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Uncertainty relations are a fundamental feature of quantum mechanics. How can these relations be found
systematically?Here, we develop a semidefinite programming hierarchy for additive uncertainty relations in the
variances of noncommuting observables.Our hierarchy is built on the state polynomial optimization framework,
also known as scalar extension. The hierarchy is complete in the sense that it converges to tight uncertainty
relations.We improve upon upper bounds for all 1292 additive uncertainty relations on up to nine operators for
which a tight bound is not known. The bounds are dimension-free and depend entirely on the algebraic relations
among the operators. The techniques apply to a range of scenarios, including Pauli, Heisenberg-Weyl, and
fermionic operators, and generalize to higher order moments and multiplicative uncertainty relations.
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Introduction.—Quantum mechanical particles exhibit a
fundamental uncertainty relation between conjugate observ-
ables. Similar to probability distributions that are related by a
Fourier transform, conjugate observables do not allow for
simultaneous measurements with vanishing variances. This
feature both enables as well as hinders certain applications of
quantum technologies [1–6]. While commuting measure-
ments can be jointly diagonalized, anticommuting observ-
ables are incompatible. This is taken advantage of in quantum
error correction, where errors that anticommute with some
stabilizer elements are detected by the change they induce
in the respective error syndromes [5]. Also the security of
quantum key distribution relies crucially on the fact that a
basis change leads to an unavoidable uncertainty in meas-
urement outcomes [6]. In particular, additive uncertainty
relations find applications in spectroscopy and atomic clocks
[7], and quantummetrology [8]. Considerable effort has been
made to derive state-independent bounds [9,10].
To introduce our setting, consider a two-dimensional

spin system with σx, σy, σz the Pauli matrices and denote
hσiiϱ ≔ trðϱσiÞ the expectation value of σi on state ϱ. The
set of a qubit density matrices is described by the Bloch
ball, satisfying

hσxi2ϱ þ hσyi2ϱ þ hσzi2ϱ ≤ 1: ð1Þ
A straightforward consequence of this constraint is an
additive uncertainty relation of the form

Δ2σx þ Δ2σy þ Δ2σz ≥ 2; ð2Þ
whereΔ2σi ≔ hσ2i iϱ − hσii2ϱ and we used that σ2i ¼ 1. More
generally, for a set of anticommuting operators the relationP

n
i¼1hσii2 ≤ 1 holds. This follows from the decomposition

1 −
Phσii2ϱ ¼ hð1 −P

σihσiiϱÞ2i ≥ 0 as sum of squares.

A natural question is then what happens when some of the
variables commute, while some others anticommute.
To answer this question we investigate the following

quantity: given a family of Hermitian and unitary operators
fAigni¼1 satisfying commutation relations of the form
AiAj ¼ �AjAi, define the quantity

β ¼ sup
ϱ

Xn
i¼1

hAii2ϱ: ð3Þ

Here, the maximization is over all states ϱ and bounded
operators Ai on Hilbert spaces that support ϱ and the
commutation relations between the Ai. Bounds on β have
several applications in quantum information, including the
characterization of entanglement [11], nonlocality [12], and
measurement compatibility [13] and to estimate ground
state energies [14]. Alternatively, Eq. (3) gives in the spirit
of Eq. (2) tight additive uncertainty relation in the variances
Δ2Ai ≔ hA2

i iϱ − hAii2ϱ,
Xn
i¼1

Δ2Ai ≥ n − β: ð4Þ

In a recent work [11], Gois et al. provided the upper
bound β ≤ ϑðGÞ. Here, ϑðGÞ is the Lovász theta number of
the observables anticommutativity graph. This graph enc-
odes the observables’ relations, with two vertices joined by
an edge, if the corresponding observables anticommute;
i.e., i ∼ j if AiAj ¼ −AjAi and i≁j else. The related bound
by Hastings and O’Donnell [15], hPn

i¼1 aiAii2ϱ ≤ ϑðGÞ for
all kak ≤ 1, has been discovered in the context of optimiz-
ing fermionic Hamiltonians. In turn, β is lower bounded by
the independence number α, which is the maximal number
of disconnected vertices of G. The appearance of the
Lovász theta number in this context is intriguing, as it

PHYSICAL REVIEW LETTERS 132, 200202 (2024)

0031-9007=24=132(20)=200202(9) 200202-1 © 2024 American Physical Society

https://orcid.org/0000-0003-1441-0468
https://orcid.org/0000-0002-3856-4018
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.200202&domain=pdf&date_stamp=2024-05-16
https://doi.org/10.1103/PhysRevLett.132.200202
https://doi.org/10.1103/PhysRevLett.132.200202
https://doi.org/10.1103/PhysRevLett.132.200202
https://doi.org/10.1103/PhysRevLett.132.200202


has already been linked to nonlocality, contextuality, and
quantum zero-error communication [16–19].
The aim of this Letter is to provide a semidefinite

programming hierarchy that upper bounds Eq. (3) and
improves upon the Lovász bound. The first level of our
hierarchy coincides with the Lovász theta number, and thus
with the result of Gois et al. Furthermore, if at any level of
the hierarchy the upper bound coincides with α (c.f. Table I)
or the rank loop condition is met, then the corresponding
uncertainty relation in Eq. (4) is tight. Numerical tests show
that already the second level of our hierarchy improves
upon the previous best upper bounds for all 1292 non-
isomorphic graphs with up to nine vertices for which β is
unknown [20]. In particular, Table IV shows that the second
and third levels often close the gap left by the Lovász theta
number to a tight bound. We also introduce a second
semidefinite programming hierarchy [Eq. (19)] that is
complete and thus converges to β. With this we partially
answer an open question by Xu et al. on how to obtain
efficient upper bounds on β [14].
The central tool we use is state polynomial optimization

by Klep et al. [21], also known as scalar extension [22,23],
and which can be thought of as a variant of the non-
commutative optimization framework by Navascués,
Pironio, and Acín [24,25]. This makes the resulting bounds
both independent of the local dimension and applicable to a
wide range of situations. Different normalization condi-
tions (e.g., projectors, unitaries, unipotents), commutation
relations, and additive as well as multiplicative uncertainty
relations in higher order moments can be treated. For
example, Table II shows values of β for a set of Heisenberg-
Weyl operators that satisfy commutation relations of the
form AiAj ¼ ζijAjAi with ζij a root of unity.

In this Letter, we will restrict the exposition to unitary
operators and quadratic expressions as in Eq. (3). In what
follows, upper case letters will refer to observables as in
hAiϱ ≔ trðϱAÞ, while the lower case refers to letters a
and words w in the state polynomial framework, whose
evaluation on a state is referred to as hai and hwi.
Lovász bound.—We introduce the upper bound on β in

Eq. (3) given by the Lovász theta number [11]. Let
fA1;…; Ang be a collection of hermitian unitary operators
that pairwise either commute or anticommute—for
example, a collection of n-qubit Pauli operators. We encode
the commutation relations AiAj ¼ ζijAjAi with ζij in a
graph G with adjacency matrix Γij ¼ ð1 − ζijÞ=2, where
ζij ∈ fþ1;−1g. In this way, every vertex represents an
operator, with two vertices connected whenever the corre-
sponding operators anticommute. The Lovász bound then
constrains β as [11,15]

β ≤ ϑðGÞ: ð5Þ
Here, ϑðGÞ is the Lovász theta number of the graph G.
A for us convenient definition of ϑðGÞ is through the

optimal value of the following semidefinite program [26]:

ϑðGÞ ¼ max
M

Xn
i¼1

Mii

s:t:Mii ¼ ai;

Mij ¼ 0 if ζij ¼ −1;

Δ ¼
�
1 aT

a M

�
≥ 0: ð6Þ

TABLE I. Tight uncertainty relations. The commutation rela-
tions of operators are encoded in a graph: two vertices are
connected if the corresponding operators anticommute and
disconnected otherwise. Our hierarchy [Eq. (15)] upper bounds
β ¼ supϱ

P
n
i¼1hAii2ϱ as β ≤ … ≤ ϑ2 ≤ ϑ1, from which one ob-

tains the additive uncertainty relation
P

n
i¼1 Δ2Ai ≥ n − β. The

independence number α is the size of the largest set of
disconnected vertices and lower bounds β, while the Lovász
number ϑ [Eq. (6)] provides an upper bound and coincides with
the first level of our hierarchy. For the graphs shown above, the
second level gives a tight uncertainty relation as α ¼ β ¼ ϑ2,
whereas ϑ1 does not. The labeling is identical to that of Table IV.

TABLE II. Upper bounds ϑk for higher dimensional spin
operators, obtained with an adaptation of Eq. (15) for commu-
tation relations given by dth roots of unity, AiAj ¼ e2πi=dAjAi

when i ∼ j. This requires complex moment matrices that can be
evaluated through Eq. (22). Lower bounds (lb) are obtained from
sampling Haar random states and evaluating them on Heisenberg-
Weyl operators [Eq. (A13)]. Displacement operators [Eq. (A17)]
give the same bounds.
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To see how Eq. (6) gives an upper bound on Eq. (3),
that is β ≤ ϑðGÞ, consider the following relaxation: for
any ϱ construct a moment matrix Γ indexed by the set
f1; hA†

1iϱA1;…; hA†
niϱAng, where hAiiϱ ¼ trðϱAiÞ and

A0 ¼ 1,

Γij ¼ trðϱhAiiϱhA†
jiϱA†

i AjÞ: ð7Þ

Such matrix Γ has the form

ð8Þ

In particular, Γ0i ¼ Γii ¼ hAii2ϱ since A†
i Ai ¼ 1, and Γ is

positive semidefinite by construction. Also, we can set
Γij ¼ 0 when ζij ¼ −1, because if Γ is feasible, so is
ðΓþ ΓtÞ=2 with the objective value unchanged. Note that
these last three properties coincide with the constraints
imposed onΔ in Eq. (6). However, a moment matrix Γmust
additionally arise from some quantum state, and generally
the set of matrices Δ can be larger than the set of matrices Γ
arising from states. Consequently, the optimum of Eq. (6)
upper bounds β and the Lovász bound holds, β ≤ ϑðGÞ.
While this approach already gives tight upper bounds

in several settings, the pentagon graph in Table II with
β ¼ 2 <

ffiffiffi
5

p ¼ ϑðGÞ shows that this Lovász bound is not
tight in general. It turns out that a slight modification of the
program in Eq. (6) can significantly strengthen the bounds.
The key idea is to consider larger moment matrices, that
incorporate additional commutativity constraints between
products of operators.
A Lovász-type hierarchy.—To obtain stronger bounds,

consider the set of moment matrices indexed by
fhA†

i iϱhA†
jiϱAiAjg0≤i<j≤n [27],

Γij;kl ¼ trðϱhAiiϱhAjiϱhA†
kiϱhA†

l iϱðAiAjÞ†AkAlÞ: ð9Þ

These have the form

ð10Þ

The submatrix ðΓi0;j0Þ0≤i<j≤n coincides with Eq. (8), while
the complete matrix satisfies additional second-order com-
mutation relations,

Γij;kl ¼ ζjiΓji;kl ¼ ζklΓij;lk ¼ ζikΓkj;il: ð11Þ
Again, Γ is positive semidefinite.
Thus in analogy to Eq. (6), we formulate the relaxation

ϑ2ðGÞ ¼ max
M

Xn
i¼1

Mi0;i0

s:t:Mij;kl ¼ ζjiMji;kl;

Mij;kl ¼ ζklMij;lk;

Mij;kl ¼ ζikMkj;il;

Mii;kl ¼ M0i;kl;

M ≥ 0: ð12Þ
As in the previous section, we can restrict to real matrices: if
M is feasible, then so is ðM þMtÞ=2 with unchanged
objective value. Thus we can setMij;kl¼0 if ðAiAjÞ†AkAl ¼
−ðAkAlÞ†AiAj. Later on, we cover the general case with non-
Hermitian operators and complex phases [Eq. (19)], which
requires complex matrices.
In analogy to the argument made for the Lovász bound,

any Γ matrix arising from a state also satisfies the
constraints imposed on the matrix M in Eq. (12). Thus
the set of valid moment matrices Γ is contained in the
set of feasible matrices M. Consequently, β ≤ ϑ2ðGÞ.
Additionally, as the submatrix ðMi0;j0Þni;j¼0 coincides with
Δ of Eq. (6), we have the strengthening

β ≤ ϑ2ðGÞ ≤ ϑðGÞ: ð13Þ
For the pentagon graph in Table II, this enlarged program

already yields a tight bound on β ¼ 2 ¼ ϑ2ðGÞ. For the
remaining graphs with five vertices the Lovász number
equals the independence number, and thus ϑ2ðGÞ is tight
for all graphs with up to five vertices.
The argument above easily generalizes to larger indexing

sequences that incorporate commutation relations between
products of up to k operators. Denote ⃗i ¼ ði1;…; ikÞ,
a moment matrix Γ indexed by fhA†

i1
iϱ…hA†

ik
iϱAi1…

Aikgni1;…;ik¼0 where all nonzero indices are pairwise distinct
and ordered increasingly. This has entries

Γ⃗i;j⃗ ¼ hAi1iϱ…hAikiϱhA†
j1
iϱ…hA†

jk
iϱ

× ðhAi1…AikÞ†Aj1…Ajkiϱ ð14Þ
and satisfies the semidefinite program

ϑkðGÞ ¼ max
M

Xn
i¼1

M0…0i;0…0i

s:t:Mπða;bÞð⃗i;j⃗Þ ¼ ξabM ⃗i;j⃗;

Mii…ik;j⃗
¼ M

0i…ik;j⃗
;

M ≥ 0: ð15Þ
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Here, πða; bÞ is the transposition exchanging the ath and
bth elements in the joint sequence ðik;…; i1; j1;…; jkÞ
(note the reversed indexing in the index i arising from the
dagger in the moment matrix) and

ξab ¼
Y

a<c≤b
ζacζcb ð16Þ

is the factor that appears from the exchange.
By construction, Eq. (15) defines a hierarchy of upper

bounds ϑkðGÞ:
βðGÞ ≤ … ≤ ϑkðGÞ ≤ … ≤ ϑ1ðGÞ ¼ ϑðGÞ: ð17Þ

We show in the next section that the relaxations ϑk in
Eq. (15), in particular ϑ in Eq. (6), can be enlarged to a
complete hierarchy of semidefinite programs converging to
the optimal value of Eq. (3).
A complete hierarchy.—We now present a complete

hierarchy that converges to β. Let ζ be a matrix encoding
the commutation relations between a collection of operators
fA1;…; Ang. The upper bound β in Eq. (3) can be
formulated as the following optimization problem over
expectations h·iϱ:

sup
ϱ

Xn
i¼1

jhAiiϱj2

s:t: A†
i Ai ¼ AiA

†
i ¼ 1;

AiAj ¼ ζijAjAi;

h1iϱ ¼ 1: ð18Þ
We now show how to tackle this problem with a variant of
noncommutative polynomial optimization [24], allowing
for nonlinear expressions in the expectations, known as
state polynomial optimization [21] or scalar extension [28].
To solve this type of optimization problem, consider

words (or noncommutative monomials) w ¼ aj1 � � � ajp
built from letters faigni¼1 and expectation value of words
denoted by hwi ¼ haj1 � � � ajpi. The most general mono-
mials in words and expectations are then of the form
w ¼ w0hw1i � � � hwmi. Such formal state monomials can
be added and multiplied to form state polynomials. The
involution of a word is defined by ða1…anÞ� ¼ a�n…a�1,
which plays the role of the adjoint of an operator in the
formal setting. In particular, a�i ¼ ai when the operators are
required to be Hermitian. Also, expectations behave as
scalars, so that vhwi ¼ hwiv for all v, w. Finally, hvhwii ¼
hhvihwii ¼ hvihwi and ðvhwiÞ� ¼ v�hwi� ¼ hwi�v�, while
e is the identity (or empty) word satisfying we ¼ w ¼ ew
for all words w.
For our problem, one additionally imposes the con-

straints aiaj ¼ ζijajai arising from the commutation rela-
tions AiAj ¼ ζijAjAi. Likewise, the constraint A†

i Ai ¼
AiA

†
i ¼ 1 gives rise to a�i ai ¼ aia�i ¼ e. For Pauli matrices,

this reduces all monomials to square-free monomials.

Now consider a moment matrix Ml, indexed by all
state monomials of degree at most l, whose entries are
Mlðv; wÞ ¼ hv�wi. Then, the optimal solution of Eq. (18)
is approximated from above with the following hierarchy of
semidefinite programs with l∈N [ [21], Lemma 6.5]:

νlðζÞ ¼ max
Xn
i¼1

jhaiij2

s:t: hidi ¼ 1;

Mlðv; wÞ ¼ Mlðx; yÞ when hv�wi ¼ hx�yi;
Ml ≥ 0; ð19Þ

where one imposes on the entries Ml all relations arising
from aiaj ¼ ζijajai and a�a ¼ aa� ¼ e. By increasing the
degree l, these relaxations converge to the optimal solution
of Eq. (3) [ [21], Theorem 5.5 and Proposition 6.7]:

lim
l→∞

νlðζÞ ¼ β: ð20Þ

For this result to hold, it is necessary that the optimization is
over a bounded set of operators. The technical condition is
that the set is Archimedean, that is, there exists a constant
C > 0, such that

P
n
i¼1 aia

�
i ≤ C. In our problem this is

satisfied with C ¼ n. Additionally, when the rank loop
condition is met, that is rankðMlÞ ¼ rankðMlþ1Þ (this
is called a flat extension), then the optimum has been
reached [ [21], Proposition 6.10].
It can now be seen that ϑkðGÞ of Eq. (15) arises from the

state polynomial optimization framework [Eq. (19)] where
one considers only state monomials of the form

fha�i1i � � � ha�ikiai1 � � � aikgni1;…;ik¼0; ð21Þ

with all nonzero indices pairwise distinct.
Non-Hermitian operators.—Note that both the complete

and relaxed hierarchies can easily deal with operators
that neither commute nor anticommute, but for which
there is a complex phase ζij ∈C. Then for every letter a
we define two new symbols to denote its real ℜw and
imaginary ℑw part. Additionally, for each word w impose
the constraints ℜw ¼ ℜw� and ℑw ¼ −ℑw�. The positive
semidefinite constraint on the complex moment matrix
Ml ¼ ℜMl þ iℑMl ≥ 0 is equivalent to

�
ℜMl −ℑMl

ℑMl ℜMl

�
≥ 0: ð22Þ

Table II shows the first two levels of the hierarchy of
Lovász relaxations for the Heisenberg-Weyl operators
computed through the complex to real mapping of
Eq. (22). These operators are not Hermitian in dimensions
d greater than two, and we use weighted graphs to specify
their commutation relations where ζij is a dth root of unity.
Note that the cost of solving the problem in Eq. (19) does
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not increase with d but only with the number of operators
and the level of the hierarchy k.
Cutting planes.—The Lovász bound in Eq. (6) can be

strengthened with additional constraints—for instance
with so-called odd-hole inequalities [26]. Let G be the
anticommutation graph of some Hermitian operators, and
let H be a subset of vertices of G inducing a cycle (i.e., a
hole). Then

X
i∈H

hAii2ϱ ≤
�jHj
2

�
: ð23Þ

This constraint acts as a half-plane in the semidefinite
program, and can strengthen the Lovász bound for odd jHj.
For graphs with up to seven vertices with nonoverlapping
holes, these additional constraints are enough to tighten the
bound for β. However, these are not enough when the holes
are intertwined as in Table III (#3 in Table IV). More
generally, one can impose constraints that arise from higher
levels in the hierarchy [Eq. (19)] on selected subgraphs.
Conclusions.—We presented in Eq. (19) a complete

semidefinite programming hierarchy converging to tight
uncertainty relations. The reduced formulation of this
hierarchy in Eq. (15) can be seen as a natural generalization
of the Lovász bound [11]. Interestingly, the second level of
this reduced hierarchy already provides tight bounds on β
for all graphs with no more than six vertices. This answers
an open question by Xu et al. on how to efficiently bound
β [14]. Additionally, our hierarchy applies to a wide range
of scenarios, including the n-qubit Pauli group, generalized
Pauli operators for higher-dimensional systems, Clifford
algebras, and fermionic operators. It also applies to higher
order moments and multiplicative uncertainty relations.
Several questions remain. (1) Can a similar approach be
derived for entropic uncertainty relations [29–34]? (2) Can
uncertainty relations for Gell-Mann matrices be found that
make use of the structure constants of SUð3Þ, in analogy to
the Lovász bound? (3) Is the hierarchy of relaxations ϑkðGÞ
in Eq. (15) complete, in the sense that it converges to β?
(4) Can sparsity [35] or symmetry [36–40] reductions boost
efficiency of the semidefinite programs? (5) Which hyper-
plane constraints improve the Lovász bound most without
incurring a too high computational overhead [26]? How do
these constraints differ from the classical case? (6) The

weight enumerators describing quantum error correcting
codes can be expressed as sums over jhAiij2. Can also here
a Lovász bound be established to upper bound the size
of a quantum code? (7) Can structure theorems for quasi-
Clifford algebras or quantum tori [41,42] help to derive
algebraic bounds? Are there any significant changes with
respect to the choice of the matrix basis [43]—for example,
when considering nice error bases [44]?
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Appendix: Further applications.—Already for Hermitian
operators, Eq. (3) finds applications in the characteri-
zation of entanglement and nonlocality. For example,
Eq. (1) gives the entanglement witness [11]

W ¼ 1 ⊗ 1 − σx ⊗ σx − σy ⊗ σy þ σz ⊗ σz: ðA1Þ
It holds that hWiϱ ≥ 0 for all separable states ϱ, whereas
a joint eigenstate of σx ⊗ σx, σy ⊗ σy, and σz ⊗ σz
achieves a value hWiϱ ¼ −2.
Similar constraints involving Pauli strings bound

the quantum value of Bell inequalities [45] and Bell
monogamy [12]. For instance, let L be a Bell inequality
with two measurements with two outcomes between two
parties. Normalizing the value over classical correlations as
L ≤ 1, the optimal quantum value is obtained by the value
in Eq. (3) for the following Pauli strings

L2 ≤ hσx ⊗ σxi2 þ hσx ⊗ σyi2 þ hσy ⊗ σxi2
þ hσy ⊗ σyi2 ≤ 2: ðA2Þ

This gives the Tsirelson’s bound for the Clauser-Horne-
Shimony-Holt inequality. More generally, upper bounds on
Eq. (3) for Pauli strings yield upper bounds for the quantum
value of Bell inequalities and Bell monogamy involving
only dichotomic measurements [12,45]. It is an interesting
question whether the bound in Eq. (A2) extends to
measurements with more than two outcomes.
As noticed in Ref. [14], Eq. (3) also bounds the

ground state energy of the Hamiltonian H ¼ P
n
i Ai, since

hHi2 ≤ n
P

n
i hAii2. These bounds are determined by the

algebraic relations between the terms and thus are inde-
pendent of the physical dimension.
The Lovász theta number: A graphG ¼ ðV; EÞ con-

sists of a set V of vertices and a set E ⊂ V × V of edges
between them. Two vertices u; v∈V are connected (u ∼ v)

TABLE III. Cutting planes in graph #3. Left: ϑk of Eq. (15).
Right: ϑk strengthened with two intertwined 5-holes inequalities
[Eq. (23)].
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when ðu; vÞ∈E, and disconnected or independent
otherwise. The complement of G is Ḡ ¼ ðV; ĒÞ, where
ðu; vÞ∈ Ē if and only if ðu; vÞ ∉ E.
The independence number αðGÞ is the maximum num-

ber of pairwise independent vertices of G. The chromatic
number χðGÞ is the minimum number of different colors
needed to assign to the vertices of G, such that no
connected vertices share the same color. These quantities,
also called graph invariants, encode key combinatorial
properties of G and are NP-complete [46].
However, some graph invariants capture properties of the

graph that are easier to compute. Of particular interest is
the Lovász numberϑðGÞ, which is sandwiched by the two
quantities described above [47],

αðGÞ ≤ ϑðGÞ ≤ χðḠÞ: ðA3Þ
It can be computed in polynomial time since it can be
defined through a semidefinite program [48],

ϑðGÞ ¼ max
M

Xn
i;j¼1

Mij

s:t: trðMÞ ¼ 1

Mij ¼ 0 if i ∼ j

M ≥ 0: ðA4Þ
Equivalent definitions for ϑðGÞ are [26]

ϑðGÞ ¼ max
M

Xn
i¼1

Mii

s:t:Mii ¼ ai

Mij ¼ 0 if i ∼ j

Δ ¼
�
1 aT

a M

�
≥ 0; ðA5Þ

and [47]

ϑðGÞ ¼ max
M

λmaxðMÞ
s:t:Mii ¼ 1

Mij ¼ 0 if i ∼ j

M ≥ 0; ðA6Þ
where λmaxðMÞ denotes the maximum eigenvalue of M.
Given a collection of Hermitian unitary operators

A1;…; An that mutually either commute or anticommute,
define the anticommutativity graphG on vertices f1;…; ng
where i ∼ j if AiAj ¼ −AjAi. The quantity

β ¼ sup
ϱ

Xn
i¼1

hAii2ϱ ðA7Þ

is then a graph invariant that is defined solely through the
commutation relations encoded inG. Commuting operators

can be jointly diagonalized; thus, it is clear that αðGÞ ≤
βðGÞ: a joint eigenstate simultaneously achieves the value
hAii2ϱ ¼ 1 for each term in an independent set. On the other
hand, Ref. [11] showed that βðGÞ ≤ ϑðGÞ by using the
definition in Eq. (A6).
As an example, take the following five two-qubit Pauli

observables

σx⊗σx; σx⊗σy; id⊗σx; σy⊗σz; σy⊗σx: ðA8Þ
Their anticommutativity graph is the pentagon G ¼ C5

shown in Table IV. The second level of the hierarchy
improves on the Lovász bound, closing the gap with the
independence number and thus giving the tight bound

2 ¼ αðC5Þ ¼ βðC5Þ ¼ ϑ2ðC5Þ < ϑ1ðC5Þ ¼
ffiffiffi
5

p
: ðA9Þ

Comparison with previous work: Upper bounds in
Ref. [14] are obtained fixing a representation of the
operators ðA1;…; AnÞ as Pauli strings in dimension 2N ,
through the separability problem

max
σ

Xn
i¼1

hAi ⊗ Aiiσ

s:t: σ ∈SEP: ðA10Þ
Here, the maximization runs over separable states on
C2⊗N ⊗ C2⊗N . This problem can be outer-approximated
with semidefinite programs based on symmetric extension.
Level k∈N of this hierarchy corresponds to

max
σ

Xn
i¼1

hAi ⊗ Aiiσ

s:t: σ ∈Symk: ðA11Þ
Here, the maximization runs over all states σ ¼ σAB1…Bk

on
ðC2Þ⊗N ⊗ ðC2Þ⊗½Nð1þkÞ� that are invariant under exchange
of the subsystems B1;…; Bk, with positive partial transpose
across all bipartitions. The dimension of this hierarchy
grows as 2Nð2þkÞ, which renders the relaxations intractable
quickly.
For instance, take the graph G ¼ C̄7, the complement

of the cycle with seven vertices. These operators can be
represented with Pauli strings of N ¼ 3 qubits. The first
extension has size 29 ¼ 512, which is already quite large
for a desktop computer to solve.
Our approach based on state polynomial optimization

[Eq. (18)] does not fix a representation, and is thus
dimension-independent. The size of the relaxations is given
by the size of the indexing sequence for the moment matrix
in Eq. (19), which allows a finer control and flexibility
in the size. In particular, our hierarchy ϑkðGÞ in Eq. (15)
requires for a graph G with n vertices to solve SDPs of size
1þ n for ϑ1ðGÞ [Eq. (6)], size 1þ nðnþ 1Þ=2 for ϑ2ðGÞ
[Eq. (12)], and size 2n þ 1 for ϑnðGÞ. For a graph G with
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TABLE IV. Hierarchy of upper bounds for all nonisomorphic graphs up to seven vertices for which β < ϑ1. Our hierarchy ϑk in
Eq. (15) improves on the bounds given by the Lovász number ϑ1 in Eq. (6) and closes the gap for all but seven graphs: 33, 35, 37, 38, 39,
41, and 43.
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seven vertices such as C̄7, ϑ7ðGÞ has size 27 ¼ 128, which
can easily be solved on a desktop computer.
In the approach by Ref. [14] the size of the resulting

SDPs depends on whether the commutation relations can
be represented on a small number of qubits, while it only
depends on the number of observables for our hierarchies.
However, with the symmetric extension approach one in
principle is able to give approximation guarantees through
the quantum de Finetti theorem [49].
Small graphs: Table IV shows all 43 nonisomorphic

graphs with up to seven vertices for which β < ϑ1.
Strengthening ϑ1 with odd-hole inequalities as in Eq. (23),
we obtain tight bounds on β for 18 graphs by matching the
upper bounds with the independence number. For all but 10
of these graphs it holds that β ¼ ϑ2, and β ¼ ϑ3 holds for
all but seven graphs.
Our hierarchy also improves on the best known upper

bounds for all 36 nonisomorphic graphs with eight vertices
and all 1256 nonisomorphic graphs with nine vertices for
which the value of β is unknown [20]. Already our second
level [Eq. (12)] gives tight bounds βðGÞ ¼ ϑ2ðGÞ for four
of those graphs, up to numerical precision.
Non-Hermitian operators:
Heisenberg-Weyl basis. The Heisenberg-Weyl operators

can be seen as a generalization of the Pauli matrices. They
play a central role in the description of d-dimensional
quantum spin systems [43] and in the construction of
nonbinary quantum codes [50]. On the space Cd define the
operators X and Z through [51]

Xjji ¼ jjþ 1i; Zjji ¼ ωjjji; ðA12Þ
where ω ¼ expð2πi=dÞ is the principal root of unity and the
addition is taken modulo d. These operators are related
by the quantum Fourier transform in dimension d. The
collection of operators

σðk; lÞjii ¼ XkZljii ¼ ωiljiþ ki; ðA13Þ
forms the Heisenberg-Weyl basis for the space of complex
d × d matrices. These satisfy the commutativity relations

σðk; lÞσðm; nÞ ¼ ωlm−knσðm; nÞσðk; lÞ: ðA14Þ
Their adjoints are given by

σðk; lÞ† ¼ ωklσðd − k; d − lÞ; ðA15Þ
and they form an orthogonal basis

tr½σðk; lÞ†σðm; nÞ� ¼ δkmδlnd: ðA16Þ
Displacement basis. Introducing a phase [51],

Dðk; lÞ ¼ ωkl=2σðk; lÞ; ðA17Þ
the adjoint operators are given by

Dðk; lÞ† ¼ ð−1ÞkþlþdDðd − k; d − lÞ: ðA18Þ

These are called displacement operators, and the algebra
they generate is isomorphic to the one generated by
Heisenberg-Weyl operators. Thus, the bounds for the
non-Hermitian version of Eq. (18) coincide for both choices
of generators (c.f. Table II).
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