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Deterministic chaos permits a precise notion of a “perfect measurement” as one that, when obtained
repeatedly, captures all of the information created by the system’s evolution with minimal redundancy.
Finding an optimal measurement is challenging and has generally required intimate knowledge of the
dynamics in the few cases where it has been done. We establish an equivalence between a perfect
measurement and a variant of the information bottleneck. As a consequence, we can employ machine
learning to optimize measurement processes that efficiently extract information from trajectory data. We
obtain approximately optimal measurements for multiple chaotic maps and lay the necessary groundwork
for efficient information extraction from general time series.
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Encapsulated in deterministic chaos is the fundamental
obstruction to predictability that can result from non-
linearity in a system’s evolution, even in the absence of
randomness [1,2]. Signatures of chaos are found broadly,
from weather [3,4] to the brain [5,6], and tools developed in
the study of chaos have been applied more broadly still
[7,8]. Advancing capabilities to forecast chaotic dynamics
thus has marked potential for impact. The challenge may be
glimpsed through the relation between precision and
predictability: for any predictive model utilizing less than
infinite precision, the error of prediction grows exponen-
tially [9]. Given the inherent difficulties and the potential
for impact, the field has recently turned to machine learning
[10–13].
Machine-learning approaches to forecasting chaotic

dynamics generically utilize full-precision states as input
to the predictive model. Yet, the elusive determinism of
chaos gives rise to a curious fact: beyond a certain precision
per state, the ability to forecast given a partial trajectory
saturates [1]. There is thus a measurement capacity beyond
which resources—whether to acquire the measurement or to
record the trajectory—are wasted. Instead, it is sufficient to
discretize the continuous-valued states, yielding an analo-
gous system with “symbolic dynamics” that simplifies the
statistical analysis of the system [7,14–16] and can be used
for various applications [17], including anomaly detection
[18] and communication [19]. Here we employ machine
learning to optimize the measurement of and, equivalently,
the extraction of information from a chaotic system.
The requisite precision per measurement, in the form of a

number of bits per state, is a fundamental quantity of the

system: the metric entropy [2]. Also known as the
Kolmogorov-Sinai (KS) entropy, it corresponds to the rate
of information creation, generated from infinitesimal scales
by the expansion of nearby points under the dynamics, and
is commonly referred to as sensitive dependence on initial
conditions [1,20]. For many systems of interest, the metric
entropy is equal to the sum of the system’s positive
Lyapunov exponents [2].
A finite metric entropy—which can be used to define

chaos [21–23] and quantify the extent of chaos in a system
[9,24]—implies that a system’s continuous-valued trajec-
tory through state space has the same information content,
in the asymptotic limit, as a corresponding sequence of
discrete-valued measurements, although only if the meas-
urement process is optimal. Discrete-valued measurements
color state space according to a partition, clustering states
according to the partition element to which they belong.
Optimizing over the enormous space of possible partitions
has traditionally been avoided by finding special partitions
called generators (or generating partitions) that are known
to extract all information created by the dynamics [25].
Generators may be remarkably coarse [26]; one approxi-
mate generator for the Ikeda map [27] requires only two
colors to partition state space [Fig. 1(a)]. Despite the
intricate structure of the attractor, a measurement of the
state with the capacity of 1 bit captures all information
created by the dynamics.
Finding a generator is challenging and has been accom-

plished for only a limited number of low-dimensional
systems. Traditionally, methods have leveraged inti-
mate knowledge of the dynamics [28–34], reflecting the
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fundamental connection between optimal information
extraction and structure in the system’s state space. As
an alternative, purely data-driven approaches can reveal
structure in the dynamical system with increased robustness
to noise and the potential to scale to higher dimensions
[26,35–38]. Whereas previous data-driven approaches have
utilized classical methods of clustering with heuristics to
simplify the search problem, here we bring the expressivity
of deep learning to the task of optimizing information
extraction from a chaotic system. Our focus is on partitions
that perfectly extract information, of which generators are a
subset [2], though in practice we find that the optimized
partitions are closely related to previously established gene-
rators. Central to our approach is an equivalence between
efficient information extraction and an objective from rate-
distortion theory known as the distributed information
bottleneck [39].
The distributed information bottleneck is a rate-

distortion scenario to optimize the lossy compression of
multiple sources of information individually so as to

maximize collective information about an auxiliary quan-
tity [39,40]. The lossy compression extracts some infor-
mation and discards the rest and is accomplished by
distributing an information bottleneck (IB) [41] to each
source. By extracting important bits of information across
multiple sources, the distributed IB has been used to
decompose information in complex systems [42] and to
provide interpretability to black-box machine-learning
models by identifying the information utilized for predic-
tion [40]. Here we use the distributed IB to lossily compress
each state in a finite trajectory such that the sequence of
measurements contains maximal information about a
“reference” state taken from the trajectory.
Let a state x∈M exist in Rd, where d is the dimension

of the state space. A map F ðxÞ∶ M → M propagates a
state forward in time by one iteration, i.e., F ðxnÞ ¼ xnþ1.
We consider discrete time maps in this Letter; for the
purposes of extracting information, a continuous-time flow
can be converted to a discrete map by sampling with a fixed
interval [2]. The dynamics are fully described by the map
F , but a probabilistic view is often more natural [7] and
allows us to utilize information theory. For ergodic
dynamical systems, which will be our concern in this
Letter, the natural probability distribution over states pðxÞ
is an invariant measure, F ½pðxÞ� ¼ pðxÞ, and can be
obtained by iterating forward a long trajectory [2].
Given a probability distribution over states, we can

define a random variable Xn for the state at time step n
and a random process Xn∶nþL for a sequence of random
variables Xn; Xnþ1;…; XnþL−1. For a stationary process,
the start of the trajectory is unimportant, and instead we
consider the statistics of subsequences of length L, which
we denote XL.
A continuous-valued state can be “measured” and,

specifically, discretized through the use of a partition that
divides the support of pðxÞ into disjoint subsets [26]. The
outcome of a measurement, a random variable U ¼ fðXÞ,
converts the continuous-valued state to the index of the
subset to which it belongs. Thus a sequence XL is replaced
by a sequence of discrete measurements UL.
How much information does a measurement U convey

about the original state X? Intuitively, information gained
reduces uncertainty. The amount of uncertainty about the
outcome of a random variable Z may be quantified via the
Shannon entropy, HðZÞ ¼ Ez∼pðzÞ½− logpðzÞ� [43]. The
mutual information contained in two random variables is
given by the reduction of entropy in one variable after
finding the value of the other, IðZ1;Z2Þ ¼ HðZ1Þ −
HðZ1jZ2Þ [44]. Measuring a state—by recording in which
subset of a partition it resides—conveys IðU;XÞ ¼ HðUÞ
bits of information because the mapping from X to U is
deterministic [i.e., HðUjXÞ ¼ 0].
As a random process plays out, entropy is generated

from the uncertainty about each subsequent outcome. The
entropy rate is defined as the average entropy generated per

(a)

(b)

FIG. 1. (a) The attractor of the Ikeda map and a partial
trajectory. States colored blue (orange) are measured as outcome
A (B). The proposed method optimizes the measurement of a
chaotic system using artificial neural networks that apply an IB
and vector quantization (VQ) to each continuous-valued state.
(b) The space of possible discrete measurements visualized in
terms of the entropy of a single measurement HðUÞ and the rate
of entropy production in the infinite duration limit h∞ðUÞ. The
entropy rate of any partition is upper bounded by HðUÞ and the
metric entropy hKS (dashed lines). The blue point corresponds to
the partition in (a) that was optimized with the proposed method.
The black points correspond to measurements parametrized by
neural networks with random weights. Error bars on the entropy
rates are within the markers.
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step in the limit where the sequence length becomes
infinite, h∞ðUÞ ¼ limL→∞HðULÞ=L [44]. The largest achi-
evable entropy rate of any partitionU is the KS entropy [2],

hKS ¼ sup
U
h∞ðUÞ: ð1Þ

A “trivial” partition that achieves the maximal entropy rate
can be approximated by a fine discretization of state space
[24], though it is possible for partitions to capture all
information produced by the dynamics and also be coarse,
i.e., with minimal entropy [26] [Fig. 1(a)].
The objective for a partition with minimal entropy and

maximal entropy rate can be cast as a rate-distortion
problem [44]. Viewing the measurement as a communica-
tion channel, we simultaneously minimize the information
transmitted about a single state IðU;XÞ while maximizing
the information transmitted about the trajectory, IðUL;XLÞ.
For a chaotic system, a single continuous-valued state
contains the same information as any portion of its
trajectory, IðUL;XrefÞ ¼ IðUL;XLÞ. By using a large but
finite L, we recover a distributed IB formulation where the
states in a sequence serve as the distributed sources of
information and the reference state is the auxiliary variable.
We minimize the distributed IB Lagrangian [39,40] over
possible measurements U,

L ¼ −IðUL;XrefÞ þ β
XL−1

i¼0

IðUi;XiÞ; ð2Þ

where β is a parameter that determines the cost of
information transmission relative to information about Xref .
The space of possible partitions is vast, filled with

colorings of the attractor that encapsulate suboptimal
information [45,46]. Figure 1(b) displays example parti-
tions of the Ikeda map by their measurement entropyHðUÞ
and entropy rate h∞ðUÞ. By replacing the mutual infor-
mation terms in Eq. (2) with appropriate bounds—namely,
noise contrastive estimation (InfoNCE) [47] as a lower
bound on IðUL;XrefÞ and the variational upper bound
central to variational autoencoders on IðUi;XiÞ [48–50]
—we can train artificial neural networks that parametrize
the space of partitions.
The lossy compression that maps each state x to its

corresponding measurement u presents a difficulty for deep
learning because quantization operations are nondifferenti-
able [51]. By contrast to hard measurements, where
HðUjXÞ ¼ 0, soft measurements contain stochasticity that
can be used to facilitate optimization [52]. We trained with
soft measurements that were hardened for inference and
used a two-step compression process to gradually remove
information about the state. Each step was performed by a
distinct multilayer perceptron (MLP) [Fig. 1(a)]. The first
MLP performed a soft measurement by mapping x to a
distribution, pðũjxÞ, in an intermediate representation

space where the Kullback-Leibler divergence penalty from
variational autoencoders bottlenecked the transmitted infor-
mation [48,49]. A sample from the distribution pðũjxÞ was
then input to a second MLP—the vector quantizer—whose
output could be smoothly transitioned from a soft to a hard
measurement. The output u was a probability vector over
symbols [e.g., A and B in Fig. 1(a)] parametrized by a
temperaturelike parameter that discretizes the assignment
in one limit by making all probability distributions a one-
hot vector [52]. The magnitude of the information bottle-
neck penalty β was annealed during training to gradually
increase information transmission. For learning binary
partitions of the systems studied in this Letter, training
was stopped after the information transmitted by the
information bottleneck (the first MLP) exceeded 1 bit.
All states xL were measured and then the corresponding

measurements uL were input to a third MLP that predicted
the reference state xref . To directly maximize information
extraction IðUL;XrefÞ, the InfoNCE loss [47] evaluates the
prediction in a shared representation space to which both
uL and xref are mapped (requiring a fourth MLP that
maps xref to the space). The loss quantifies how similar
the representation for the sequence uL is to that of its
corresponding xref , in comparison to the representations of
a batch of states sampled randomly from the entire attractor.
Network architectures and training details may be found in
the Supplemental Material [53].
To assess optimized measurements, the difference

between the known metric entropy and the measurement’s
entropy rate gives the information per iteration that the
measurement fails to capture. Lossless data compression
commonly forms the basis of approaches to estimate entropy
rate because the same regularities in a sequence that reduce
its entropy rate are what data compression is designed to
leverage to shrink file size [23,70–72].We compared several
methods on symbolized sequences from chaotic systems
with known generators (Supplemental Material [53]) and
obtained the most precise estimates with a form of data
compression known as context treeweighting [73], whereby
we extrapolated from finite size scaling with an ansatz
proposed in Schürmann and Grassberger [23].
While strict equivalence between the distributed IB and a

coarse partitionwith entropy rate equal tohKS is valid only in
the limit where the sequence length L is infinite, we found
thatL ≈ 10was sufficient to consistently find partitionswith
an entropy rate at least 0.99hKS for the chaotic maps studied
(Fig. 2). Optimization was robust, with the performance of
20 trials tightly clustered for largerL (displayed as the violin
plots in Fig. 2). Partitions with the largest entropy rate for
L ¼ 12 are displayed in the right column of Fig. 2. For the
Hénon and logistic maps, the optimized partitions are slight
variations of reported generators [23,28], while the partition
for the Ikeda map differs from generators reported in prior
work [26,30,35,37].
The generator for a chaotic map is not unique [29].

All images and preimages of a generating partition
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(i.e., iterating the points in each partition element forward
or backward in time while maintaining the assignments) are
also generators. Additionally, there can be nontrivial
variants that cross through special points called homoclinic
tangencies, where the stable and unstable manifolds run
parallel to one another [29]. We found that certain details of
the training process steered optimization to qualitatively
different partitions (Fig. 3). Varying the reference state
drove the optimization to different iterates of the same base
partition [Figs. 3(a)–3(d); iterates in Supplemental Material
[53] ], and a slower annealing of the information β̇ reached
deeper into the forward and backward iterates of the base
partition [Fig. 3(b)]. Different iterates require different
functions to integrate multiple measurements [Fig. 3(e)];
the iterates found through optimization allow for simpler
integration functions. The base partition found for the Ikeda
map [Fig. 3(a), reference state 5 of L ¼ 12] closely
resembles what has been found in prior work [30].
In this Letter, we established an equivalence between the

distributed information bottleneck and the minimal parti-
tion able to capture all information generated by a chaotic
system and leveraged the equivalence to optimize meas-
urement of a chaotic dynamical system with machine
learning. Operating without knowledge of the dynamics
and without reliance on properties specific to generating
partitions such as the unique description of periodic orbits
[30], homoclinic tangencies [28,29,32,33], or the Koopman
operator [34], the method is not restricted to chaotic
systems. Instead, the deterministic chaos serves as a test
bed, where the notion of an optimal measurement scheme

(a)

(b)

(c)

FIG. 2. The fractional deviation of the entropy rate h∞ðUÞ from
the metric entropy hKS as a function of the length of the trajectory
L used for training for (a) Ikeda and (b) Hénon maps with
standard parameters and (c) the logistic map with r ¼ 3.7115.
The distribution of values of the entropy rate over 20 trials for
each L are shown as violin plots, with the extrema and median
indicated by the black horizontal marks; the dotted line indicates
h∞ðUÞ ¼ 0.99hKS. For each system, the partition found with the
largest entropy rate for L ¼ 12 is shown on the right. For the
logistic map, the probability density of states pðxÞ is colored
according to the optimized partition.

(a)

(c) (d) (e)

(b)a)

e)c)

(b)

FIG. 3. (a) For optimized partitions of the Ikeda map, trained with sequences of length L ¼ 12 and with a base information annealing
rate β̇ ¼ β̇0, the reference state (i.e., the one predicted from the sequence of measurements) strongly influences the found partition. Each
displayed partition is the one with the largest entropy rate (listed under the partition) after ten trials. Coordinate axes have been
suppressed. (b) The same as in (a), but with half the rate of information annealing β̇ ¼ 0.5β̇0 during training. (c) Two of the partitions of
the Hénon map, identified with the same annealing rate as in (a). (d) Same as in (c) for the logistic map with r ¼ 3.7115. (e) Colorings of
the Ikeda attractor where, given a sequence of three measurements u∶3, the reference state is the final state x3, utilizing for the
measurement U the partition labeled (i) (left) and (ii) (right) in (a) and (b), respectively.
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has been made precise and can be quantitatively evaluated.
Optimizing a measurement to efficiently extract maximal
information about an underlying state is a broad goal in
understanding inference in biological and computational
systems. Prior research has predominantly focused on a
singular compression that extracts maximal information
from the present and/or past about the future [74–77]. A
notable exception is the recursive information bottleneck
[78], in which a sequence of measurements are recursively
aggregated and each step’s measurement scheme can vary
based on what has been previously observed. By contrast,
the distributed information bottleneck setup of this Letter
optimizes a fixed measurement scheme that is repeatedly
applied for maximal aggregate information, a plausible
scenario for sensing organisms or sensory devices.
The current study focused exclusively on relatively

simple chaotic maps that have been well characterized
so as to establish the capabilities of the proposed method.
The variegated faces of chaos present exciting opportunities
for the optimization of measurement processes and can
serve as a rich test bed for machine-learning methods of
compression [13,51]. In the large majority of systems
where there is no precedent partition with which to
compare, the metric entropy can be readily estimated from
data [9,24] and other means of quantitatively evaluating
partitions can be used [31] to ground the measurement
schemes learned by the proposed method.
To our knowledge, the connection between metric

entropy and a rate-distortion objective was previously
unconsidered in the literature. The transformation F whose
repeated application creates the strange attractor evolves
points in state space such that a fixed measurement can
continually acquire new information about the continuous-
valued trajectory ad infinitum. By optimizing the minimally
redundant lossy compression of the attractor, the spawned
information that serves to limit predictability for any finite
model is manifest as a specific coloring of the attractor that
divides state space with a remarkably crude, yet highly
specific cut.
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