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Approaching the long-time dynamics of non-Markovian open quantum systems presents a challenging
task if the bath is strongly coupled. Recent proposals address this problem through a representation of the
so-called process tensor in terms of a tensor network. We show that for Gaussian environments highly
efficient contraction to a matrix product operator (MPO) form can be achieved with infinite MPO evolution
methods, leading to significant computational speed-up over existing proposals. The result structurally
resembles open system evolution with carefully designed auxiliary degrees of freedom, as in hierarchical or
pseudomode methods. Here, however, these degrees of freedom are generated automatically by the MPO
evolution algorithm. Moreover, the semigroup form of the resulting propagator enables us to explore
steady-state physics, such as phase transitions.
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Introduction.—Dissipative effects are crucial to our
understanding of real world quantum mechanical systems
and feature a variety of relevant physical phenomena absent
in purely unitary settings. In many realistic and particularly
interesting setups, the timescales of system and environ-
ment do not separate, leading to a buildup of strong
correlations with the environment [1–7]. Then, advanced
numerical tools are required for the simulation of the
dynamics on a classical computer [8–13].
Many of the most sophisticated approaches realize the

open system evolution by substituting the original environ-
ment with few physical or nonphysical auxiliary degrees of
freedom. These auxiliary degrees of freedom must be
carefully tailored to accurately reproduce the dynamics of
the original bath. Prominent methods in this category
include the well-established HEOM (hierarchical equations
of motion) [8], HOPS (hierarchy of pure states) [14,15], and
pseudomode approaches [16–18], among others [19–21].
However, identifying suitable auxiliary environments is
generally a complex task that depends nontrivially on the
specific characteristics of the bath structure [22–24].
A different strategy to treat open system dynamics avoids
this issue by working directly with the exact influence
functional [25]. Viewed as a process tensor, it encapsulates
all dynamical properties of the reduced dynamics [26]. This
tensor has a representation as a two-dimensional tensor
network [11,27–29], which can be contracted to matrix
product operator (MPO) form to allow for efficient compu-
tations [28–33]. MPO methods are also used widely in the
context of weakly dissipative open systems with spatial
correlations (see, e.g., [34,35]). In contrast, here, the MPO
encodes temporal correlations due to time-nonlocal dynam-
ics induced by a structured bath.
In this Letter we establish an alternative representation of

the process tensor in terms of an infinite tensor network.

This key result allows us to use infinite time evolving block
decimation (iTEBD) [36] for network contraction, leading
to a fast algorithm with a previously unachieved numerical
scaling (linear in the bath memory time). The resulting
MPO representation of the process tensor has the same
structure as for methods using auxiliary degrees of free-
dom, bridging a gap between the two different approaches.
Crucially, this delivers a single time-local propagator,
encoding the full dynamics of the open system. Thus,
we can reach arbitrary evolution times straightforwardly,
and even utilize spectral theory in order to determine
stationary states and characterize asymptotic behavior. In
contrast to established methods such as HEOM, the
auxiliary degrees of freedom are generated automatically
in an optimized and systematic way by the network
contraction algorithm.
Open system evolution.—As a model for open system

dynamics we consider the standard Hamiltonian

HðtÞ ¼ HsystðtÞ ⊗ 1env þ S ⊗ BðtÞ; ð1Þ

where Hsyst and S are Hermitian operators in the Hilbert
space of the system and BðtÞ is an operator that describes
the collective degrees of freedom of a Gaussian environ-
ment consisting of a continuum of bosonic modes [1]. This
operator is characterized by the so-called bath correlation
function αðt; sÞ ¼ trρenvð0ÞBðtÞBðsÞ, where ρenvð0Þ is a
Gaussian environment initial state [37]. The bath is said to
be stationary if the bath correlation function depends only
on the time difference αðt; sÞ≡ αðt − sÞ. While notable
exceptions exist [38], this is the standard scenario in open
system dynamics. In order to arrive at a description of the
reduced dynamics in terms of the process tensor, one can
employ a Trotter splitting of the full unitary time evolution
operator in small time steps Δ [39]. Then, a time-discrete
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path integral for the dynamics can be derived, in which the
influence of the bath is fully captured by the so-called
influence functional. In a more general modern open
system framework, the influence functional gives rise to
the process tensor from which all dynamical properties of
the system can be extracted [26,28].
For clarity we focus only on computing the system

density matrix after N time steps t ¼ NΔ. We use a
Liouville-space (density matrix space) notation where a
single index μ≡ ðμl; μrÞ labels a (“left” and “right”) pair of
eigenstates jμli, jμri of the coupling operator S, such that
density matrices are denoted as vectors ρμ ¼ hμljρjμri.
Thus, if the dimension of the system Hilbert space is d, μ
runs from 1 to d2. The time evolution of the system state
ρðtÞ can then be expressed in terms of a discrete path
integral [28,40–42]

ρνN ðNΔÞ ¼
X

μ1…μN
ν0…νN−1

F μ1…μN
N

�YN

k¼1

Uνk−1μkνk
k

�
ρν0ð0Þ: ð2Þ

We can write this equation pictorially using tensor network
notation

ð3Þ

The tensors Uλμν
k can be seen as unitary channels describing

the evolution due to Hsyst for the time step k [43] and
F μ1…μN

N is the time-discrete influence functional, a rank-N
tensor accounting for the time-nonlocal effect of the bath.
Even though for Gaussian baths the influence functional

is known analytically, the time evolution according to
Eq. (2) involves a sum over all elements of FN which
are exponentially many (d2N). Therefore such a direct
computation cannot be used in practice.
Tensor network representation of the influence

functional.—It has been shown in Refs. [11,27,28] that
the time-discrete influence functional can be represented as
a two-dimensional tensor network. In detail one can define
a set of elementary tensors

ð4Þ

such that the influence functional can be expressed as in
Fig. 1(a). Here the weights

Ikðν; μÞ ¼ exp ð−ðSμl − SμrÞðηkSνl − η�kSνrÞÞ ð5Þ

are used, where ηk is determined by the bath correlation
function at time step k and Sn denotes the nth eigenvalue of

the coupling operator [11,28,43]. In the process tensor time
evolving matrix product operators (PT-TEMPO) scheme
[11,28,30,45], the network [Fig. 1(a)] is contracted to a
matrix product operator [Fig. 1(b)]. This can be done, for
instance, by multiplying adjacent columns followed by a
compression based on singular value decompositons,
which is required to keep the bond dimension manageable.
With a MPO form for the influence functional the open
system evolution Eqs. (2), (3) can be performed straight-
forwardly with iterative tensor contractions. At first sight,
to obtain a process tensor for N time steps in MPO form,
OðN2Þ matrix factorizations are required to contract the
two-dimensional network Fig. 1(a). However, usually one
assumes a finite memory time of the bath such that all bðkÞ
tensors for k > Nc can be neglected (ηk>Nc

≈ 0) [46]. In
this case it has been shown that the scaling of the network
contraction can be improved to OðNc logNcÞ [47].
In the following we utilize infinite MPO evolution

techniques to generate a new MPO representation for the
influence functional, taking the uniform structure displayed
in Fig. 1(c). As a formula we can express this as

F μ1…μN
N ¼ v⃗Tl f

μ1fμ2 � � � fμN v⃗r; ð6Þ

where, for given index μ, fμ is a square matrix (dimensions
χ × χ) and v⃗l=r are vectors realizing finite-time boundary
conditions. Unlike for the MPO resulting from PT-TEMPO
[Fig. 1(b)], the tensors f are all identical and independent of
N, such that the MPO can be trivially extended to arbitrary
evolution times. We will later exploit the crucial advantages
of this semigroup structure in example calculations. As an
important side remark, note that, when using auxiliary
degrees of freedom to effectively describe the open system
evolution, the time-discrete influence functional also takes
the form of Eq. (6). For instance, using the hierarchical
equations of motion (HEOM) approach, the tensor f
becomes the propagator of the hierarchy for a time step
Δ and the bond dimension χ is the number of auxiliary

(a) (b)

(c)

FIG. 1. Different tensor network representation of the time
discrete influence functional F μ1…μ5

5 for N ¼ 5 time steps.
(a) Exact representation as a two-dimensional tensor network
[28] (grayed out open tensor legs must be summed over).
(b) Matrix product operator representation as obtained from
contraction of the network (a) (PT-TEMPO) [30]. (c) A semi-
group representation with identical tensors f, as in Eq. (6).
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density operators [43]. However, in order to generate the
HEOM propagator one has to manually tailor a suitable
auxiliary environment. In contrast, our new scheme auto-
matically generates this form in an optimized way based on
MPO compression.
As a first step we expand the exact network Fig. 1(a)

by extending the index dimension (d2) of the tensors bðkÞ
by one, introducing a “zero” dimension via Ikð0; iÞ ¼
Ikði; 0Þ≡ 1, and keeping the definition (4) as is. This
additional dimension is used only to realize finite-size
boundary conditions [boundary vectors in (6)] and can be
discarded later. If one index of an extended bðkÞ tensor is
zero, the tensor reduces to a trivial product of delta
functions. As demonstrated in the Supplemental Material
[43], this property allows us to obtain the influence func-
tional for M < N time steps from the influence functional
for N time steps by inserting zeros at the boundary

F μ1…μM
M ¼ F 0…0;μ1…μM

N ¼ F μ1…μM;0…0
N : ð7Þ

It is even possible to factor the influence functional into
two, by piercing the train of indices with at least Nc zeros

F μ1…μM;0…0;ν1…νK
N ¼ F μ1…μM

M F ν1…νK
K : ð8Þ

These relations can be used to obtain FN from an influence
functional F∞ with infinite time steps. In fact, infinite
tensor network contraction methods allow us to obtain an
MPO expression for such an infinite influence functional in
the form

F…μνδ…
∞ ¼ tr½� � � fμfνfδ � � ��; ð9Þ

where fμ are χ × χ matrices (bond dimension χ,
μ ¼ 0; 1;…; d2). As the boundary condition for the infinite
network is irrelevant, we have chosen periodic boundary
conditions for convenience. Using (7) and (8), the desired
influence functional for N steps can then be obtained via

F μ1…μN
N ¼ tr½ðf0Þ∞fμ1fμ2 � � � fμN �: ð10Þ

The infinite matrix power can be expressed as ðf0Þ∞ ¼
v⃗r ⊗ v⃗l with v⃗l=r the leading left and right eigenvectors of
f0 (eigenvalue one). We have indeed recovered a repre-
sentation of the type (6). Crucially, one only needs to
compute and store the single tensor f instead of OðNcÞ
such tensors as in the finite contraction schemes [47].
Moreover, as demonstrated in the Supplemental Material
[43], the stationary state can also be determined efficiently
by computing the leading eigenvector of the full short-time

propagator Qðν;jÞ
ðλ;iÞ ¼

P
μ f

μ
ijU

λμν [43].
Algorithm.—It remains to provide an algorithm for

computing the tensor f in Eq. (9). Based on an infinite-
N limit of the exact network in Fig. 1(a), we propose a

network contraction in an “anti-diagonal” direction starting
from k ¼ Nc, as shown in Fig. 2, when the network
displays a structure suitable for time evolving block
decimation (TEBD). The “gates” bðkÞ can formally be
seen as nearest neighbor coupling alternating between left
and right “sites.” Thus, it is straightforward to apply infinite
TEBD algorithms [36,48,49] with MPO evolution from top
to bottom (Fig. 2 right panel). This requires only Nc
matrix factorizations. Since the gates bðkÞ become weakly
entangling for large k, the bond dimension increases
significantly only for the last few evolution steps, making
this an excellent contraction scheme. The simple
iTEBD algorithm from Ref. [48] already performs very
well, resulting in similar bond dimension for a given
accuracy as the contraction of the finite network, but
with a computational speedup in orders of magnitude
(for more details on this computational advantage see
the Supplemental Material [43]).
Applications.—For the following examples we consider

a (sub-)Ohmic bath with exponential cutoff. At zero
temperature the bath correlation function reads [10]

αðtÞ ¼ αω2
c

Γðsþ 1Þ
2ð1þ iωctÞsþ1

: ð11Þ

In this expression, α is a dimensionless coupling strength,
ωc is the cutoff frequency, and s ≤ 1 is the exponent of the
low frequency behavior ∝ ωs of the spectral density. This
function decays algebraically for large times, possibly
making it challenging for simulations due to a resulting
long memory time.
As a first example we compute the asymptotic entangle-

ment in a two-spin boson model. The model consists of
noninteracting spins A and B that are coupled to the same
bath via

HðtÞ ¼ Ω
2
ðσAx þ σBx Þ ⊗ 1env þ

1

2
ðσAz þ σBz Þ ⊗ BðtÞ: ð12Þ

FIG. 2. Visual representation of an infinite time-translationally
invariant influence functional with Nc ¼ 3 (left network) which
can be seen as nearest-neighbor matrix product operator evolu-
tion in memory time (right network).
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Even if the spins are not directly coupled, at low
temperatures, they still become entangled via the inter-
action with a common bath [2,50]. A crucial advantage of
our framework is that we can use a spectral decomposition
of Q to determine the steady state without relying on time
evolution [51,52]. This allows us to effortlessly obtain
accurate values for the asymptotic concurrence over large
parameter regimes, displayed in Fig. 3. As can be expected,
the concurrence increases with the increasing coupling
strength and decreases with increasing temperature. For
every coupling strength a maximum temperature exists
after which the asymptotic state becomes separable. Note
that even for weak coupling the concurrence is difficult to
compute using standard perturbative master equations. As
shown in Fig. 3, the second order Redfield equation [53]
predicts systematically wrong values for weak coupling. In
fact, second order master equations predict the steady state
only to zeroth order accuracy [50,54,55], while obtaining
higher order equations is tedious [55,56].
We further exemplify the power of a spectral analysis by

studying the well-known quantum phase transition in the
sub-Ohmic spin boson model [24,57–63]

HðtÞ ¼ Ωσx ⊗ 1env þ σz ⊗ BðtÞ: ð13Þ

As the coupling strength α is increased, the system changes
from a symmetric phase, where asymptotically hσzi ¼ 0, to
a symmetry broken phase hσzi ≠ 0. In general, such phase
transitions are difficult to describe via time evolution
because it is hard to separate asymptotic and transient
behavior, especially since numerical approaches will

typically generate a gapped spectrum [11,64]. In our
framework we can employ a spectral decomposition in
order to write the evolution of any observable as

hσziðtÞ ¼
Xχd2

k¼1

eγkthσzik; ð14Þ

where γk are complex rates extracted from the eigenvalues
of the short time propagatorQ. For large twe can keep only
the two most relevant contributions in the sum, the leading
and next-to-leading eigenvector

hσziðtÞ → eγ1thσzi1 þ eγ2thσzi2: ð15Þ

For the spin boson model this requires further justification,
because the exact spectrum is not gapped. We provide a
full discussion of the subtleties in the Supplemental
Material [43]. There always exists a unique steady state
contribution with γ1 ¼ 0 which obeys the symmetry of the
model hσzi1 ¼ 0. Hence, to describe the transition, we must
consider the next-to-leading eigenvector. In order to ensure
convergence of the algorithm, we modify the bath corre-
lation function after a time tr to decay exponentially (low
frequency regularization). The original spin boson model is
recovered when tr → ∞. In this limit we find for all
coupling strengths that γ2 → 0 (see Fig. 4). Thus, the
symmetry breaking is characterized by the value of hσzi2
extrapolated to large tr. Since the phase transition is of
second order, we make an extrapolation by fitting algebraic
curves to the numerical data. The results are displayed

FIG. 3. Steady state concurrence in the two spin boson model
with an Ohmic bath s ¼ 1 and ωc ¼ 5Ω for different coupling
strengths and temperatures computed with our new approach
(converged results). The lower panel shows cuts for the coupling
strengths indicated by the lines in the upper panel. As a
comparison, the concurrence predicted by Redfield theory is
displayed as dashed lines.

FIG. 4. Predictions for the stationary σz expectation value in the
sub-Ohmic spin boson model (s ¼ 0.5, ωc ¼ 20Ω) using differ-
ent low frequency regularizations tr. The left panel shows the
spectral contributions to σz from the numerically computed short-
time propagator below the transition (× marker) and above the
transition (þ marker). We can identify the unique steady state
(γ ¼ 0, hσzi ¼ 0) as well as the next-to-leading contribution that
breaks the symmetry (encircled). On the right-hand side the
predicted steady state values are displayed as a function of the
coupling strength. The green line shows the extrapolated values
from algebraic fits [43]. We can identify the phase transition at
α ≈ 0.1175.
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in Fig. 4. While the curves for a finite tr (red and blue) do
not indicate the transition point, we can clearly identify the
critical coupling from the extrapolated values (green
curve).
Conclusions.—Matrix product operators have proven

to be highly efficient in representing the temporal corre-
lations (memory) in the quantum evolution of open systems
[11,29,30,42]. These correlations are encoded in the
influence functional (or the process tensor) which can be
seen as a MPO in evolution time [28]. In this Letter we have
demonstrated that, within this framework, a MPO form of
the influence functional for arbitrary finite or infinite
evolution times can be obtained by contraction of a single
infinite tensor network. This strategy has crucial advan-
tages over previous approaches that were based on finite
tensor network contractions [28,47]. The new contraction
algorithm achieves an optimal scaling with respect to the
number of required matrix operationsOðNcÞ and leads to a
considerable computational speed-up over all previously
known approaches which require at leastOðNc logNcÞ (Nc
is the number of memory time steps) [28,47]. Even more
significantly, we obtain a single time-independent (semi-
group) propagator that delivers the full open system
evolution. This structural advantage allows us to utilize a
spectral decomposition in order to characterize particularly
relevant asymptotic dynamics even in difficult settings such
as dissipative phase transitions. From a broader perspective,
our result can be seen as a way to automatically generate an
optimized set of auxiliary degrees of freedom which realize
the exact bath response to a controlled level of accuracy.
While the simple iTEBD algorithm that we use here
performs very well already, we believe there is substantial
potential for further optimization. For instance, using
advanced infinite MPS evolution schemes [65–67] could
lead to a better accuracy at a given bond dimension, which
becomes relevant for large system sizes and ultrastrong
coupling. Moreover, we are hopeful that similar schemes
can be developed for more general couplings [33] as well as
fermionic [68] and non-Gaussian baths [42].
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