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We explore the relationship among the magnetic ordering in real space, the resulting spin texture on the
Fermi surface, and the related superconducting gap structure in noncollinear antiferromagnetic metals
without spin-orbit coupling. Via a perturbative approach, we show that noncollinear magnetic ordering in a
metal can generate momentum-dependent spin texture on its Fermi surface, even in the absence of spin-
orbit coupling, if the metal has more than three sublattices in its magnetic unit cell. Thus, our theory
naturally extends the idea of altermagnetism to noncollinear spin structures. When superconductivity is
developed in a magnetic metal, as the gap-opening condition is strongly constrained by the spin texture, the
nodal structure of the superconducting state is also enforced by the magnetism-induced spin texture. Taking
the noncollinear antiferromagnet on the kagome lattice as a representative example, we demonstrate how
the Fermi surface spin texture induced by noncollinear antiferromagnetism naturally leads to odd-parity
spin-triplet superconductivity with nontrivial topological properties.
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Introduction.—The pairing symmetry of superconduc-
tivity is governed by the symmetry which constrains the
relative spin directions of electron pairs at opposite
momenta on the Fermi surface (FS) [1]. Time-reversal T
and inversion P symmetries are the representative exam-
ples, both of which guarantee the presence of energetically
degenerate electrons at opposite momenta while they
constrain the spin directions of the electron pairs in an
opposite way. When both T and P exist simultaneously,
spin-singlet superconductivity which can open a full gap on
the spin-degenerate FS is mostly favored, unless the
Cooper pairing with higher angular momentum is naturally
favored due to the spatial modulation of repulsive inter-
action [2] or the pairing glue allows only spin-triplet
channels [3,4]. Thus, to achieve unconventional pairing
symmetries, such as spin-triplet superconductivity (STS),
breaking either T or P is normally considered.
For instance, various unconventional superconducting

states are proposed in T-symmetric metals with broken P
symmetry [5–10]. In such noncentrosymmetric metals, as
parity-mixing occurs due to P breaking, superconducting
states can contain spin-triplet components. Moreover, when
spin-orbit coupling (SOC) is present, the T-symmetric spin-
split FS can host a spin-momentum locked winding spin
texture, which leads to STS with intriguing nodal structure
[6]. Because of the Kramers’ degeneracy at T-invariant
momenta, such winding spin texture carries a topological
charge and appears robustly [11]. However, unless the
superconducting state is dominated by spin-triplet compo-
nents, observing nodal STS is not easy to achieve.

On the other hand, in centrosymmetric magnetic metals
preserving P but breaking T, equal-spin triplet pairing can
naturally arise because P enforces electron pairs at opposite
momenta to have the same spin direction. Thus, if the FS is
spin split, P-symmetric magnetic metals are promising
candidates to achieve STS. Interestingly, as shown in
Ref. [12], such a spin-split FS with fixed spin polarization
can appear not only in ferromagnets but also in collinear
antiferromagnets when P is broken locally but preserved
globally [12–15]. Thus, centrosymmetric collinear mag-
netic metals can also host odd-parity STS. However, in
such systems, the FS generally does not have robust spin
texture even when SOC exists. This is because, as the
Kramers’ degeneracy is lifted due to broken T, winding
spin texture with topological stability does not appear in
general [11,16]. Therefore, to achieve nodal STS in
centrosymmetric magnets, a distinct mechanism to protect
winding spin texture is necessary.
In this Letter, we study how real space magnetic ordering

of a centrosymmetric non-collinear antiferromagnetic
(AFM) metal induces winding spin texture on the FS
without SOC, which in turn constrains the gap structure of
its superconducting state. Through a perturbation approach,
we show that if the number of sublattices in a magnetic unit
cell is larger than two, the FS can have momentum-
dependent, winding spin texture. Thus, our theory extends
the idea of altermagnetism proposed recently [14,15,17–
23] to the cases of noncollinear antiferromagnets without
SOC. We demonstrate our theory in a kagome noncollinear
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antiferromagnet with three sublattices. As a result of
magnetism-induced winding spin texture on the FS, we
find various types of topological superconductors (TSCs)
with the odd-parity spin-triplet pairing, including nodal
TSCs, and first-order and second-order TSCs.
Magnetic ordering and FS spin texture.—To model a

generic AFM metal with n sublattices in its magnetic unit
cell, we construct a tight-binding Hamiltonian Ĥ ¼
P

k ĉ
†
kHðkÞĉk where we take the basis ĉ†k ¼ ðĉ†k1↑; ĉ†k1↓;

ĉ†k2↑; ĉ
†
k2↓;…; ĉ†kn↑; ĉ

†
kn↓Þ. When n ¼ 2, we have

HðkÞ ¼
�
h11ðkÞ h12ðkÞ
h21ðkÞ h22ðkÞ

�

; ð1Þ

where hijðkÞ (i, j ¼ 1, 2) are 2 × 2 block Hamiltonians.
The diagonal blocks hiiðkÞ ¼ −mi · σ describe mean-
field approximated local spin orders represented by a
constant vector mi, while the off-diagonal blocks h12ðkÞ ¼
hNNðkÞσ0 ¼ h†21ðkÞ describe the kinetic part of the
Hamiltonian coming from the nearest-neighbor (NN)
hopping between different sublattices.
The Green’s function of HðkÞ is given by Gðk; εÞ ¼

½εI4×4 −HðkÞ�−1, where ε is the energy and Il×l is the
identity matrix of dimension l [24]. From giiðk; εÞ, the 2 ×
2 diagonal blocks of Gðk; εÞ, we extract the effective
Hamiltonian hieffðk; εÞ projected onto the ith sublattice
by using the equation giiðk; εÞ ¼ ½εI2×2 − hieffðk; εÞ�−1.
For instance, we obtain

h1effðk; εÞ ¼ h11ðkÞ þ h12ðkÞ½εI2×2 − h22ðkÞ�−1h21ðkÞ
¼ −m1 · σ þ jhNNðkÞj2½εI2×2 þm2 · σ�−1

¼ −m1 · σ þ jhNNðkÞj2
m2

2 − ε2
½εI2×2 −m2 · σ� ð2Þ

for i ¼ 1.
If we separate the effective Hamiltonian into spin-

independent and spin-dependent parts as h1effðk; εÞ ¼
R1
0ðk; εÞσ0 þ R1ðk; εÞ · σ, Eq. (2) gives R1ðk; εÞ ¼ −½m1þ

m2jhNNðkÞj2=ðm2
2 − ε2Þ�. Since the FS is an equienergy

contour, jhNNðkÞj2 and ε are constant on the FS. Hence
R̂1ðk; εÞ≡ R1ðk; εÞ=jR1ðk; εÞj is uniform on the FS for a
given Fermi level as shown in Figs. 1(a) and 1(b). One can
see that when m2 ∦ m1, the correction term from h22ðkÞ in
Eq. (2), proportional to m2 · σ, tilts R̂1ðk; εÞ away from
(towards) m1 (m2).
In the presence of additional terms such as the next-

nearest-neighbor (NNN) hopping that enters h11ðkÞ and
h22ðkÞ in the form of hNNNðkÞσ0, the direction of R1ðk; εÞ
may depend on k. Nevertheless,m1 andm2 cannot generate
smooth “winding” FS spin texture (FSST) when n ¼ 2.
This is because, to achieve winding FSST, there should be a
momentum k0 that satisfies R̂1ðk0; εÞ ¼ −R̂1ðk; εÞ for an
arbitrary k. However, this condition can never be fulfilled
unless m1 and m2 are either parallel or antiparallel. If they
are parallel or antiparallel, Eq. (2) gives R̂1ðk0; εÞkm1km2.
The recently proposed altermagnets belong to this case
[14,15].
On the other hand, when n ≥ 3, the FS spin direction

can be momentum dependent in general. For n ¼ 3, we
obtain R1ðk;εÞ¼−m1−fðkÞm2−gðkÞm3−hðkÞðm2×m3Þ,
where fðkÞ, gðkÞ and hðkÞ are k-dependent functions whose
explicit forms are provided in Supplemental Material [25].
Since RiðkÞ for a given ε is a real vector field in the
momentum space, it can have a winding number w on the
FS if (i) RiðkÞ is confined in a two-dimensional plane and
(ii) the FS is a closed curve enclosing singular points
kc¼1;2;…;nc where R

iðkc; εÞ ¼ 0. Then, w ¼ Pnc
c¼1 vc where

vc is the vorticity of the cth singular point. This condition
can be satisfied with an appropriate choice of hijðkÞ terms.
Notably, the presence of the hðkÞ term, which originates
from the higher-order correction term, proportional to
ðm2 · σÞðm3 · σÞ, indicates that the dimension of RiðkÞ
can be higher than what mi¼1;2;3 can span in general
[46]. However, if it is possible to choose the real gauge
for the kinetic part of the Hamiltonian owing to symmetries
such as C2zT in two-dimensions (2D) where Cmα is the
m-fold rotation about the α axis or PT in two- or three-
dimensions (3D), hðkÞ vanishes for a generic k [25,47,48].
Because of this, especially in 2D, the winding number of
FSST is well defined only when (i) C2zT or PT is present
[so hðkÞ ¼ 0] and (ii) mi¼1;2;3 are linearly dependent, or,
equivalently, mi¼1;2;3 are coplanar but not parallel to each

FIG. 1. (a) The FSST of a collinear antiferromagnet in the
square lattice ðm1 ¼ −m2Þ. The FS is spin degenerate while the
spin direction is parallel to the AFM ordering direction. (b) The
FSST of a canted antiferromagnet (m1 þm2 ≠ 0). The FS is spin
split while the spin direction on each FS is uniform. (c) The
kagome AIAO AFM structure (left) and the corresponding FSST
(right) computed when m ¼ 0.2 and μ ¼ −3.0. (d) The energy
eigenvalues of HKAFMðkÞ calculated along high-symmetry mo-
mentum directions. The FSST for μ ¼ −3.0 (−1.5) at which the
FS encloses the Γ (K and K0) is also plotted. The solid (dotted)
black horizontal line indicates the Fermi level at μ ¼ −3.0 (−1.5).
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other. The kagome noncollinear antiferromagnet is an
example that satisfies the above conditions.
Kagome noncollinear antiferromagnet.—As an example

demonstrating the relation among the FSST, real space
magnetic ordering, and pairing symmetries [10,12,49,50],
we consider the kagome lattice noncollinear antiferromag-
net whose structure is intrinsically P symmetric globally
but P asymmetric locally.
The ground state of the classical Heisenberg AFM

with Dzyaloshinskii-Moriya interaction on the kagome
lattice is known to have coplanar 120° ordering lying in
the lattice plane, in which the angles between NN spins are
all 120° [51]. Among the infinitely degenerate coplanar
120° ordered states, we choose the so-called all-in-all-out
(AIAO) order [Fig. 1(c)] that has three in-plane twofold
rotation symmetries which are the elements of the D3d
point group.
We construct a tight-binding Hamiltonian HKAFMðkÞ

describing the kagome AIAO antiferromagnet as in Eq. (1)
but with n ¼ 3. Explicitly, we have h12 ¼ −tð1þ eik·e1Þ,
h13 ¼ −tð1þ e−ik·e3Þ, h23 ¼ −tð1þ eik·e2Þ, and hiiðkÞ ¼
−μ −mi · σ where e1 ¼ ð1; 0Þ, e2 ¼ ð−1=2; ffiffiffi

3
p

=2Þ,
e3 ¼ ð−1=2;− ffiffiffi

3
p

=2Þ, m1 ¼ mð− ffiffiffi
3

p
=2;−1=2Þ, m2 ¼

mð ffiffiffi
3

p
=2;−1=2Þ, and m3 ¼ mð0; 1Þ. Here, t ¼ 1, m, and

μ indicate the NN hopping amplitude, local magnetic mo-
ment, and chemical potential, respectively. In Fig. 1(d), we
show the corresponding band structure for m ¼ 0.2 and
μ ¼ −3.0. The Ri field of the kagome AIAO antiferro-
magnet has singular points with total vorticity −2 (þ1) near
the Γ point (K and K0 points). Therefore, the two Fermi
pockets that enclose Γ carry w ¼ −2 FSST as in Fig. 1(c),
while the pockets that enclose K or K0 carry w ¼ 1. The
relevant FSSTs are also shown in Fig. 1(d). This example
clearly demonstrates that FSST can be generated by real
space magnetic ordering in the absence of SOC [52–54].
In addition, the vanishing Ri field at the singular points

implies possible twofold degeneracies of spin bands. In
Fig. 1(d), among the nodes at C3z-invariant momenta
protected by C3z and C2zT symmetries, the gap closings
between the first and second lowest bands at Γ and the fifth
and sixth lowest bands at K (K0) are such nodes. We note
that the band touching between the second and third lowest
bands at K (K0) shows quadratic dispersion, even though
the FSST winds only once. This happens because the
physical spin (winding once) is different from the pseu-
dospin (winding twice) defined in the projected two-band
space related to the band crossing.
FSST and superconducting gap structure.—The spin

structure of spin-triplet Cooper pairs can be described by
the so-called d vector [1]. Thus, the effect of the FSST on
Cooper pairs can be understood from the relation between
the d vector and the FS spin direction. With Pauli matrices
σx;y;z that act on spin degrees of freedom, the mean-field
pairing interaction can be written in a simple form

Ĥint¼
P

k;s;s0Δkĉ
†
k;sĉ

†
−k;s0 þH:c:, where Δk¼ψ0ðkÞðiσyÞþ

dðkÞ ·σðiσyÞ and s (s0) denotes the spin. For a given spin
basis, the dz component indicates opposite-spin triplet
pairing, while the dx and dy components describe equal-
spin triplet pairing. As shown in Fig. 2(a), if P is present
while T is absent, the equal-spin Cooper pairing is forced in
the weak-coupling limit, because electron pairs at opposite
momenta have the same spins. Therefore, for the spin basis
aligned to the FSST direction, dðkÞ should have a compo-
nent perpendicular to the FSST to open a gap on the FS. On
the other hand, if T is present while P is absent, the
opposite-spin Cooper pairing is forced, so the pairing
interaction should have a dðkÞ component that is parallel
to the FSST to open a gap.
To describe the superconducting state of the kagome

antiferromagnet, we introduce pairing interaction ΔðkÞ and
rewrite the Hamiltonian in the Nambu basis Ψ̂†

k ¼ ðĉ†k; ĉ−kÞ.
Then, the Bogoliubov–de Gennes (BdG) Hamiltonian
becomes

P
k Ψ̂

†
kHBdGðkÞΨ̂k with

HBdGðkÞ ¼
�
HKAFMðkÞ − μ ΔðkÞ

Δ†ðkÞ −HT
KAFMð−kÞ þ μ

�

: ð3Þ

Since HKAFMðkÞ is symmetric under D3d point group
symmetries, the pairing channels can be classified by
corresponding irreducible representations (IRs) [1]. As
the AIAO AFM state is P symmetric but T broken,
equal-spin triplet pairing is favored, and thus only odd-
parity spin-triplet IRs (A1u, A2u, and Eu) can induce
superconducting instability within the weak-coupling
approximation. The transformation properties of the IRs
under theD3d point group are summarized in Supplemental
Material [25].
To illustrate the relation between the gap structure and

FSST, we consider the FS with w ¼ 2 near Γ shown in
Fig. 1(d) as an example. Projecting the HamiltonianH onto
the lowest energy band of the nonmagnetic kagome lattice
Hamiltonian HKAFMðkÞjmi¼0 and expanding it up to the
quadratic order of kx and ky, we obtain the effective
Hamiltonian near Γ given by

FIG. 2. (a) Schematic diagram describing the FS spin direction
with P (left) and T (right) symmetries. (b) The FSST of Heff that
corresponds to Fig. 1(c). The in-plane twofold rotation axes and
the mirror invariant lines are represented by dashed and solid
lines, respectively. The black dashed arrow connects the electron
pair at opposite momenta for each case.
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HeffðkÞ¼ð−4þk2xþk2yÞþ
m
6
kxkyτxþ

m
12

ðk2x−k2yÞτy; ð4Þ

where the Pauli matrices τi¼1;2;3 denote the effective spin
that represents the lowest two bands in Fig. 1(d). For
HeffðkÞ, the matrix representations of the D3d symmetry
generators are given by C3z ¼ ðτ0 − i

ffiffiffi
3

p
τzÞ=2, C2y ¼ iτy,

and P ¼ τ0.
Let us first consider ΔA1u

k , the pairing inter-
action belonging to the A1u IR. As it satisfies
C2yðkÞΔA1u

k ðkÞCT
2yðkÞ ¼ ΔA1u

C2yk
, dx and dz components,

which couple to τxðiτyÞ and τzðiτyÞ in ΔA1u
k , respectively,

are forbidden on the ky axis. As displayed in Fig. 2(b), the
effective spin texture on the ky axis is pointing to the y

direction, parallel to the d vector of ΔA1u
k , thus ΔA1u

k cannot
open a gap on the ky axis. Similar arguments can also be
applied to two other in-plane twofold rotation axes. Thus,
ΔA1u

k cannot open a gap at the intersection of the FS and the
Γ −Mi¼1;2;3 lines.
On the other hand, ΔA2u

k satisfiesMyðkÞΔA2u
k ðkÞMT

y ðkÞ ¼
ΔA2u

Myk
where My ¼ PC2y is a mirror reflection with respect

to the zx plane. Thus, the d vector of ΔA2u
k is parallel to the

spin texture on the kx axis, both aligned to the y direction.
As a result, ΔA2u

k has nodes along the mirror invariant lines
(Γ − K, Γ − K0, and K − K0).
Finally, in the case of the Eu IR, there are no such

constraints for the direction of the d vector (see
Supplemental Material [25]).
Topological superconductivity.—Consistent with the gap

structure analysis by comparing the d-vector direction and
FSST, one can find that the superconducting state is always
gapped for the Eu pairing. Meanwhile, for the A1u or A2u
pairing, the bulk is gapless if the FS intersects high-
symmetry lines where the d vector is parallel to the
FSST, unless the FS avoids such high-symmetry lines.
To reveal the nature of the superconducting states in the
kagome antiferromagnet, we investigate the nodal and
topological structures of the BdG Hamilitonian in
Eq. (3) in weak-pairing limit by varying μ and m, as
summarized in Fig. 3. We note that the A2u pairing makes
the system gapless with point nodes on the mirror-invariant
lines in every region of the m − μ parameter space where
the normal state is metallic. In contrast, while the A1u
pairing mostly induces gapless superconducting states with
nodes along the C2-invariant lines, it can also induce a fully
gapped superconductor in the green-colored regions in
Fig. 3(a) where the FS does not cross the C2-invariant lines.
In both the A1u and A2u pairings, as the nodes are located
along high-symmetry lines, pair annihilation between
neighboring nodes can sometimes happen when the pairing
interaction is strong enough. The resulting gapped super-
conducting state can become a second-order TSC as shown
in the red region in Fig. 3(a).

In the case of gapped superconducting states, its topo-
logical properties can be described by using the symmetry
indicators [55–58]. When the pairing interaction is weak
enough, the symmetry representations of the occupied
states of HBdGðkÞ at high-symmetry momenta remain
unchanged after the superconducting phase transition.
Thus, regardless of the detailed form of the pairing
interaction, one can draw the phase diagrams using the
symmetry indicator information extracted from the normal
state and pairing symmetry as discussed in detail in
Supplemental Material [25]. This approximation is valid
if the pairing interaction is smaller than the bandwidth of
electron bands at the Fermi level. Since the band structure
of kagome lattice noncollinear antiferromagnet has nearly
flat bands lying between E ¼ 2 and 2þm (i.e., m is the
bandwidth for these bands), we expect the weak-coupling
approximation would be valid for μ < 2 or large m values.
The distribution of the invariant Z related to the second-
order topology for the A1u IR and that of the Chern number
for the Eu IR, obtained by using the symmetry indicators,

FIG. 3. (a) The topological phase diagrams for the A1u IR
obtained in the weak pairing limit. In the black-colored region,
the normal state is insulating. In the white-, green-, and rainbow-
colored regions, the A1u pairing induces nodal, fully gapped (FG),
and gapless but easily gappable (EG) superconductivity, respec-
tively. The yellow- and red-colored regions in the right figure
represent the trivial superconductor (Z ¼ 0) and the second-order
TSC (Z ¼ 1), respectively. (b) The topological phase diagrams
for the Eu IR with C3z eigenvalue α ¼ ω. The yellow, blue,
orange, cyan, magenta, and purple regions represent the phases
with C ¼ 0, C ¼ 1, C ¼ 2, C ¼ 3, C ¼ 4, and C ¼ 5 modulo 6,
respectively. For α ¼ ω2, the sign of C becomes reversed. (c) The
evolution of the phase diagram from the nonmagnetic case to the
ferromagnetic case (left) and the noncollinear AFM case in
(b) (right). To consider a situation where both P and C3z are
conserved, we assume out-of-plane ordered ferromagnetism in
the left. Then, the ferromagnetic phase diagram can be simply
obtained by superposing spin-up and spin-down phase diagrams,
while the AFM phase diagram shows a more complex structure.
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are shown in Figs. 3(a) and 3(b), respectively. The
corresponding Wilson loop and edge spectra are described
in Supplemental Material [25].
We note that the spin texture induced by noncollinear

AFM ordering also affects the topological nature of the
gapped superconducting states. To illustrate this, we
compare the superconducting phase diagram of the kagome
ferromagnet and that of the noncollinear antiferromagnet
considering the Eu IR, as shown in Fig. 3(c). In the case of
the ferromagnet without winding spin texture, the super-
conducting phase diagram can be understood by using the
relevant phase diagram for spinless band structure with
m ¼ 0. Since the ferromagnetism only induces a rigid shift
of spin-up and spin-down bands, the superconducting
phase diagram of the ferromagnet is merely a simple
superposition of two m ¼ 0 phase diagrams for spin-up
and spin-down electrons, respectively. On the other hand, in
the case of a noncollinear antiferromagnet, as the winding
spin texture accompanies normal state band degeneracies
associated with the singular points of the R field, which are
absent in the ferromagnet, the corresponding super-
conducting phase diagram exhibits distinct topological
characteristics.
Discussion.—In this Letter, we have studied the effect of

real space magnetic texture on the FS and its super-
conductivity. Especially, it is shown that spin-momentum
locking on the FS can be generated purely by the real space
magnetism even in the absence of SOC. This magnetism-
induced FSST, together with the d vector, provides an
intuitive understanding of the symmetry-protected nodes
on high-symmetry lines in noncollinear AFM supercon-
ductors. To support our theory further, we have performed
additional first-principles calculation for a kagome
coplanar antiferromagnet Mn3Sn illustrating the FSST,
and mean-field analysis about superconducting instability
arising from phenomenological density-density interaction,
as described in detail in Supplemental Material [25].
We emphasize that the scope of our theory is not

restricted to the kagome lattice in 2D. It can be applied
to a general two- or three-dimensional lattice with an
arbitrary number of sublattices. Indeed, consistent with
our prediction on the requirements to have winding spin
texture, a recent spin-resolved angle-resolved photoemis-
sion spectroscopy measurement reported that MnTe2 [59],
a noncoplanar antiferromagnet that has four atoms in the
magnetic unit cell with linearly dependent local spin
moments, shows winding spin texture. Finally, considering
our prediction of various odd-parity spin-triplet super-
conducting states with intriguing nodal structures and
topological properties, we expect that the kagome AFM
is poised to become a crucial arena for Majorana engineer-
ing in magnetic superconductors.

S. H. L., Y. Q., and B.-J. Y. were supported by
Samsung Science and Technology Foundation under

Project No. SSTF-BA2002-06, and National Research
Foundation of Korea (NRF) grants funded by the govern-
ment of Korea (MSIT) (Grants No. 2021R1A2C4002773
and No. NRF-2021R1A5A1032996).

*bjyang@snu.ac.kr
[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[2] W. Kohn and J. Luttinger, Phys. Rev. Lett. 15, 524 (1965).
[3] P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett. 30,

1108 (1973).
[4] D. Vollhardt and P. Wolfle, The Superfluid Phases of

Helium 3 (Courier Corporation, North Chelmsford, MA,
2013).

[5] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520 (2011).
[6] M. Smidman, M. Salamon, H. Yuan, and D. Agterberg,

Rep. Prog. Phys. 80, 036501 (2017).
[7] Y. Li and Z.-A. Xu, Adv. Quantum Technol. 2, 1800112

(2019).
[8] M. Desjardins, L. Contamin, M. Delbecq, M. Dartiailh, L.

Bruhat, T. Cubaynes, J. Viennot, F. Mallet, S. Rohart, A.
Thiaville, A. Cottet, and T. Kontos, Nat. Mater. 18, 1060
(2019).

[9] S. Yoshizawa, T. Kobayashi, Y. Nakata, K. Yaji, K. Yokota,
F. Komori, S. Shin, K. Sakamoto, and T. Uchihashi, Nat.
Commun. 12, 1462 (2021).

[10] X. Zhang, J. Liu, and F. Liu, Nano Lett. 22, 9000 (2022).
[11] G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I.

Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T.
Neupert et al., Nat. Mater. 17, 978 (2018).

[12] S. H. Lee, H. C. Choi, and B.-J. Yang, Phys. Rev. Lett. 126,
067001 (2021).

[13] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J.
Sinova, Sci. Adv. 6, eaaz8809 (2020).

[14] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,
031042 (2022).

[15] L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12,
040501 (2022).

[16] M. T. Mercaldo, C. Noce, A. D. Caviglia, M. Cuoco, and C.
Ortix, npj Quantum Mater. 8, 12 (2023).

[17] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome,
and H. Seo, Nat. Commun. 10, 4305 (2019).

[18] M. Naka, S. Hayami, H. Kusunose, Y. Yanagi, Y. Motome,
and H. Seo, Phys. Rev. B 102, 075112 (2020).

[19] M. Naka, Y. Motome, and H. Seo, Phys. Rev. B 103, 125114
(2021).

[20] M. Naka, Y. Motome, and H. Seo, Phys. Rev. B 106, 195149
(2022).

[21] S. Sumita, M. Naka, and H. Seo, Phys. Rev. Res. 5, 043171
(2023).

[22] Y. Noda, K. Ohno, and S. Nakamura, Phys. Chem. Chem.
Phys. 18, 13294 (2016).

[23] T. Okugawa, K. Ohno, Y. Noda, and S. Nakamura, J. Phys.
Condens. Matter 30, 075502 (2018).

[24] M. Kawano and C. Hotta, Phys. Rev. B 100, 174402 (2019).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.132.196602 for more
detailed derivation of the Fermi surface spin texture equa-
tion, the effective Hamiltonian projected to sublattices,

PHYSICAL REVIEW LETTERS 132, 196602 (2024)

196602-5

https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/PhysRevLett.15.524
https://doi.org/10.1103/PhysRevLett.30.1108
https://doi.org/10.1103/PhysRevLett.30.1108
https://doi.org/10.1103/PhysRevB.83.184520
https://doi.org/10.1088/1361-6633/80/3/036501
https://doi.org/10.1002/qute.201800112
https://doi.org/10.1002/qute.201800112
https://doi.org/10.1038/s41563-019-0457-6
https://doi.org/10.1038/s41563-019-0457-6
https://doi.org/10.1038/s41467-021-21642-1
https://doi.org/10.1038/s41467-021-21642-1
https://doi.org/10.1021/acs.nanolett.2c03213
https://doi.org/10.1038/s41563-018-0169-3
https://doi.org/10.1103/PhysRevLett.126.067001
https://doi.org/10.1103/PhysRevLett.126.067001
https://doi.org/10.1126/sciadv.aaz8809
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1038/s41535-023-00545-y
https://doi.org/10.1038/s41467-019-12229-y
https://doi.org/10.1103/PhysRevB.102.075112
https://doi.org/10.1103/PhysRevB.103.125114
https://doi.org/10.1103/PhysRevB.103.125114
https://doi.org/10.1103/PhysRevB.106.195149
https://doi.org/10.1103/PhysRevB.106.195149
https://doi.org/10.1103/PhysRevResearch.5.043171
https://doi.org/10.1103/PhysRevResearch.5.043171
https://doi.org/10.1039/C5CP07806G
https://doi.org/10.1039/C5CP07806G
https://doi.org/10.1088/1361-648X/aa9e70
https://doi.org/10.1088/1361-648X/aa9e70
https://doi.org/10.1103/PhysRevB.100.174402
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.196602


superconducting state belonging to Eu irreducible repre-
sentation, topological invariants for superconducting states,
first-principles calculations of Mn3Sn, and mean-field
analysis of the superconducting states in kagome antiferro-
magnet, which includes Refs. [26–45].

[26] C. Bradley and A. Cracknell, The Mathematical Theory of
Symmetry in Solids (Oxford University Press, New York,
2010).

[27] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74,
045125 (2006).

[28] L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
[29] M. Sato, Phys. Rev. B 81, 220504(R) (2010).
[30] T. Fukui, K. Shiozaki, T. Fujiwara, and S. Fujimoto, J. Phys.

Soc. Jpn. 81, 114602 (2012).
[31] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev.

Mod. Phys. 88, 035005 (2016).
[32] E. Khalaf, Phys. Rev. B 97, 205136 (2018).
[33] J. Ahn and B.-J. Yang, Phys. Rev. Res. 2, 012060(R) (2020).
[34] S. A. A. Ghorashi, T. L. Hughes, and J. Cano, arXiv:

2306.09413.
[35] K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A.

Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M.
Nakayama, S. Akebi et al., Nat. Mater. 16, 1090 (2017).

[36] S. Tomiyoshi, J. Phys. Soc. Jpn. 51, 803 (1982).
[37] P. Brown, V. Nunez, F. Tasset, J. Forsyth, and P.

Radhakrishna, J. Phys. Condens. Matter 2, 9409 (1990).
[38] S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci,

R. M. Hanson, K. Momma, M. I. Aroyo, and G. Madariaga,
J. Appl. Crystallogr. 49, 1750 (2016).

[39] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272
(2011).

[40] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15
(1996).

[41] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

[42] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[43] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
80, 891 (1998).

[44] U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F.
Muñoz, and A. H. Romero, Comput. Phys. Commun. 251,
107080 (2020).
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