
High-Temperature Atomic Diffusion and Specific Heat in Quasicrystals

Yuki Nagai ,1,2,3,* Yutaka Iwasaki ,4,5,† Koichi Kitahara ,6 Yoshiki Takagiwa,4 Kaoru Kimura,4,5 and Motoyuki Shiga 2

1Information Technology Center, The University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
2CCSE, Japan Atomic Energy Agency, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan

3Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP),
1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

4National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
5Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

6Department of Materials Science and Engineering, National Defense Academy,
1-10-20 Hashirimizu, Yokosuka, 239-8686 Kanagawa, Japan

(Received 28 May 2023; revised 29 January 2024; accepted 28 March 2024; published 10 May 2024)

A quasicrystal is an ordered but nonperiodic structure understood as a projection from a higher-
dimensional periodic structure. Some physical properties of quasicrystals are different from those of
conventional solids. An anomalous increase in heat capacity at high temperatures has been discussed for
over two decades as a manifestation of a hidden high dimensionality of quasicrystals. A plausible candidate
for this origin has been the phason, which has excitation modes originating from the additional atomic
rearrangements introduced by the quasiperiodic order, which can be understood in terms of shifting a
higher-dimensional lattice. However, most theoretical studies of phasons have used toy models.
A theoretical study of the heat capacity of realistic quasicrystals or their approximants has yet to be
conducted because of the huge computational complexity. To bridge this gap between experiment and
theory, we show experiments and molecular simulations on the same material, an Al-Pd-Ru quasicrystal,
and its approximants. We show that at high temperatures, aluminum atoms diffuse with discontinuouslike
jumps, and the diffusion paths of the aluminum can be understood in terms of jumps corresponding to
hyperatomic-fluctuations-associated atomic rearrangements of the phason degrees of freedom. It is
concluded that the anomaly in the heat capacity of quasicrystals arises from the hyperatomic fluctuations
that play a role in diffusive Nambu-Goldstone modes.
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Introduction.—Quasicrystals (QCs) [1,2] are solids with
quasiperiodic atomic structures. Mathematically, a quasi-
periodic structure is constructed by a projection from a
higher-dimensional space [3]: Every quasiperiodic struc-
ture in three-dimensional physical space can be described
as a projection from a hypothetical higher-dimensional
periodic crystal structure called a “hyperlattice.” The
hyperlattice concept is commonly used to explain the static
structures of QCs [4,5].
QCs have unique physical properties that are not

observed in conventional solids [6–8]. In particular, several
quasicrystals at high temperatures show significant
increases in heat capacity. The heat capacity per atom at
a constant volume cV for icosahedral Al-Pd-Mn [9–11], Al-
Cu-Fe [12], Al-Cu-Ru [13], and decagonal Al-Cu-Co
[9,10] QCs show large upward deviations from the
Dulong-Petit limit 3kB, where kB is the Boltzmann con-
stant. Such anomalous heat capacity at high temperatures
has been debated for over two decades, and a potential
connection with the hidden higher-dimensional properties
of QCs has been discussed.
The phason [11,14,15], has been suggested as the origin

of the high-temperature anomalous heat capacity

[11,16]. The phason modes originate from the fact that
the free energy of the system is invariant under a rigid
translation of the parallel space in the perpendicular
dimension, where the hyperlattice decomposes into the
parallel (physical) and the perpendicular space. In many
solids, heat capacity at high temperatures approaches the
Dulong-Petit limit 3kB, because full vibrational-mode
degrees of freedom amount to 3 degrees of freedom per
atom, each corresponding to a quadratic kinetic energy
term and a harmonic potential energy term. However, the
vibrations in QCs are beyond harmonic oscillations along
the phason degrees of freedom, which may contribute to the
increased heat capacity. Inelastic neutron scattering [17]
and coherent x-ray scattering [18] experiments on Al-Pd-
Mn QC have observed characteristic phason excitation and
diffusive modes above approximately 700 K. These results
suggest that the phason is excited at high temperatures with
anomalous atomic motion, consistent with the temperature
range where anomalous heat capacity is observed. In
addition, experimental evidence of anomalous atomic
vibrations at specific atomic sites in the structure at
1100 K has been observed in decagonal Al-Ni-Co
QCs [19].
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Further evidence that the phason may be the cause of the
anomalous heat capacity is seen in the relationship between
the degree of approximation and the heat capacity in
quasicrystalline approximant crystals (ACs), which are peri-
odic crystals that have the same local structure as the
corresponding QC. The structure of ACs is classified by
the degree of approximation represented by two consecutive
numbers in the Fibonacci sequence, such as 1=0;1=1;2=1;…;
qn=qn−1. A largerqn in anACcorresponds to a larger unit cell
and a structure that is closer to that of a QC. As the degree of
approximation increases, the AC becomes closer in structure
to the QC. The AC-specific heat is expected to become more
anomalous as it approaches the QC limit because the phason
degrees of freedom may increase [11,13].
So far, most theoretical studies of phasons have used toy

models consisting of a single atomic species in one or two
dimensions [20,21]. The three-dimensional atomic motion
of multiple-element QCs has been studied experimentally
in decagonal phases such as Al-Ni-Co QCs [19]. In a recent
molecular dynamics (MD) simulation by Mihalkovič and
Widom [22], an AC of Al-Cu-Fe quasicrystals containing
9846 atoms was studied, focusing on its energetic stability.
However, it is not clear what contributes to the high-
temperature anomalous heat capacity in actual materials,
although the phason is a plausible candidate. Additionally,
a direct computation of heat capacity has never been done
before because adequately describing the dynamic behavior
of QCs accounting for a huge number of atoms and
complex atomic interactions is required.
To bridge this large gap between experiment and theory,

we study the same material from both theoretical and
experimental approaches. First, we synthesized Al-Pd-Ru
icosahedral QC and its ACs and observed the high-temper-
ature anomalous heat capacity. We then performed a
machine-learning molecular dynamics (MLMD) simula-
tion for Al-Pd-Ru ACs and qualitatively reproduced the

increase of the heat capacity. We herein show that Al atoms
diffuse with discontinuous jumps at the temperature range
where anomalous heat capacity is observed. The diffusion
path of Al atoms can be understood in terms of hyperatomic
fluctuations in six-dimensional space—associated atomic
rearrangements in three-dimensional space. Considering
this atomic diffusion due to hyperatomic fluctuations to be
the “phason” diffusion, this diffusion can be understood as
a diffusive Nambu-Goldsone mode. Based on this obser-
vation, we conclude that atomic diffusion due to hypera-
tomic fluctuations in hyperdimensional space, which
consists of a series of discontinuous atomic jumps, is the
origin of the high-temperature anomalous heat capacity.
Heat capacity: Experiment and simulation.—Figure 1(a)

shows the experimental results of the constant-volume heat
capacity CV of Al-Pd-Ru icosahedral QC and its ACs. It
can be seen thatCV largely deviates from Dulon-Petit’s law,
3kB with increasing temperature. The deviation from
the 3kB is the largest for QCs, followed by the 2=1 AC
and 1=0 AC. Thus, the CV anomaly of the ACs increases as
the AC structure becomes similar to the QC. This system-
atical trend is consistent with previous work [11] that
reported CV values for various aluminum-transition-metal
QCs and ACs.
The MLMD simulations of Al-Pd-Ru ACs are conducted

under periodic boundary conditions. We used a potential
energy function from an artificial neural network (ANN)
that imitates the Born-Oppenheimer energies obtained by
first-principles density-functional theory. The ANN was
trained by a self-learning hybrid Monte Carlo method
[23,24] with a combination of PIMD [23,25], the Vienna

Ab initio Simulation Package [26,27], and Atomic Energy Network

[28] software. The computational details are provided in the
Supplemental Material [29].
We show the heat capacity directly calculated by

the ensemble average of the energy fluctuation as
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FIG. 1. Temperature dependence of heat capacity at constant volume normalized by Boltzmann constant CV=kB (a) in the experiment
for Al-Pd-Ru QC (red), 2=1AC (green), and 1=0AC (blue), and (b) in the calculation for 2=1AC (orange circle), 1=1AC (blue triangle),
1=1 AC with 2 × 2 × 2 face-centered-cubic primitive supercell (green triangle), 1=0 AC (purple square), and Ru4Al13 (cross), where the
thick light-colored line on each measured line stands for the standard deviation.
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CV ¼ hðΔEÞ2i=ðkBT2Þ. Figure 1(b) shows the calculated
heat capacity for Al13Ru4, 1=0, 1=1, and 2=1 Al-Pd-Ru
ACs. The simulation of Al13Ru4 reproduces the conven-
tional Dulong-Petit limit 3kB as observed in experiments
[13]. For ACs, we found that the calculated heat capacity
depends on the temperature and becomes larger than the
Dulong-Petit limit at high temperature. Here, the difference
between 1=1 AC and 1=1 AC with 2 × 2 × 2 face-centered-
cubic primitive cells in Fig. 1(b) is the difference of the
number of atoms in a unit cell, 128 and 256, respectively.
There is some system size dependence in the simulated
results for the 1=1 AC case. To make a qualitative
comparison with experiment, one needs to add more atoms
in the unit cell, although such a computation is too
expensive at present.
Atomic structure and phasons.—The local atomic struc-

tures of the QCs and ACs are similar, the main difference
being how the cluster structures are connected. Therefore,
the cause of the anomalous heat capacity in QCs can be
revealed by calculating the corresponding ACs. To under-
stand high-temperature anomalous heat capacity, we intro-
duce the crystal structure of ACs in the Al-Pd-Ru system.
Figure 2 shows the 1=0 AC, 1=1 AC, and 2=1 AC model

structures generated by the modified Katz-Gratias-Boudard
model of the Al-Pd-Ru system [30–32]. The structure of
Al-Pd-Ru ACs is described as a dense packing of two types
of clusters [33], the so-called mini-Bergman and pseudo-
Mackay clusters shown in Figs. 2(d) and 2(e), respectively.
These structures were obtained assuming the smallest size
of the hyperatoms in six dimensions called “the occupation

domain.” Note, however, that these model structures are not
necessarily energetically favorable and may not represent
the actual structure of the AC at finite temperatures. The
actual structural ensemble in thermal equilibrium can only
be obtained after MD simulations. In the next section, we
will show the results of the MD simulations starting from
these model structures.
MD analysis.—MD simulations of Al-Pd-Ru AC show

several energetically favorable structures apart from the
prototype shown in Fig. 2. Those structures are different at
the Al sites. It was found that some Al atoms are mobile in
the ACs and randomly jump from one site to another during
MD simulations in thermal equilibrium. This jump is
detected at high temperatures where the heat capacity
becomes anomalous.
Figures 3(a)–3(c) show the trajectories of some Al atoms

for 1=1 AC at a temperature of 1000 K. Pd, Ru, and some
Al atoms composing the inner shell of the mini-Bergman
cluster are immobile and oscillate at their respective
positions, as shown in Fig. 3(a). However, some other
Al atoms composing the inner shell and edge of the pseudo-
Mackay cluster are moving with almost discontinuous
jumps, as shown in Figs. 3(b) and 3(c). This may
correspond to what was predicted as “phason flips” in
the QC model system [21,34], but detecting atomic jumps
in real time from MD simulations is a new finding. At
1000 K, the atomic jumps occur at about 100 ps, which is
much longer than conventional phonon oscillations; an
analysis of trajectories up to 2 ns suggests that the moving
Al atoms diffuse across the AC, as shown in the next
subsection.

(a) 1/0 approximant (b) 1/1 approximant (c) 2/1 approximant

(d) mini-Bergman cluster (mBC) (e) pseudo-Mackay cluster (pMC)

1/0

1/1, 2/1
or

Al

Pd

Ru

FIG. 2. Atomic structures of Al-Pd-Ru ACs: (a) 1=0 AC, (b) 1=1 AC, (c) 2=1 AC, (d) Mini-Bergman cluster, and (e) The pseudo-
Mackay cluster of each AC. Here, the mini-Bergman and pseudo-Mackay clusters have an inner shell.
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Figure 3(d) shows the diffusion coefficients DðTÞ of the
Al atoms in 1=1 AC, which are obtained from the slope of
the mean square displacement of the moving Al atoms; see
Supplemental Material [29] for the computational details.
By a linear fitting of the Arrhenius plot of DðTÞ, the free-
energy barrier of the Al jumps is estimated asΔE ∼ 6000 K
(∼0.52 eV), which is reachable at the high-temperature
range exhibiting the anomalous heat capacity. Here it is
worth noting that the diffusion of Al atoms in ACs (and
presumably in QCs) occurs without any vacancy formation,
as opposed to most diffusion mechanisms in perfect
crystals. Figure 3(e) visualizes the trajectory of the Al
diffusion. One can see that the diffusive paths are restricted
within the locations at the edge of the mini-Bergman and
pseudo-Mackay clusters shown in Fig. 2.
Discussion.—How can we understand the diffusion

pathways? As mentioned earlier, the static configurations
of the QCs and ACs correspond to the projection of
hyperatoms on a periodic lattice in a higher-dimensional
space. Figures 4(a) and 4(b) show the positions of the
hyperatomic sites and atoms in the real space of the Al-Pd-
Ru icosahedrons QC and AC, respectively. Here, the
hyperatomic sites of the Pd and Ru atoms are located
inside the hyperatomic shell, while the Al atoms are located
outside. The hyperatomic sites shown in Fig. 4(a) are
schematic. In this case, the QC and AC static configurations
correspond to the most compactly occupied hyperatomic
sites in six-dimensional space. However, there are many
other accessible hyperatomic Al sites outside the shell. The
accessibility of each of these sites is energy dependent and
can only be determined after MD simulations. The

movement between the different hyperatomic sites corre-
sponds to a phason flip, and a series of phason flips were
observed at finite temperatures in the MD simulations. At
higher temperatures, the occupancy of Al hyperatomic sites
beyond the outer shell increases, resulting in the Al
coordination shown in Fig. 4(b). This corresponds exactly
to the diffusion path of Al atoms as found in the MD
simulation shown in Fig. 3(f). Therefore, the Al diffusion in
the Al-Pd-Ru QC and AC can be regarded as a six-
dimensional hyperatomic fluctuation.
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FIG. 3. (a)–(c) Real-time dynamics of the Al atoms in the 1=1 AC Al92Pd20Ru16 at 1000 K. (d) Temperature dependence of the
diffusion coefficient. Visualization of the diffusive Al atoms in (e) the initial atomic structure and (f) atoms generated by the hyperatom
in the six-dimensional space. Here, the yellow isosurface and the blue and red polyhedra represent the three-dimensional distribution of
the Al atoms for 1=1 AC at T ¼ 1000 K from t ¼ 800 to 2000 ps, and the inner shell of the mini-Bergman and pseudo-Mackay clusters,
respectively.
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FIG. 4. (a) Schematic figure of the effect of temperature
fluctuation of the hyperatom in six-dimensional space. Al atoms
are located around the surface. (b) Schematic figure of the effect
of a temperature fluctuation of the corresponding atoms compos-
ing the inner shell of the pseudo-Mackay cluster in three-
dimensional space.
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Why does the heat capacity become anomalous in the
presence of phason flips? The heat capacity follows the
Dulong-Petit rule assuming harmonic vibrations of conven-
tional phonons. The anomaly thus arises from the anhar-
monicity of the potential energy surface with respect to the
phason flips involving Al jumps. In fact, heat capacity
generally exhibits a complex temperature dependence
in the presence of anharmonic or diffusive degrees of
freedom [35]. According to QC hydrodynamics, phason
flips correspond to diffusive Nambu-Goldstone modes
[16,36]. Their dispersion relation is expressed as

ω ¼ −iDðTÞq2 þ � � � ; ð1Þ

where q denotes the momentum of the phason mode. The
analysis of Nambu-Goldstone modes is valid in ACs since
near-degenerated states in ACs can be regarded as degen-
erated states in high temperatures. In this case, the
imaginary frequency of the diffusive mode iω is propor-
tional to the diffusion coefficient DðTÞ. The magnitude of
the heat capacity is determined by how much energy a
material absorbs when heat is applied from the outside.
Because the applied heat is partially used to excite the
diffusive Nambu-Goldstone mode, the heat capacity
becomes larger with increasing temperature.
Fully comprehending the dependence of specific heat on

the p=q ratio in ACs remains an open question for future
research. While our simulations did not reveal confined
atomic motions within clusters, such movements could
potentially contribute to the observed specific heat varia-
tions across ACs with different p=q ratios. This possibility
warrants further investigation.
Summary.—The anomalous heat capacity observed in

icosahedral AC in the Al-Pd-Ru system was well repro-
duced by machine-learning MD simulations. Some of the
Al atoms were found to diffuse through the crystal in the
absence of vacancies via nearly discontinuous jumps that
can be regarded as phason flips. The restricted pathways of
the phason flips can be understood as thermal fluctuations
of hyperatoms in six-dimensional space—associated
atomic rearrangements in three-dimensional space. From
this result, we concluded that anomalous heat capacity is
caused by atomic diffusion due to thermal fluctuations of
hyperatoms in the higher-dimensional space in QCs and
ACs. This study suggests that the high dimensionality of
the QC structure may affect physical properties other than
heat capacity.
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