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The higher-order topological phases have attracted intense attention in the past years, which reveals
various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective
symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW)
classes in classical wave systems possible. Here, we report the experimental realization of higher-order
topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants.
In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and
surface states in the SW topological phase are protected by two distinctive SW topological charges relevant
to real vector bundles. Our findings push forward the studies of SW class topology in classical wave
systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.
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The everlasting goal of condensed matter physics is to
search for new exotic matter, such as topological insulators
and semimetals [1–3]. The topological insulator is featured
with backscattering immune electron transport on matter
surfaces [4,5]. Encouraged by the discovery of exotic
topological phases in quantum materials, researchers have
transposed the topological concept into classical systems
and further explored novel topological phases [4–12]. In
the past years, the higher-order topological phases have
gradually gathered attention due to the emergence of more
abundant topological effects [13–19]. For example, a
d-dimensional nth-order topological phase can support
(d − n) dimensional boundary states [20–24]. With unre-
mitting efforts, 3D higher-order topological insulators and
topological semimetals have been demonstrated in various
classical systems [25–30]. Almost all previous higher-order
topological semimetals have broken parity-time (PT)
symmetry and thus are described by complex vector
bundles in the Hilbert space [23,24,27–30]. However, for
the classical wave systems with PT symmetry, the Bloch
wave function can be real; in such cases, topological
classification rooted in complex space is no longer
applicable [31]. A natural question arises as to whether
there exists a topological class that can characterize the
topological phase of real-valued higher-order topological
semimetals.
Recently, Stiefel-Whiney (SW) invariants have been

extended into condensed matter physics [31–35]. In

mathematics, there are four different types of characteristic
classes: Chern classes, SW classes, Pontryagin classes, and
Euler classes [36], where the SW classes are as important as
the Chern classes. In condensed matter physics, the Chern
classes have been widely explored, whereas the SW classes
have yet not been well established. Benefiting from the
algebraic relations of symmetry that can be projectively
represented [37–40], theoretical models of higher-order
topological Stiefel-Whiney semimetal (HOTSWS) were
proposed [33–35]. However, the HOTSWS are yet to be
implemented in experiments, which impedes the develop-
ment of SW class-related topological physics and their
applications.
In this Letter, we report the realization of acoustic

HOTSWS by constructing π flux to obtain Z2 artificial
gauge field, which is a 3D second-order topological nodal
loop semimetal. The acoustic HOTSWS is characterized by
two SW topological charges of different orders (viz., w1

and w2) and can have real wave functions under the PT
symmetry, fundamentally differing from the Chern-class
topological matter. In particular, the second-order topo-
logical invariant w2 is unique and carried by the nodal loops
of HOTSWS, which we quantitatively verify in a realistic
acoustic system with continuous wave distributions.
Furthermore, the nodal loops are stable and never annihilate
via the energy band reinversion under symmetry protection.
We further experimentally demonstrate that the topological
hinge states and surface states coexisted around the same
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frequency. The surface and hinge states are demonstrated to
selectively distribute on specific surfaces and edges,
respectively, which distinguishes the HOTSWS from pre-
vious higher-order topological semimetals. Our work
reveals that the HOTSWS is a novel higher-order topo-
logical phase in PT-symmetric systems and provides an
ideal platform to investigate topological phases of SW
classes.
Construction of the HOTSWS.—Here, we construct the

tight-binding model (TBM) of the HOTSWS in the 3D
graphite lattice as depicted in Fig. 1(a). For the single-layer
graphene, a double degenerate point appears at K points in
the first Brillouin zone (BZ). By stacking the graphene
sonic crystals along the z direction with alternatively
arranged positive and negative couplings of the same
strength, we obtain the 3D bilayer graphite with π flux
in each plaquette. Thus, the double degenerate Dirac points
(DPs) will transform into fourfold degenerate DPs at K
points with kz ¼ π, where the period along the z direction is
set as one for simplicity. The π flux and related Z2 gauge
fields redefine the fundamentals of crystal symmetries,
which can be deciphered by the Aharonov-Bohm effect.
Under Z2 gauge field, the lattice translation L has projec-
tive algebraic relations with other spatial symmetries.
Hence, the little cogroup at high-symmetry points must
contain L and then the higher-dimensional irreducible
representations emerge, which results in the fourfold
degenerate DPs at K points [33]. By breaking the trans-
lational symmetry Lz along the z direction with dimerized
couplings as shown in Fig. 1(a), we can obtain the
Hamiltonian kernel of the HOTSWS

H2 ¼ σ0 ⊗ Hc þHz; ð1Þ

where Hc ¼
h
0
x�
1

x1
0

i
, Hz ¼

h
0
Hb

Ht
0

i
, Ht ¼

h
J13
0

0
J24

i
¼ H�

b,

x1 ¼ te−ia⃗1·k⃗ þ te−ia⃗2·k⃗ þ te−ia⃗3·k⃗, k⃗ ¼ ½kx; ky; kz� denotes

the wave vector, J13¼−J1−J2eia⃗4·k⃗, J24 ¼ J2 þ J1eia⃗4·k⃗,
Jiði ¼ 1; 2Þ and t are the interlayer hopping and intralayer
hopping amplitudes, respectively. The base vectors of the
3D layered graphite lattice are represented by a⃗1, a⃗2, a⃗3,
and a⃗4. To clearly show the evolution process of DP points
without and with dimerization, the cross-sectional views of
the zero-energy dispersions of our system with kz ¼ π are
displayed in Fig. 1(b). Without dimerization along the z
direction, six highly degenerate DPs emerge at the K points
and evolve into six nodal loops after the dimerization is
introduced. This fact can also be verified by the band
structure along high-symmetry lines in the first BZ, as
shown in Fig. 1(c), where the DPs split into nodal loops.
Different from previous higher-order topologies, the
HOTSWS is characterized by two distinct topological
charges (viz., w1 and w2) with real vector bundles, as
depicted in the right panel of Fig. 1(c). Paired nodal loops
will appear at the corners of the first BZ. The base vectors
for calculating w1 and w2 in k space are defined on a circle
and a sphere, respectively, and the paired loops enclosed by
the circle and sphere carry two topological invariants of SW
classes with different topological orders. Here, we sche-
matically represent the SW topological invariants by two
crossing rings. In mathematics, the first SW class is an
obstruction to the orientability of real bundles over a closed
1D manifold. The 1D manifold is orientable if and only if
w1 ¼ 0. The second Stiefel-Whitney class is an obstruction
to the existence of spin structure on a 2D closed manifold.
The spin structure is allowed (or forbidden) when w2 ¼ 0
(or w2 ¼ 1). Details are explained in the Supplemental

FIG. 1. Tight-binding model of 3D HOTSWS. (a) The schematic of the HOTSWS model, where each unit cell has four sites with
different hoppings. The blue and red sticks indicate the positive and negative hoppings, respectively. For the unit cell in the bottom
without dimerization, we set t ¼ 2.1, J1 ¼ 2.1, J2 ¼ 2.1. After breaking Lz, we obtain the unit cell of HOTSWS, where t ¼ 2.1, J1 ¼ 1,
J2 ¼ 2.1. (b) Evolution process from DPs to nodal loops on the zero-energy surface in k space. (c) The band structure of HOTSWS
along the high-symmetry line of the first BZ. The right panel shows the first BZ where the nodal loops are depicted by cyan rings, and
the two Stiefel-Whitney charges of w1 and w2 by the perpendicular red and yellow rings.
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Material [41]. For the SW classes in physics, the first-order
SW invariant w1 and the second-order SW invariant w2

correspond to the quantized Berry phase and Z2 monopole
charge, respectively, where the topological charge w2 is
unique to SW systems [31]. In the BZ, the first SW
invariant w1 is given by

w1 ¼
1

π

I
c
dk · AðkÞ; ð2Þ

where the C is the closed curve and AðkÞ ¼
hunðkÞji∇kjunðkÞi is the Berry connection. The second
SW invariant w2 is given by

w2 ¼
X 1

π2

I
S2
dS · An × Am; ð3Þ

where An=Am is the Berry connection for the nth=mth
topmost occupied band and S2 is a 2D closed manifold in
the BZ [31].
Acoustic realization of the HOTSWS.—For the acoustic

realization of HOTSWS, we employ 3D layered graphite
sonic crystal that comprises acoustic resonators and cou-
pling tubes, which are sketched in Fig. 2(a). In principle,
we can manipulate the signs and amplitudes of coupling
strengths, which are completely determined by the geom-
etries of resonators and tubes. As shown in Fig. 2(a),
bilayer-graphene structures are stacked layer by layer in the

z direction, with the inset illustrating the configuration of
one unit cell. In the acoustic design of the HOTSWSmodel,
the height and radius of hexagonal cavities in the primitive
cell are h ¼ 30 mm and R0 ¼ 10 mm, the intralayer and
interlayer spacings are lw ¼ 16.5 mm, and the lattice con-
stants in the x and y directions are lx¼ð ffiffiffi

3
p

lwþ3R0Þ=2mm
and ly ¼ ð3lw þ 3

ffiffiffi
3

p
R0Þ=2 mm. The detailed geometric

parameters of negative and positive hopping are provided in
the Supplemental Material [41]. The couplings of the
realistic acoustic model fitted from TBM are as follows
J1≈222Hz, −J1≈−222Hz, J2≈461Hz, −J2≈−461Hz,
t ≈ 462 Hz, and their on-site energy is around 5520 Hz. To
quantitatively demonstrate the unique w2 in acoustic sys-
tems, we extract the sound pressure fields corresponding to
the discrete points in k space from a unit cell of acoustic
HOTSWS with Bloch-periodic boundaries applied. The
spatial bases juθ;ϕj

i are obtained from the one-sphere with
a fixed polar angle (θ) as shown in Fig. 2(b). The Wilson
loop operator is used in the computation of w2, which is
defined by

Wðϕ0þ2π;θÞ←ðϕ0;θÞ ¼ lim
N→∞

FN−1FN−2……F1F2; ð4Þ

where ϕ and θ parametrize a two-sphere, and Fj is
the overlap matrix at ϕj with the element ½Fj�mn ¼
humϕjþ1

junϕj
i. We cyclically perform inner products

of the basis vectors for energy bands to generate a

FIG. 2. Acoustic realization of the HOTSWS. (a) A sonic crystal comprising hexagonal acoustic resonators and coupling tubes, in
which the blue and red coupling tubes denote the positive and negative couplings, respectively. Up panel inset: the primitive cell of
HOTSWS in a toy model. Bottom panel inset: the configuration of one primitive cell in an acoustic system. (b) A sphere centered at K
point in the first BZ, which wraps a nodal loop. The blue arrows (N wave vectors) mark the circle at a fixed azimuthal angle in k space.
Right panel: Wilson loop spectra. (c) Distribution of eigenstates of HOTSWS. (d) Intensity fields in HOTSWS at 5515 Hz and 5506 Hz,
showing the presence of hinge and surface states. (e) The band structure of HOTSWS depicted in white color is calculated from the TBM
and the hinge states are marked by the red lines. The thermal diagram shows the dispersion calculated by Fourier transformation from the
simulated pressure field.
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non-Abelian matrix Mθ;ϕ. Then, we multiply Mθ;ϕ cumu-
latively to obtain Wθ as

Wθ ¼
YN
ϕ¼1

Mθ;ϕ; ð5Þ

where the eigenvalue of Wθ is wθ and Θ ¼ i logðwθÞ. As
shown in the right panel of Fig. 2(b), the second-order SW
invariant w2 can be obtained from the parity of number of
Wilson loop spectra linearly crossing onΘeig ¼ π, andw2 ¼
1 in our design [31].
Then, we numerically calculate the eigenfrequencies of

the sonic crystal in Fig. 2(c). The red and blue dots
represent the hinge and surface modes of HOTSWS, which
slightly split in frequencies due to the finite-size effect. The
intensity fields of the hinge and surface modes in acoustic
HOTSWS are displayed in Fig. 2(d). In the simulation, the
source is placed at the center of the top layer. By extracting
pressure fields on the hinge of the top layer and performing
Fourier transformation, we further simulate the dispersions
of the hinge and bulk states, which are shown in the thermal
diagrams, in good agreement with the hinge states (red-
colored lines) and bulk states (white-colored lines) from the
tight-binding calculation, as shown in Fig. 2(e).
Surface states in the HOTSWS.—We utilize 3D printing

technology to fabricate the sample of acoustic HOTSWS.
In Fig. 3(a), the 3D structure has 7 × 7 × 8 unit cells,
containing 1920 acoustic resonators. For the resonators on

the top and bottom layers, a hole is perforated in each
resonator for inserting a source or a probe. Two sources
(Source 1 and Source 2), denoted by the blue and red stars
on the top and bottom layers, are used for the excitation of
surface states. In Fig. 3(b), we show the simulated intensity
field distribution of surface states on the top layer, where
the energy is mostly localized in the cavities (brown dot)
corresponding to the Type-A atoms.However, in the cavities
(green dot) corresponding to Type-B atoms, acoustic energy
is not localized. The right panel of Fig. 3(b) shows the field
polarization for the surface states. Specifically, the field
localization depends on the sign of interlayer couplings
(positive hopping: P, negative hopping: N). Therefore, when
we swap the P and N interlayer couplings, the surface-state
field distributionwill change accordingly. Note that the field
distribution is not homogenous on the top surface and is
always inclined to accumulate toward the boundary con-
nected with positive interlayer couplings. We experimen-
tally measure the acoustic intensity fields of surface states in
Fig. 3(c). The results demonstrate that the surface states on
the top and bottom layers do exist, where the energies of
surface states are selectively localized in the cavities
corresponding to Type-A atoms. Our experimental result
agrees well with the simulation. To illustrate the field
polarization, we show the transmission spectra at the
Ports P1 (Type-A atom) and P2 (Type-B atom) in Fig. 3(d),
for which P1 and P2 are marked by the blue and gray circles
in Fig. 3(c). At the frequency where surface states exist,
the sound intensity at Port P1 is much larger than the one at

FIG. 3. Surface states in HOTSWS. (a) A schematic of acoustic HOTSWS. The top layer, bottom layer, and vertical layer are
highlighted. In experiments, the sources are placed at Source 1 and Source 2 on the top and bottom layer, marked by the blue and red
stars, aiming at exciting the surface states. (b) The distribution of surface states on the top layer, where acoustic intensity fields are
majorly localized at the sites of Type-A atoms. The blue box covers a unit cell of HOTSWS, in which the Type-A and Type-B atoms are
denoted by brown and green dots. The right panel shows the acoustic intensity in one unit cell, where acoustic fields are localized in the
cavities connected with positive interlayer couplings. (c) The measured intensity field distributions on the top and bottom layers. (d) The
transmission spectra measured at Ports P1 and P2, marked by the blue and gray circles in (c).
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Port P2, while the intensities at Ports P1 and P2 are close to
each other at other frequencies.
Hinge states in the HOTSWS.—As mentioned, the sur-

face states protected by the first-order topological charge
w1 have the same frequency as the hinge states protected by
the second-order topological charge w2. Here, we exper-
imentally visualize the hinge states in the acoustic
HOTSWS sample. In Fig. 4(a), we show the x − z plane
section of the acoustic sample, where the excitation is set at
Source 3 and Source 4, respectively, to excite the hinge
states on the top and bottom layers of HOTSWS. The
measured intensity field distributions of hinge states are
shown in Figs. 4(b) and 4(c), which are featured with the
field localization at the specific edges in pairs. To compare
the transport properties of the hinge states, surface states,
and bulk states in acoustic HOTSWS, we further measure
transmission spectra at Ports P1, P2, P3, and P4, as shown in
Fig. 4(d). The spectra for hinge states and surface states
have two prominent peaks at 5531 Hz and 5511 Hz, which
correspond to P1 and P2, where the Q factor for the hinge
states reaches up to ∼118. The transmission spectra for the
bulk states at P3 and P4 indicate severe sound diffusion,
compared with those of the hinge and surface states. Note
that the peaks for hinge and surface states differ slightly in
the spectrum (about 20 Hz). More details of the experi-
ments are provided in Supplemental Material [41].
Conclusion and outlook.—We have demonstrated a

novel higher-order topological phase of reciprocal and

spinless SW topological semimetal, which has two differ-
ent bulk-boundary correspondences characterized by two
SW topological invariants. SW topological semimetal
differs from the previously identified topological semimet-
als associated with the Chern classes, while its correspond-
ing SW classes are as important as the Chern classes in the
mathematical framework. In this work, we have obtained
the SW class topological invariants by extracting the
pressure field in an acoustic HOTSWS lattice. The topo-
logical hinge and surface states in HOTSWS have been
experimentally measured, visualized, and spotted around
the same frequency. HOTSWSs with the properties of
stable nodal loops and selective distributions of the
localized energy may have potential applications in topo-
logical sensing and trapping, and they can also be readily
realized in other systems, including photonics and
topolectrical circuits to further promote the exploration
of SW class physics.
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discussions. The authors acknowledge financial support by
the National Natural Science Foundation of China (Grant
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FIG. 4. Hinge states in HOTSWS. (a) The section in the x − z plane of the sample. Locations of the sound sources (Source 3 and
Source 4) are marked by the purple and yellow stars, respectively. (b),(c) Measured acoustic intensity field distributions for the hinge
states when the sources are placed on the (b) top layer (Source 3) and (c) bottom layer (Source 4). (d) The transmission spectra measured
at the Ports P1, P2, P3 (Type-A atom), and P4 (Type-B atom) marked by the circles in (b), reveal the properties of hinge states, surface
states, and bulk states in the frequency domain.
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