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We derive a numerical method based on coupled density functional theory and effective Hamiltonian
schemes to calculate the linear and quadratic electro-optic response of ferroelectrics at finite temperature
and in different frequency ranges. By applying the developed method to BaTiO3, we successfully resolve
apparent discrepancies in the experimental literature that reported a linear or quadratic electro-optic
response when visible or terahertz radiation was employed to measure the optical index, respectively.
We further demonstrate that (and explain why), in the case of the Ba1−xSrxTiO3 disordered solid solutions,
structural phase transitions not only lead to larger linear electro-optic constants, as previously demonstrated
in the literature, but also significantly enhance the quadratic electro-optic constants.
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Ferroelectric materials, such as BaTiO3 (BTO) or
LiNbO3, attract particular attention for optical applications.
Their strong electro-optic (EO) response, that is, the
significant change of the refractive indices under an applied
low-frequency electric field, is key to EO modulators,
sensors, scramblers, compensation modules, or holographic
storage technologies [1].
Original and subsequent works on the EO response of

BTO bulk and films revealed a linear change of the refractive
index at visible or near-infrared wavelength (400–1550 nm)
with an applied low-frequency electric field, that is, a “linear
EO” (also called Pockels) [2–8]. In contrast, recent mea-
surements indicate that the EO response of BTO is rather
“quadratic” (also called the Kerr effect) when measuring the
refractive index at 1 THz [9]. To the best of our knowledge,
no theoretical work has revealed the origin of this crossover
from linear to quadratic in the EO response of barium
titanate. Atomistic simulation tools are thus needed to
understand the difference between these observations.
Density functional theory (DFT) based tools were

developed to quantify the linear EO response [10,11] via
the linear EO tensor riγ (using Voigt notation on the first
index). Subsequently, the quadratic EO response [12,13]
and its associated tensorRiγα were also determined ab initio.
DFT revealed microscopic insights and engineering strat-
egies such as applying biaxial strain [14] or controlling the
electrical polarization [15] or nanoscale layering [16] to
improve the EO response. However, these methods are
limited to 0 K and fail in describing the EO response of
BTO in its room temperature, tetragonal phase [17,18]
because of the soft phonon modes with imaginary fre-
quency calculated in this phase [10]. Very recently,

Kim et al. worked around that problem by treating the
tetragonal phase of BTO as the average of four monoclinic
structures [19]. Yet, that approach remains limited to the
linear EO response and cannot explain the emergence of the
quadratic EO response at 1 THz. Alternatively, Veithen and
Ghosez [20] mapped the dependency of the electronic
dielectric constant with respect to the amplitude of the soft
ferroelectric mode and strain from DFT calculations at 0 K.
Subsequently, they used an effective Hamiltonian and
Monte Carlo simulations, a process that has successfully
described the finite temperature properties of ferroelectrics
over the years [21–29], to derive the linear EO constants
in the thermal stability window of the tetragonal phase
of BTO. However, the pioneering approach developed by
Veithen and Ghosez did not derive the quadratic EO
constant, which is necessary to explain the transition from
linear to quadratic EO regime in BTO. Moreover, this
approach is neither applicable to terahertz frequencies nor
does it allow the computations of EO responses in more
complex and promising systems, such as Ba1−xSrxTiO3

(BST) disordered solid solutions.
Here, we derive the methodology to compute the non-

linear or Kerr EO response of ferroelectrics at finite
temperature. We also highlight a neglected term in the
linear EO response derived in Ref. [20], which contributes
significantly to the EO response for terahertz electromag-
netic waves. We then implement these derivations within
the effective Hamiltonian scheme and reveal why the EO
response in BTO is mostly linear when visible light is
employed, versus mostly quadratic when using terahertz
radiation. We finally describe how BST solid solutions may
enhance the EO response.
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Let us first start with the expression of the unclamped
linear EO coefficients [8],

rσijγðω; νÞ ¼
�

∂

∂EγðνÞ
�

σ

�
1

εσðωÞ
�

ij
; ð1Þ

with ω as the angular frequency of the light and ν as the
frequency of the applied electric field E. Note that we
typically assume that ν ≪ ω, so that the applied electric

field frequency ν=2π does not appreciably change the
frequency ω=2π of the electromagnetic radiation [4].
i, j, and γ are Cartesian indices; Eγ is the γ component
of the applied electric field. ½1=εσðωÞ�ij is the tensor of the
inverse dielectric permittivity at frequency ω. The label σ
indicates that we consider the unclamped EO coefficients,
i.e., in constant stress conditions.
These linear coefficients can be rewritten in the follow-

ing way (cf. Ref. [20]):

rσijγðω; νÞ ¼ rσ;elijγ ðω; νÞ þ rσ;ionijγ ðω; νÞ þ rσ;el-ion;polijγ ðω; νÞ þ rσ;el-ion;strainijγ ðω; νÞ with
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where all derivatives are partial, at either constant strain η or
constant polarization P. εel;σij is the electronic dielectric

permittivity, and χð2Þel;σγij is the nonlinear electronic dielectric
susceptibility [20]. χsm;σ

αγ ¼ ðdPα=ε0dEγÞ is the dielectric
susceptibility associated with the soft mode (the soft mode

is proportional to the polarization). χð2Þsm;σ
γij ðω; νÞ is the

nonlinear susceptibility related to that soft mode (i.e.,
which corresponds to the first derivatives with respect to
the electric field of the soft-mode related susceptibility).
dσγμβ ¼ ðdημβ=dEγÞ are piezoelectric coefficients. The third
term in Eq. (2) describes how, under an applied electric
field, the soft-mode amplitude is modified and alters the
refractive indices. Similarly, the last term on the right-hand
side of Eq. (2) translates how piezoelectric effects change
the unit cell shape and result in a modification of the
dielectric response at frequency ω=2π.
Equation (2) is similar to Eq. (2) in Ref. [20], except for

the presence, here, of the second term, rσ;ionijγ ðω; νÞ. This is
one of the (important) novelties of the present Letter, which
were not considered in past works [20,30,31]. It is related to
the nonlinear dielectric susceptibility associated with the
soft mode and is important for some frequencies such as
terahertz. One has also to realize that the second and third

terms of Eq. (2) generally should involve a sum over all
infrared- (IR) and Raman-active optical phonons [20,32].
Yet, we show below that only incorporating the soft-mode
already captures most of the EO effect in BTO and BST.
Indeed, the other IR- and Raman-active phonons contribute
little in the specific case of BTO, owing to their relative
small polarizability and Raman susceptibility compared to
the soft mode [10].
Let us also derive an analytical expression for the

(unclamped) quadratic EO coefficients, in order to be able
to compute them in the same conditions as the linear ones.
For that, we assume that the main dependence on the
electric field in Eq. (2) arises from the soft-mode related
dielectric susceptibilities. Such assumption is valid
close to structural phase transitions or when ω is typically
of a few meV, corresponding to the energy of typical
vibration frequencies of electrical polarization. Within
this assumption, the nonlinear quadratic EO coefficients
can therefore be obtained by taking the full derivative
of the soft-mode susceptibilities with respect to the

electric field in Eq. (2). For example, χð2Þsm;σ
βij ðωÞ in

Eq. (2) becomes χð3Þsm;σ
αβij ¼ ðdχsm;σ

ij =dEαdEβÞ and so on.
One thus arrives at
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Rijαβðω; ν; νÞ ≈ Rion
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Theoretically, the first and second terms in Eq. (3) should
also involve a sum over all IR- and Raman-active phonon
modes. However, considering only the soft mode seems
enough to capture the quadratic EO coefficients of BTO
films for electromagnetic radiation with frequency ω=2π in
the terahertz range as shown below.
We now implement these equations to obtain the finite

temperature EO properties in a BST solid solution system,
of which BTO bulk is a special case (x ¼ 0). Note that, in
our subsequent calculations, we employ ν ¼ 0—that is, we
focus on static applied electric fields. We first perform
calculations of the electronic dielectric constant in the
tetragonal phase of BST for different values of the soft
mode amplitude and strain, using the ABINIT code [33] with
optimized norm-conserving Vanderbilt pseudopotentials
ONCVPSP3.2.3 [34] and the virtual crystal alloy approxi-
mation [35], for which Ba and Sr ions are replaced by a
composition-dependent virtual ion [36]. We compute here
the electronic dielectric constant at ℏω ¼ 1.55 eV (corre-
sponding to a wavelength of 800 nm) and at ℏω ¼ 4 meV
(corresponding to 1 THz radiation) at different displace-
ments of the soft mode and different strains (see
Supplemental Material [37]). We use these values to
calculate the derivatives of εel;σij ðωÞ with respect to the soft

mode and strains using finite differences. χð2Þel;σγij , in the first
term of Eq. (2), is calculated directly ab initio from the
ABINIT code at ℏω ¼ 1.55 eV and 4 meVas well. Then, we
use an effective Hamiltonian describing the energetic
couplings between the soft mode and strains for the
BST system [24,26,38] and perform Monte Carlo
Metropolis and molecular dynamics simulations at room
temperature to obtain the soft-mode related linear and
nonlinear susceptibilities involved in Eqs. (2) and (3), as
well as the piezoelectric constants. More technical details
are presented in Supplemental Material [37]. All these
quantities now allow us to calculate the finite temperature
linear and quadratic EO response of BST.
Let us first focus on BTO bulk. Comparison with

experimental values [4] or previous calculations show
the same qualitative trends: an extremely large value of
the rσ51 coefficient (≈502 versus 1300 pm=V [4]), followed
by a significant rσ33 (≈73.9 here versus 108 pm=V [4,39])
and a smaller rσ13 (≈27 here versus 8 pm=V [4]).
Quantitative differences can be attributed to (1) differences

in numerical parametrization or sample quality, leading to
different critical temperatures and (2), in our case and in
Ref. [20], the neglect of higher frequency IR- or Raman-
active modes. Yet, incorporating only the soft mode already
gives a realistic representation of the EO response of
BTO. Among all contributions involved in Eq. (2),
rσ;el-ion;polijγ ðω; 0Þ accounts for most of the reported value
(95% of rσ33, 125% of rσ13, and 103% of rσ51). It is then clear
that the comparatively large value of rσ51 compared to rσ33
and rσ13 originates from the larger dielectric susceptibility
χsm;σ
11 as we approach the tetragonal-to-orthorhombic phase
transition in BTO, governed by the softening of the E
modes. In contrast, χsm;σ

33 is smaller, as it is mainly
contributed to by the A mode, which does not soften
during the tetragonal-to-orthorhombic phase transition
occurring slightly below room temperature.
We now calculate the linear EO constant, but for ℏω ¼

4 meV (corresponding to 1 THz frequency), in bulk BTO.
Note that we expect bulk BTO to behave similar to the BTO
thick films deposited on SrTiO3 measured in Ref. [9].
Indeed, the large thickness of the film, as well as the
agreement between their measured lattice constants and
our DFT calculated ones (see Supplemental Material [37])
indicate that the strain in BTO thick film is relaxed
and that it can be reasonably modeled using bulk BTO.
Figure 1(a) shows the longitudinal Pockels constant rσ33 for
both ℏω ¼ 4 meV and 1.55 eV, as well as their decom-
position on the various terms detailed in Eq. (2). The linear
EO response at ℏω ¼ 4 meV (≈153.2 pm=V) is more than
twice as strong as the EO constant at ℏω ¼ 1.55 eV. Quite
interestingly, while the EO constant at ℏω ¼ 1.55 eV
primarily originates from the third term in Eq. (2),
rσ;el-ion;pol33 , the linear EO response for ℏω ¼ 4 meV mainly
comes from the intrinsic second-order soft-mode related
susceptibility rσ;ion33 [second term in Eq. (2)]. In other words,
this overlooked term in past studies [20,30,31] is very
significant for meV (corresponding to terahertz frequency)
electromagnetic radiation.
We now calculate the nonlinear EO coefficient R333

following Eq. (3) in BTO at 300 K, for both visible
(ℏω ¼ 1.55 eV) and terahertz (ℏω ¼ 4 meV) radiations.
Table I shows that the quadratic EO coefficient is enhanced
by a factor of 20 at ℏω ¼ 4 meV compared to ℏω ¼
1.55 eV. Strikingly, our predicted quadratic EO coefficient
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at ℏω ¼ 4 meV, R333 ¼ −2.1 × 10−17m2=V2, has the
same order of magnitude as experimentally reported
(−1.4 × 10−17m2=V2 in Ref. [9]), which confirms the
accuracy and assumptions of the present method. The
main contributor to R333 in the BTO system comes from
the first term in Eq. (3), Rion

333ðω; ν ¼ 0; ν ¼ 0Þ, containing
the third harmonic of the soft-mode susceptibility. We can
thus also explain the discrepancy between the previously

DFT calculated value of 6.4 × 10−20m2=V2 [12] and
the 200 times larger experimental value reported by
Chen et al. [9]. Indeed, the DFT scheme developed in
Ref. [12] does not account for this third harmonic soft-
mode related susceptibility. To explore the linear versus
quadratic nature of the EO induced change in refractive
index in BTO, we calculate the change of optical index
ΔnðℏωÞ using the formula [40]

Δn ¼ −
1

2
ðεtot;σ33 Þ3=2R33 with

εtot;σ33 ¼ εel;σ33 ðℏωÞ þ χsm;σ
33 ðℏωÞ;

R33 ¼ ½r33ðℏω; ν ¼ 0Þ þ R333ðℏω; ν ¼ 0; ν ¼ 0ÞE3ðν ¼ 0Þ�E3ðν ¼ 0Þ: ð4Þ

We plot the estimated change of the optical indices for
reasonable values of the electric field applied along the
polar axis of BTO in Fig. 1(b). Interestingly, the orange
curve, corresponding to visible light (ℏω ¼ 1.55 eV),
shows a linear EO response with small magnitude.
In contrast, the EO response at ℏω ¼ 4 meV [in blue in
Fig. 1(b)] is clearly quadratic and is strongly enhanced
compared to the EO response at ℏω ¼ 1.55 eV. The much
larger change in optical index for ω in the meV range seen
in Fig. 1(b) can be attributed to (i) the larger quadratic
EO constant R333 stemming from the third harmonic of the
soft-mode susceptibility and (ii) the large increase in the
dielectric constant εtot;σ33 ¼ εel;σ33 þ χsm;σ

33 [see Table I and
Eq. (4)]. Dispersions of the EO coefficients and dielectric
response in BTO (see Supplemental Material [37]) indicate

that the crossover from linear to quadratic EO response
occurs through a transition region dominated by optical
phonon dielectric resonances. This transition region
extends from the lowest IR- and Raman-active optical
phonon frequency (in our case, about 38 meV) to the
frequency at which the electronic dielectric response super-
sedes the ionic one. Similar crossover for in plane applied
electric fields are expected due to the close frequency
(41 meV) of the soft ferroelectric E mode.
Now that the apparent discrepancy between various

measurements in BTO films is resolved, we shift our focus
to BSTwith varying compositions x and visible wavelength
(800 nm, or ℏω ¼ 1.55 eV). We evidence there that, as x
increases, we gradually change from a mostly linear EO
response to a nonlinear, quadratic EO change of optical
index. It is well known that, as x increases, the tetragonal-
to-cubic transition temperature decreases in BST, reaching
300 K around x ¼ 2%. [24] One would then expect that the
soft-mode susceptibility χsm;σ

33 diverges, resulting in large
rσ33 and rσ13 around this particular concentration. This is
indeed what is observed in Fig. 2(a), causing rσ33 to exceed
rσ51. We also calculated the quadratic EO coefficient R333

following Eq. (3). Interestingly, R333 also increases strongly
for compositions near the tetragonal-to-cubic transition at
300 K [see Fig. 2(b)] due to softening of the E modes
toward this border, which leads to divergence of the third-

order susceptibility χð3Þsm;σ
αβij ðω; 0; 0Þ in the first term of

TABLE I. Summary of the linear and quadratic EO constants,
electronic dielectric constant, and soft-mode related dielectric
susceptibility in BTO bulk for visible light (ℏω ¼ 1.55 eV) or
terahertz (ℏω ¼ 4 meV) incoming radiation, at 300 K.

ℏω rσ33 (pm=V) R333 (m2=V2) εel;σ33 ðωÞ χsm;σ
33 ðωÞ

1.55 eV 73.9 −1.1 × 10−18 6.8 0
4 meV 153 −2.1 × 10−17 6.3 91

(a) (b)

FIG. 1. (a) Contributions to the linear EO constant rσ33 in BTO
at ℏω ¼ 4 meV and 1.55 eV. (b) The change of the refractive
index Δn for BTO at ℏω ¼ 4 meV (in blue) and ℏω ¼ 1.55 eV
(in orange).
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Eq. (3), Rion
ijαβðω; 0; 0Þ. One could therefore reasonably

expect a strong enhancement of the optical index change
ΔnðℏωÞ near x ¼ 26% when applying an electric field E3

along the [001] direction. We, in fact, calculated the
expected change in optical index at ℏω ¼ 1.55 eV using
Eq. (4) and report it in Fig. 2(c).
We find, at low x, that the change in optical index is

mostly linear; however, for x approaching 26%, Δn now
adopts a strong nonlinear (quadratic) dependency on the
applied static electric field at ℏω ¼ 1.55 eV. Figure 2(c)
also stresses the importance of carefully choosing the
direction and sign of the applied electric field to maximize
the EO change of optical index. Indeed, the large quadratic
response occurring at the phase transition competes with
the linear EO response for positive biases applied in the
direction of the polarization, severely limiting the change of
optical index. This outlines the need to not only consider
the linear EO response at phase transitions, as done in
previous works [14], but consider higher orders such as the
quadratic EO response as well. The methods developed
in this Letter present one of the very few attempts to

comprehensively include higher-order effects in the EO
characterization of ferroelectrics. One may define a cross-
over electric field in Fig. 2(d) as −ðrσ33=R333Þ. It corre-
sponds to the electric field above which the quadratic EO
response supersedes the linear one. Figure 2(d) shows that
this crossover field continuously decreases as x increases
and vanishes at the tetragonal-to-cubic transition.
In summary, the coupled DFT-effective Hamiltonian

scheme presented here is able to calculate linear and
quadratic EO responses at finite temperature for various
frequencies and in simple BTO but also BST solid
solutions. It is also revealed that a previously overlooked
term involving the nonlinear dielectric susceptibility related
to the soft ferroelectric mode is instrumental to correctly
understand the EO response of classical ferroelectrics for ω
in the terahertz regime. Thanks to these tools, we have
explained the crossover from the linear to quadratic EO
response in barium titanate for photons having energy from
a few meV to a few eV. Furthermore, our general effective
Hamiltonian scheme also reveals that (and explains why)
the quadratic EO response may be significantly enhanced
as well in the vicinity of structural phase transitions such as
the composition-driven tetragonal-to-cubic phase transition
in BST. The universality of this coupled DFT-effective
Hamiltonian scheme should allow one to explore the finite
temperature response of more complex polar systems, for
instance, exhibiting second-order [22,41] or order-disorder
ferroelectric phase transitions [42–44].
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