ and Ẑ
as subrings and can be written as ðẐ ⊕ QÞ=Z.
We therefore obtain that both BN2 and CN2 turn at this

limit into Q̂ 2-cochains, and that the symmetry between
them is preserved. In order to identify this symmetry in full
and find what SLð2;ZN2Þ turns into at this limit, we should
first find the limit of the action (3). We can do it by
rewriting this finite-N action using the pairing ð; ÞN2 of ZN2

we defined above as

S ¼ 2π

Z
AdS5

ðBN2 ; δCN2ÞN2 ð9Þ

and observing that this pairing turns at the limit we are
taking into the pairing ðq1; q2Þ∞ ¼ q1q2modẐ∈Q=Z in
Q̂, where q1; q2 ∈ Q̂ and q1q2 is their product using the
standard ring structure of Q̂. We therefore find the large-N
action

S∞ ¼ 2π

Z
AdS5

ðBQ̂; δCQ̂Þ∞ ð10Þ

and can identify an SLð2; Q̂Þ symmetry acting on BQ̂ and
CQ̂ as a doublet using the standard ring structure of Q̂. Let
us also comment that the surfaces of the theory, which
for finite N are specified by the pair of charges ðe;mÞ∈
ZN2 × ZN2 [see (4) for the case of SUðNÞ gauge group], are
now specified by a pair ðe;mÞ∈ Q̂ × Q̂ and take the form

Sðe;mÞðσÞ ¼ e2πi
R
σ
ðe;BQ̂Þ∞e2πi

R
σ
ðm;CQ̂Þ∞ : ð11Þ

We have found that the group SLð2;ZN2Þ, corresponding
to gauging the 1-form symmetry and stacking an SPT phase
at finite N, turns into SLð2; Q̂Þ at the large-N limit we are
considering. Notice, however, that the duality group of
N ¼ 4 SYM theory, which acts also on the rest of the
theory (e.g., on the coupling τ), is still SLð2;ZÞ for general
values of the ‘t Hooft coupling λ. At this point, we are
making use of the supergravity approximation of the string-
theory dual ofN ¼ 4 SYM theory, which is valid when λ is
taken to be large, and of its SLð2;RÞ enhanced symmetry
when the fields are treated as classical, to identify an
SLð2;QÞ ⊂ SLð2;RÞ duality group that is consistent at
the quantum level with the global structures (or charge
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quantization) we have found at the large-N limit we
described. Therefore, taking the large-N limit as detailed
above and the ‘t Hooft coupling to be large, we expect to
have an SLð2;QÞ duality group [27] with elements that
leave values of λ corresponding to a τ of the form (2)
invariant. Performing such a duality operation in half-space
and accompanying it with the corresponding element of
SLð2;QÞ ⊂ SLð2; Q̂Þ that brings the global structure to its
original form, we obtain a noninvertible topological defect
in the original theory [28]. Different such defects, which are
realized at different values of λ, implement different
elements (corresponding to certain rotation angles) of the
U(1) bonus symmetry ofN ¼ 4 SYM theory, in analogy to
the case of the N ¼ 4 U(1) gauge theory discussed in the
previous section.
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