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The gapped symmetric phase of the Affleck-Kennedy-Lieb-Tasaki model exhibits fractionalized spins at
the ends of an open chain. We show that breaking SU(2) symmetry and applying a global spin-lowering
dissipator achieves synchronization of these fractionalized spins. Additional local dissipators ensure
convergence to the ground state manifold. In order to understand which aspects of this synchronization are
robust within the entire Haldane-gap phase, we reduce the biquadratic term, which eliminates the need for
an external field but destabilizes synchronization. Within the ground state subspace, stability is regained
using only the global lowering dissipator. These results demonstrate that fractionalized degrees of freedom
can be synchronized in extended systems with a significant degree of robustness arising from topological
protection. A direct consequence is that permutation symmetries are not required for the dynamics to be
synchronized, representing a clear advantage of topological synchronization compared to synchronization
induced by permutation symmetries.
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Introduction.—From neuroscience to chemical reactions,
synchronization emerges in an impressively vast variety of
seemingly unrelated systems [1–5] and despite its long
history continues to be crucial for the development ofmodern
technology [6–13]. In the past decade, the concept of
synchronization has been generalized to the quantum regime
with studies ranging from classically inspired systems like
nonlinear oscillators [14–31] to systems without any
classical counterpart like spins [32–36]. Mutual synchroni-
zation and forced synchronization have been examined with
surprising effects that are absent in the classical regime, such
as, for example, the phenomenon of synchronization block-
ade of two identical systems [37,38], which has recently
also been verified experimentally [39]. Promising applica-
tions of quantum synchronization range from quantum
information [40–43] to quantum thermodynamics [44–46].
One approach to synchronization—followed in particular

in the study of quantummany-body systems—is in terms of
persistently oscillating eigenmodes of time-independent
quantum master equations [35,47,48]. The existence of
such eigenmodes is intimately related to dynamical
symmetries [47–49], which together with permutation
symmetries allow for synchronized dynamics of local
observables. An illustrative example investigated in
Ref. [47] is a three-site Hamiltonian which nontrivially
couples three spin-1=2 particles, is reflection symmetric
about the central site, and conserves total magnetization.
Dissipation acting locally on the central spin forces it to be in
the spin-down state. As a consequence, there are two steady
states of the master equation, where the two remaining spins
are both spin-down or form a singlet. These two pure states
form a decoherence-free subspace [50] such that coherent

oscillations between these two states are possible even in this
dissipative setup. Starting in an initial state that has non-
vanishing overlap with both the singlet and the both-down
state, results (after a short transient time) in perfectly
antisynchronized oscillations of the local transverse spin
of the noncentral sites 2 and 3, i.e., hσx2ðtÞi ¼ −hσx3ðtÞi. They
are antisynchronized because the singlet state is antisym-
metric upon reflection while the spin-down state is sym-
metric. In the corresponding Bloch sphere representation,
the central spin rapidly decays to the south pole, while the
other two spins reach the same limit cycle within the Bloch
sphere (parallel to the x-y plane) which they orbit perfectly
out of phase.
In this Letter, we investigate whether a similar strategy

can be exploited to synchronize the fractionalized spin-1=2
degrees of freedom localized at the open ends of a spin-1
Affleck-Kennedy-Lieb-Tasaki (AKLT) chain [51–53]. By
applying dissipation that acts globally on all sites, we show
that lifting the ground state degeneracy through a small
external magnetic field leads to stable synchronization
of the fractionalized spins. In that case, local spin-1
observables at the ends are perfectly antisynchronized with
amplitudes that reflect the topological edge states, i.e., they
are exponentially localized at the boundaries. In addition
we show that quasilocal dissipators acting on two neigh-
boring sites that dissipate the energetically lowest state of
the total spin S ¼ 2 subspace are sufficient to depopulate
the whole excited subspace and remove unwanted addi-
tional oscillations. The observed synchronization is of a
topological nature as the underlying mechanism relies on
the fractionalization of the spin degrees of freedom and is
thus topologically protected by the Z2 × Z2 symmetry of
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the AKLT states. Consequently, the observed synchroniza-
tion is robust to perturbations that break the inversion (or
permutation) symmetry, which can induce additional dis-
sipation and eliminate long-lasting synchronized dynamics.
Last, we show that if the fractionalized spins are allowed to
interact by decreasing the biquadratic term of the AKLT
Hamiltonian, stable synchronization within the ground
state manifold of the Haldane-gap phase is still possible
even without external magnetic field if one only considers a
global spin lowering dissipator. This demonstrates that the
dynamic response depends on the microscopic details of
systems even though they belong to the same symmetry
protected topological phase.
Synchronization model.—We consider the open spin-1

AKLT chain of size N with an additional external magnetic
field B yielding the Hamiltonian

H ¼
XN−1

j¼1

�
1

2
S⃗j · S⃗jþ1 þ

1

6
ðS⃗j · S⃗jþ1Þ2 þ

1

3

�
þ B
N
Sz; ð1Þ

where Sz ¼ P
N
j¼1 S

z
j is the total magnetization. For suffi-

ciently small values of B, the Hamiltonian remains gapped
even if the chain size is increased, yet breaks SU(2)
symmetry (which will become important for synchroniza-
tion as we explain later). For B ¼ 0 the ground state is
fourfold degenerate as a consequence of effective spin-1=2
degrees of freedom that are localized at both ends of the
chain. The ground states of (1) can be constructed explic-
itly, e.g., in terms of Schwinger bosons [54] or matrix
product states [55–57]. As the spin-1=2 degrees of freedom
at the ends are exactly decoupled, there are three ground
states with total spin S ¼ 1, where the two dangling spin-
1=2’s form a triplet state with Sz ¼ 1; 0;−1 and one with
S ¼ 0, where the dangling spin-1=2’s form a singlet with
Sz ¼ 0. Thus, we may label the ground states accordingly
as jG1;1i, jG1;0i, jG1;−1i, and jG0;0i. Note, that while a
finite value of B partially lifts the ground state degeneracy,
the corresponding manifold is still spanned by fjGS;Szig as
the total magnetization is preserved; ½H; Sz� ¼ 0.
Synchronization is inherently connected to open system

dynamics because it requires dissipation in order to reduce
all potential dynamics to only the desired, synchronized
ones. To this end, we describe the system by a time
dependent density operator ϱðtÞ acting on the Hilbert space
of the system H. We consider Markovian dynamics such
that the evolution may be described via a Lindblad master
equation [58,59],

ϱ̇¼ −i½H;ϱ� þ
X

μ

ð2LμϱL
†
μ − fL†

μLμ;ϱgÞ ¼ L½ϱ�; ð2Þ

where Lμ denotes (for now unspecified) Lindblad oper-
ators. The Liouvillian superoperator L is the generator of
a smooth, time-homogeneous, completely positive, and

trace-preserving (CPTP) map (or quantum channel), which
obeys the semigroup property. The system dynamics
described by Eq. (2) is guaranteed to have at least one
steady state ϱss such that L½ϱss� ¼ 0 [58].
A sufficient and necessary condition for the existence of

an eigenstate ϱ ¼ Aϱss of L with purely imaginary eigen-
value λ ¼ −iω, i.e., L½ϱ� ¼ −iωϱ with ω∈R, is given
by [47]

½Lμ; A�ϱss ¼ 0; ð3Þ
�
−i½H;A� −

X

μ

½L†
μ; A�Lμ

�
ϱss ¼ −iωAϱss: ð4Þ

While Eqs. (3) and (4) guarantee the existence of persistent
oscillations in the long time limit, one usually demands
another condition for (anti)synchronization [47]. Let Pjk be
an operator that exchanges subsystem j with k and let
Pjk½x� ¼ PjkxPjk. Then, if Pjk is a weak symmetry of the
Liouvillian, i.e., ½L;Pjk� ¼ 0, and (anti)commutes with the
operator A, PjkAPjk ¼ �A, then we find stable synchro-
nization (þ) or antisynchronization (−) of the two local
operators Oj and Ok if Tr½OjAϱss� ≠ 0 and conditions (3)
and (4) are fulfilled, that is after some transient time τ

hOjðtÞi ¼ �hOkðtÞi ∀ t ≥ τ ð5Þ

up to exponentially small corrections. In the example
referred to in the introduction the local transverse spin
of the noncentral sites 2 and 3 will be perfectly anti-
synchronized, i.e., hσx2ðtÞi ¼ −hσx3ðtÞi ∝ cosðωtÞ, where
the oscillation frequency ω depends on the specific choice
of Hamiltonian [47]. As we discuss later, the necessity of
permutation symmetry is omitted for topological synchro-
nization in the AKLT chain as long as the Z2 × Z2 is
preserved.
In the following, we first focus on the ground state

manifold and show how a single, globally acting dissipator
LG leads to the fulfilment of conditions (3)–(5) within the
ground state manifold and thus to stable synchronization. In
a second step we will then show that additional, locally
acting dissipators force the dynamics into the ground state
manifold.
In order to find adequate dissipators such that Eqs. (3)

and (4) are fulfilled, we utilize the fractionalized spins of
the AKLT ground states: since the triplet and singlet states
have different respective total spin S ¼ 1 and S ¼ 0, a
global lowering operator S− ¼ P

N
j¼1 S

−
j leaves the singlet

state jG0;0i invariant while lowering the magnetization Sz
of the triplet states. Repeated application of S− will then
force the population into the state with the lowest weight,
i.e., jG1;−1i, which is also invariant upon acting with S−.
Hence, a globally acting Lindblad dissipator LG ¼ ffiffiffi

γ
p

S−

with dissipation rate γ, establishes two steady states of the
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master Eq. (2) given by the pure states ϱ0 ¼ jG0;0ihG0;0j
and ϱ1 ¼ jG1;−1ihG1;−1j. Together with the operator A ¼
jG1;−1ihG0;0j conditions (3) and (4) are fulfilled; in par-
ticular, it holds that

L½ϱ10¼Aϱ0� ¼ i
B
N
ϱ10; L½ϱ01¼ ϱ0A†� ¼−i

B
N
ϱ01: ð6Þ

Note, that ϱ1 ¼ Aϱ0A†. We now also recognize that lifting
the ground state degeneracy is necessary to observe
synchronization, i.e., without the external magnetic field
in Eq. (1) the oscillation frequency would be zero.
Depopulating the excited states.—So far, we have dis-

cussed how synchronization may arise within the ground
state manifold with the help of a dissipative channel in
terms of LG. However, in addition the excited states need to
be depopulated. This can be done either in a two-step
process where one prepares the ground state subspace first
using established approaches [60–69] or via depopulation
during the dissipative evolution. As a proof of principle, we
here opt for the latter and construct the simplest possible
operators by exploiting that the Hamiltonian (1) preserves
total angular momentum. In particular, for B ¼ 0, each term

in H can be written as Pð2Þ
j;jþ1, where Pð2Þ

j;jþ1 denotes the
projector of two spin-1’s on sites j and jþ 1 onto total
spin-2. Hence, the ground states are reached by driving two
adjacent spin-1 particles out of the S ¼ 2 subspace. The
previously introduced dissipative channel (LG ¼ ffiffiffi

γ
p

S−)
forces all population within the S ¼ 2 subspace to even-
tually reach the Sz ¼ −2 state. Thus, we only need to
depopulate these states to dissipatively reach the ground
state manifold. An exemplary choice is the Lindblad
dissipators Lj;jþ1 ¼

ffiffiffi
κ

p j00ih− − jj;jþ1 written in the Sz
basis fjþi; j0i; j−ig.
Synchronized dynamics.—Combining all Lindblad oper-

ators, the dissipative evolution of the density matrix which
eventually leads to the synchronization of the fractionalized
spins is given by

ϱ̇ ¼ −i½H; ϱ� þD½LG�ϱþ
XN−1

j¼1

D½Lj;jþ1�ϱ ¼ L½ϱ�; ð7Þ

where D½L�ϱ ¼ 2LϱL† − fL†L; ϱg. Its solution, given that
the system is initialized in the state ϱð0Þ, may be expressed
using the spectral decomposition of the Liouvillian super-
operator as

ϱðtÞ ¼
X

k

Ck exp ðλktÞϱk; ð8Þ

where ϱk is the right eigenstate of L with corresponding
eigenvalue λk, i.e., L½ϱk� ¼ λkϱk. As L is non-Hermitian,
the left eigenstates defined by L†½σk� ¼ λ�kσk may differ
from the right ones. However, it holds that Trðσ†kϱk0 Þ ¼ δkk0 .

The constant Ck in Eq. (8) denotes the overlap of the
eigenstates with the initial state ϱð0Þ, i.e., Ck ¼ Tr½σ†kϱð0Þ�.
Note that becauseL generates a CPTPmap, the eigenvalues
λk can lie only in the left half of the complex plane with
Re½λk� ≤ 0, and they always come in pairs, i.e., if λk is an
eigenvalue, so is λ�k. All eigenstates of L with negative real
part of the corresponding eigenvalues will experience
selective decay, and only the ones which lie on the
imaginary axis contribute to the dynamics in the long
time limit.
As discussed previously, the dynamics given by

Eq. (7) will eventually terminate in the decoherence-free
subspace [50] spanned by fϱ0; ϱ1; ϱ10; ϱ01g. Thus, the
expectation value of some observable O is given by

lim
t→∞

hOiðtÞ ¼ C0TrðOϱ0Þ þ C1TrðOϱ1Þ
þ ½eiBt=NC01hG0;0jOjG1;−1i þ c:c:�: ð9Þ

Because the subspace is decoherence free,Ci¼Tr½σ†i ϱð0Þ�¼
Tr½ϱ†i ϱð0Þ�. In order to observe stable synchronization, not
only does the initial state need to have nonvanishing overlap
with the eigenstate ϱ01, but also the observable is nonzero in
that state, i.e., Tr½OAϱ0� ¼ hG0;0jOjG1;−1i ≠ 0. A suitable
choice of local operators that may be used as witnesses of the
fractionalized spin synchronization are given by the trans-
verse spin Sxj , for which the first two terms in Eq. (9) are
identical to zero, and only C01 ¼ hG0;0jϱð0ÞjG1;−1i ¼ C�

10

and hG0;0jSxj jG1;−1i contribute to the long-time dynamics.
As the dynamical symmetry operator A ¼ jG1;−1ihG0;0j

is antisymmetric upon inversion of the chain, an operator
acting locally on site j will be antisynchronized with the
corresponding site at the other end of the chain located at
ðN þ 1Þ − j. Figures 1(a) and 1(b) show the time evolution
of the transverse spin hSxji for a chain of length N ¼ 6 with
a random pure state as initial condition (solid lines
correspond to the left half of the chain j ¼ 1, 2, 3, dashed
lines to the right half j ¼ 4, 5, 6). The oscillations are
perfectly antisynchronized upon inversion of the chain. As
a consequence of the fractionalized spin, the amplitudes
decay exponentially into the bulk. As seen in Fig. 1(b)
for short times there is no synchronization. However,
the transient time is short compared to the oscillation
frequency ω ¼ B=N. For random initial conditions the
oscillation amplitudes even at the boundaries are small.
The reason is that the overwhelming majority of states has
no overlap with the ground state coherences such that
C01 ¼ hG0;0jϱð0ÞjG1;−1i ≪ 1. However, one may maxi-
mize this overlap by choosing ϱð0Þ ¼ jψihψ j as initial
state, where jψi represents an equal superposition of jG0;0i
and jG1;Szi. This suggests that the previously mentioned
two-step process may be better suited for actual exper-
imental implementations. Figure 1(c) shows the dynamics
for jψi ¼ ðjG0;0i þ jG1;−1iÞ=

ffiffiffi
2

p
as initial state. As this
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state is decoherence free, the amplitudes are unaffected by
the dissipation and antisynchronization is stable. Note, that
the transient relaxation time, related to the Liouvillian gap
Δ, scales in general exponentially with system size.
However, within the ground state subspace Δ ¼ 2γ.
Thus, in combination with the previously mentioned
two-step process, where the ground state manifold can
be prepared dissipatively in polynomial time [61] or via a
constant-depth quantum circuit [68], the synchronized
dynamics can be achieved efficiently in general.
Haldane chain.—The AKLT Hamiltonian (1) exhibits

spin-1=2 degrees of freedom that are perfectly localized at
boundaries and do not interact. In the following we
investigate the impact of interactions by decreasing the
value of the biquadratic term in Eq. (1), i.e., we consider the
Hamiltonian

Hε ¼ H − ε
XN−1

j¼1

ðS⃗j · S⃗jþ1Þ2: ð10Þ

For finite values of ε, the Hamiltonian cannot simply be
expressed via projection operators and the Lindblad oper-
ators Lj;jþ1 induce additional dissipation. Figure 2(a)
shows the complex eigenvalues of L close to the imaginary
axis for different values of ε in the range of ½0; 1=6�, where
ε ¼ 1=6 removes the biquadratic term completely, and
corresponds to the spin-1 Heisenberg chain (with additional
magnetic field). Upon increasing ε the initially purely
imaginary eigenvalues move away from both the real
and the imaginary axis, i.e., the oscillation frequency
increases, yet the synchronization is damped. However,

the real part remains small and in particular the eigenvalues
with second smallest real part also move away from the
imaginary axis. Thus, there exists a time range for which all
eigenstates but the synchronized ones are damped. Such
damped synchronized dynamics has also been termed
metastable synchronization [47].
Stable synchronization may, however, be restored under

certain conditions even for the Heisenberg chain (ε ¼ 1=6).
To this end we consider the case of B ¼ 0, such that for
ε ¼ 0 the ground state is fourfold degenerate. Perturbations
to the biquadratic term of the AKLT Hamiltonian partially
lift the ground degeneracy such that the S ¼ 0 state is
energetically distinct from the states within the S ¼ 1
subspace. In the following, we will refer to both the
fourfold degenerate ground state for ε ¼ 0 as well as the
threefold degenerate subspace together with the ground
state for ε ≠ 0 as the ground state subspace. As Hε and the
dissipator LG preserve the total angular momentum, the
dynamics is confined to their respective total angular
momentum subspace for κ ¼ 0. Then, there exists again
a dynamical symmetry operator connecting the threefold
degenerate subspace (S ¼ 1) with the S ¼ 0 state. Similar
to the previous discussion, this results in perfect antisynch-
ronization if the initial state is chosen to be within the
ground state subspace. Figures 2(b) and 2(c) show the time
evolution of the transverse spin hSxjiðtÞ for a chain of length
N ¼ 6 for ε ¼ 0.1 and ε ¼ 1=6, respectively. The dynamics
show perfect antisynchronization for the infinite temper-
ature state within the ground state subspace as initial state.
The oscillation frequency in Fig. 2(c) is larger compared to
Fig. 2(b) as the energy gap between the S ¼ 1 and S ¼ 0
subspaces opens.
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FIG. 1. Evolution of the local transverse spin hSxji of the synchronized AKLT model for an open chain of length N ¼ 6 (sites j ¼ 1, 2,
3 in solid lines, sites j ¼ 4, 5, 6 in dashed lines). (a) Starting from a random pure state, i.e., a vector of dimension 36 with random
complex amplitudes (we also investigated random mixed states with equivalent results), the two halves of the chain are perfectly
antisynchronized with each other after a transient time because the dynamical symmetry operator A ¼ jG1;−1ihG0;0j is antisymmetric
upon inversion of the chain. The (anti)synchronized amplitudes after the transient time decay exponentially into the bulk. (b) Same plot
as in (a) but focusing on the early time dynamics: The random initial conditions result in transient random spin dynamics. (c) The
balanced superposition of jG0;0i and jG1;−1i as initial state is immune to dissipation and maximizes the observed (anti)synchronization
amplitudes. The oscillation frequency is ω ¼ B=N. Parameters: B ¼ 0.2, γ ¼ κ ¼ 0.2.
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A few remarks are in order. First, the synchronization
observed in Figs. 2(b) and 2(c) is distinct from regular
coherent dynamics. While without dissipation, coherent
(antiphase) oscillations are still present, there also exists an
additional constant shift depending on the initial condi-
tions. Different locally acting observables may not exhibit
the same shift, so in the strict definition of Eq. (5) they are
not synchronized. Open system dynamics are thus neces-
sary for perfect (anti)synchronization even within the
ground state subspace of the Haldane chain. Second,
perfect antisynchronization in the Haldane chain (ε ≠ 0)
is possible without an additional magnetic field (B ¼ 0),
which demonstrates the significance of microscopic details
for synchronization even for systems belonging to the same
(Haldane) phase. Third, the Haldane phase is protected as
long as any one of three symmetries is preserved [53,70].
That is time-reversal symmetry, link inversion symmetry
(lattice inversion about the center of a bond), and Z2 × Z2

symmetry (π rotations about two orthogonal axes). As a
consequence, synchronization within the ground state sub-
space is robust even if the inversion symmetry is broken, for
example by perturbing the interactions between neighboring
spins or via an inhomogenous magnetic field [71]. This is in
clear contrast to previous spin chain models [35,47,48]
where permutation symmetry of the Liouvillian is necessary
for synchronized dynamics of local observables as defined
in Eq. (5). In particular, synchronization induced by per-
mutation symmetries becomes, in general, unstable upon
symmetry breaking perturbations (i.e., the purely imaginary
eigenvalues acquire a negative real part), whereas it remains
stable in the presence of symmetry-protected topolo-
gical order. However, additional single site dissipation or

decoherence is not protected by the topology andwill render
synchronizationmetastable, similar to other spin chainswith
dynamical symmetries.
Conclusions.—We have shown that it is possible to

synchronize the fractionalized spin degrees of freedom in
the spin-1 AKLT chain via engineered dissipation and an
external magnetic field. The observed synchronization is
stable and topologically protected. While perturbations to
the biquadratic term result in an additional dissipation
channel, stable synchronization is restored within the
ground state subspace of the chain even without magnetic
field via a single global spin lowering operator. Given recent
experimental advancements in the preparation of the ground
state of theAKLTmodel on a digital quantum computer [68]
and the Heisenberg chain in cold atoms [72], coupled with
the experimental capability to implement collective decay
processes on these platforms (either through a combination
of ancillary systems and measurements [73] or via a
collective cavity mode in the “bad cavity” limit [74,75])
the prospect of realizing topological synchronization seems
attainable in the near future [71]. Our results illuminate on
the possibility to utilize dissipation in order to control the
dynamics of fractionalized degrees of freedom, not only to
prepare them, and provide a pathway to topologically
induced quantum synchronization.
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FIG. 2. (a) Eigenvalues of the Liouvillian superoperator L close to the imaginary axis for an open chain of length N ¼ 6 and different
values of ε, considering both global and local dissipators. The purely imaginary eigenvalues for ε ¼ 0 move away from the imaginary
axis as the biquadratic term is decreased. Simultaneously, the oscillation frequency increases resulting in fast but damped (anti)
synchronization. Parameters: B ¼ 0.2, κ ¼ γ ¼ 0.2. (b),(c) Stable synchronization may be recovered for finite values of ε within the
ground state subspace for B ¼ 0 if one considers only the global dissipator LG (i.e., κ ¼ 0). Sites j ¼ 1, 2, 3 are in solid lines, sites
j ¼ 4, 5, 6 in dashed lines. The oscillation frequency in panel (c) with ε ¼ 1=6 is larger compared to panel (b) with ε ¼ 0.1 because of
the increased gap above the threefold degenerate ground state. The initial state is the infinite temperature state within the ground state
manifold.
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