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We introduce density imbalanced electron-hole bilayers at a commensurate 2∶1 density ratio as a
platform for realizing novel phases of electrons, excitons, and trions. Through the independently tunable
carrier densities and interlayer spacing, competition between kinetic energy, intralayer repulsion, and
interlayer attraction yields a rich phase diagram. By a combination of theoretical analysis and numerical
calculation, we find a variety of strong-coupling phases in different parameter regions, including quantum
crystals of electrons, excitons, and trions. We also propose an “electron-exciton supersolid” phase that
features electron crystallization and exciton superfluidity simultaneously. The material realization and
experimental signature of these phases are discussed in the context of semiconductor transition metal
dichalcogenide bilayers.
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Introduction.—Recently, semiconductor transition metal
dichalcogenide (TMD) heterostructures have emerged as an
ideal platform for exploring quantum phases of matter. An
extraordinarily rich variety of quantum states have been
predicted and observed, including Mott-Hubbard and
charge-transfer insulators [1–6], Wigner crystals [3,7–
14], itinerant ferromagnets [15–20], interfacial ferroelec-
trics [21], heavy Fermi liquids [22–24], and spin-polaron
liquids [16,25,26], as well as quantum spin Hall states
[27,28] and quantum anomalous Hall states [29–38].
Remarkably, all these electronic phases realized in a single
material system are rooted in one common ground—the
two-dimensional electron (or hole) gas in monolayer
TMDs. Here, the large effective mass and reduced screen-
ing favors strong interactions, and moiré bands in TMD
heterostructures further enrich the physics, leading to much
of the observed phenomena.
In addition to moiré physics, TMD heterostructures

provide a material realization of electron-hole (e-h)
bilayers featuring electrons and holes on spatially separated
layers, whose densities can be independently tuned by top
and bottom gate voltages [39]. The coexistence of pos-
itively and negatively charged particles supports both
repulsion between like charges and attraction between
opposite charges, enabling new phases of matter. When
the densities of electrons and holes are equal, interlayer
excitons with intrinsic out-of-plane dipole moments form,
which may support high-temperature exciton superfluidity
in an electrical insulator. Recently, thermodynamic evi-
dence of excitonic insulator ground states has been
observed in TMD bilayer WSe2=MoSe2 with WSe2 as
the hole layer and MoSe2 as the electron layer separated by
insulating h-BN layers that suppress recombination
[40,41]. Moreover, density imbalanced electron-hole

bilayers have attracted increasing interest owing to the
interaction between charge carriers and dipolar exci-
tons [42].
In this Letter, we study the strong-coupling phases of an

imbalanced electron-hole bilayer at commensurate electron
and hole densities ne=nh ¼ 2, motivated by the following
considerations. Because there is a net charge density
n ¼ ne − nh ≠ 0, the Coulomb interaction between
charged particles dominates in the low-density regime,
favoring strong-coupling phases with crystalline order. This
should be contrasted to the balanced electron-hole bilayer,
where charge-neutral excitons condense into a superfluid at
low densities because their mutual dipole-dipole interaction
is parametrically weaker than the quantum kinetic energy.
The particular choice of ne=nh ¼ 2 is also motivated by the
prospect of three-body bound states known as trions, which
are charge-e composite particles made of two electrons in
the same layer bound to a hole in the other layer [43,44].
Through both theoretical analysis and numerical calcu-

lation, we find a number of ordered phases driven by strong
interactions. These include bilayer electron-hole Wigner
crystals, “composite crystals” of coexisting electrons and
excitons, as well as exotic quantum phases without classical
counterparts. In particular, we find a quantum supersolid
madeof electrons and excitons aswell as a quantumcrystal of
trions in the low-density regime. Experimental signatures of
these predicted phases in TMD bilayers are also discussed
in the context of optical spectroscopy and transport
measurements.
Before presenting our main results, we first consider the

three-body problem of two electrons and one hole, which
reside on spatially separated layers (z ¼ d and 0) and
mutually interact through Coulomb forces. Classically, the
minimum energy configuration is an electron and a dipole
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that are far apart due to their residual repulsion. This dipole
(equivalent to a classical exciton) consists of an electron anda
hole sitting directly on top of each other, separated only by
the layer distance d. For comparison, consider a “trion”
charge cluster with the two electrons at ð�r; dÞ and the hole
at ð0; 0Þ. When r ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=3 − 1

p
≈ 0.811d, the net force

acting on each particle is zero. However, this force-balanced
configuration has energy−0.937=d, which is higher than the
energy −1=d of a dipole plus an electron far away.
Additionally, this classical trion has an unstable normal
mode, where the hole moves toward one of the electrons
along the r direction,making the classical trion a saddle point
of the energy instead of a local minima.
Our above analysis of the classical three-body problem

demonstrates that quantum mechanics is crucial for the
formation of a trion bound state. As shown by numerical
studies, the trion is the ground state of two electrons and
one hole in the bilayer when aB=d > 0.065 assuming equal
electron and hole masses [45], where aB ¼ ð4πϵℏ2=e2mÞ is
the Bohr radius (which vanishes in the classical limit ℏ → 0
or m → ∞). We can understand the trion’s quantum origin
heuristically. Start with the electron and the dipolar exciton
separated by a large distance r ≫ d, where they experience
a static 1=r − 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
∝ d2=r3 repulsion. On the other

hand, the electron’s in-plane electric field ∝ 1=r2 polarizes
the exciton and lowers its energy through the second-order
Stark effect by an amount δEs ∝ −a3B=r4 to zeroth order in
d. This quantum attraction dominates the classical electron-
exciton repulsion over a range of distances below a cross-
over length rc ∼ a3B=d

2, supporting a trion bound state for
sufficiently small d.
At finite charge density, an additional length scale

appears: the average interparticle distance a≡ 1=
ffiffiffiffiffiffi
πn

p
,

with n ¼ nh for ne=nh ¼ 2. With three length scales—
the interparticle distance a, the layer distance d, and Bohr
radius aB, competition between intralayer repulsion, inter-
layer electron-hole attraction, and quantum kinetic energy
yields a rich phase diagram for the electron-hole bilayer,
which we explore below by a combination of analytical and
numerical methods.
The Hamiltonian for the bilayer assuming equal electron

and hole effectivemassesm and 1=rCoulomb interactions is

H ¼
X
a¼e;h

X
s¼↑;↓

Z
d2r

�
ψa†
s ðrÞ

�
−∇2

2

�
ψa
s ðrÞ

�

þ 1

2

Z
d2r

Z
d2r0

�X
a¼e;h

naðrÞnaðr0Þ
jr − r0j

�

−
Z

d2r
Z

d2r0
�

neðrÞnhðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr − r0j2 þ d2

p �
; ð1Þ

where ψe;hðrÞ denotes the electron or hole operator, naðrÞ ¼P
s ψ

a†
s ðrÞψa

sðrÞ is the density operator, and s denotes the

spin. We have already divided all quantities by their
appropriate atomic units, i.e., lengths by the Bohr radius
aB ¼ ð4πϵℏ2=me2Þ (we use this definition throughout) and
energies by the Hartree energy Eh ¼ ðℏ2=ma2BÞ. Unless
stated otherwise, we assume for simplicity that the electron
and hole masses are equal, noting that our main findings are
qualitatively correct for a range of mass ratios.
Classical regime.—We first consider the classical limit

defined by taking aB → 0 while keeping d and a fixed, or
equivalently, a=aB → ∞ and d=aB → ∞ for a fixed d=a. In
the classical limit, the phase diagram is characterized solely
by the dimensionless ratio d=a. Both limits d=a ≫ 1 and
d=a ≪ 1 can be understood analytically. When d=a ≫ 1,
the interlayer coupling is negligible and a triangular lattice
Wigner crystal is formed independently in each layer. In the
opposite regime d=a ≪ 1, every hole pairs with an electron
at the shortest possible distance d to form a small out-of-
plane dipole, leaving an equal number of excess electrons.
These dipoles have a weak repulsion 1=r − 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
∝

d2=r3 with the electrons, while electrons interact with each
other through a strong Coulomb repulsion 1=r. Therefore,
the electrons arrange themselves essentially independently
of the dipoles to form a triangular lattice Wigner crystal.
Once the electrons crystallize, the dipoles crystallize in half
of the voids between the electrons to minimize the residual
repulsion. The result is a composite crystal of electrons and
dipoles, where electrons occupy one sublattice of a honey-
comb and dipoles occupy the other.
To determine the classical ground state as a function of

the charge density, we minimized the classical electrostatic
energy. To handle the Coulomb interaction’s long-ranged
tail, we used Ewald summation (see Supplemental Material
[46]). For the experimentally relevant parameter range
a=d > 1, we find two distinct composite crystals. For
the low-density limit a=d > 5.42, the numerical results
confirm our expectation of a honeycomb composite crystal.
Interestingly, for a=d < 5.42 we find a “checkerboard”
composite crystal consisting of two interpenetrating square
lattices of electrons and dipoles. This is likely due to the
increased electron-dipole repulsion at smaller a=d. We did
not observe the formation of classical trions for any a=d,
which is consistent with their instability. Once these two
composite crystals were identified, we directly calculated
their electrostatic energy as a function of a=d and deter-
mined the phase transition point, which is shown in Fig. 1.
We now analyze the effect of quantum fluctuations

around the classical composite crystals. At sufficiently
small aB, the leading quantum effect is the zero-point
motion of charges in the classical ground state. The root-
mean-square displacement of charges increases with aB,
and when it becomes comparable to the lattice constant a,
quantum melting of the crystal occurs (Lindemann cri-
terion) [55]. Since our composite crystals have three
charges per unit cell, there are a total of six phonon modes,
including both acoustic and optical branches. Notably, the
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optical phonons are associated with the relative vibration of
charges within the unit cell, which is absent in the canonical
electron Wigner crystal.
When the layer distance d is small compared to the

interparticle distance a, the electron-dipole repulsion in the
composite crystal is much weaker than the electron-
electron repulsion. Then we expect that the dipole’s center
of mass has the largest zero-point displacement, denoted as
ξd. This is indeed confirmed by our direct calculation of the
optical phonon frequencies at zero wave vector, which is
shown in Fig. 2. Two types of optical phonons are present:
the low-frequency one corresponds to the displacement of
the dipole’s center of mass relative to the electron, while the
high-frequency one is associated with the internal structure
of the dipole. At small d=a, the low-frequency optical
phonon softens with ωd ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂
2
rVðrÞjr¼a=m

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=ma5

p
[where VðrÞ ∝ d2=r3 is the electron-dipole potential],
hence the zero-point displacement increases and is given by

ξd ∼

ffiffiffiffiffiffiffiffiffi
ℏ

mωd

s
∝ a

�
aaB
d2

�
1=4

: ð2Þ

In the classical limit aB=a → 0, aB=d → 0 with a=d fixed,
ξd ≪ a ensures the stability of the classical composite
crystal against quantum fluctuation.
For small d=a, Eq. (2) implies that quantum melting of

the dipole (= interlayer exciton) sublattice in the composite
crystal occurs first when aB reaches the order of d2=a.
Meanwhile, the stronger electron-electron repulsion ren-
ders the electron lattice stable against quantum fluctuations
until aB reaches the order of the interparticle distance a, as

for the canonical Wigner crystal. This naturally raises the
question of what the ground state is at intermediate aB
between d2=a and a, where both quantum effects and
electrostatic interactions play crucial roles.
Dilute quantum regime.—Of particular interest is the

low-density limit defined by a → ∞ while keeping d and
aB fixed, especially if d and aB are of the same order. With
a → ∞, aB necessarily lies between d2=a and a, forcing
partial melting of the composite crystal due to the zero-
point motion of the excitons’ center of mass.
The ground state in this low-density limit depends

crucially on the ratio of the Bohr radius aB and layer
distance d. For d < dc ≈ 15.38aB (assuming equal electron
and hole masses), it is known from quantum Monte Carlo
calculations that the lowest-energy state of two electrons
and one hole is a trion bound state with the two electrons in
a spin-singlet [45]. The spin-triplet trion is absent for me ¼
mh and has a smaller binding energy when it is present for
large mass ratiome=mh [45,56]. The trion’s binding energy
is on the order of Eh at d ¼ 0 and decreases as d approaches
the critical dc at which the trion unbinds. At a given d < dc
and in the dilute limit a → ∞, the hierarchy of energy
scales is necessarily as follows: Etrion ≫ ECoulomb ∼ 1=a ≫
Ekinetic ∼ 1=a2.
The physically realistic parameters for the TMD bilayer

WSe2=MoSe2 are electron effective mass meðMoSe2Þ ¼
0.8m0 (m0 is the bare mass), hole effective mass
mhðWSe2Þ ¼ 0.4m0, dielectric constant ϵ ¼ 4.7ϵ0, and
interlayer spacing d ¼ 3 nm [47–50]. With these numbers,
the trion binding energy obtained from quantum
Monte Carlo studies [45] is on the order of 15 K.
Results from our Hartree-Fock calculations, which are

FIG. 1. The classical phase diagram of the electron-hole bilayer
at ne=nh ¼ 2 for a=d > 1. The top depicts the checkerboard
composite crystal (left) and the honeycomb composite crystal
(right). The bottom shows the energy and energy difference of the
two composite crystals, with a dashed line indicating the phase
transition.

FIG. 2. Soft and hard optical phonon frequencies at the center
of the Brillouin zone as function of a=d for the classical
composite crystals. The low-frequency branches correspond to
the displacement of the dipole’s center of mass relative to the
electron, while the high-frequency branches are associated with
oscillations in the dipole’s internal structure.

PHYSICAL REVIEW LETTERS 132, 196202 (2024)

196202-3



shown in Fig. 3, confirm that the ground state with these
parameters and a realistic trion density of nt ¼ nh ¼
1.29 × 1012 cm−2 (which corresponds to a trion density
parameter rs;trion ¼ 40 and hole density parameter
rs;hole ¼ 8) is an insulating quantum crystal (see
Supplemental Material [46]).
We note that, although the Hartree-Fock method quali-

tatively captures many phases, including the trion Wigner
crystal, it is generally biased toward symmetry-breaking
phases and may not produce accurate phase boundaries. For
our 2∶1 bilayer, it is important to combine Hartree-Fock
calculations with more advanced numerical methods to
accurately determine the complete phase diagram. We have
recently applied variational neural networkwave functions to
the balanced electron-hole bilayer and are planning a
comprehensive study of the 2∶1 bilayer with this technique
in the future [57].
Notably, trions can crystallize at significantly higher

densities than electrons or holes. Because of the trion’s
large binding energy ∼15 K and small spatial extent ∼d, in
the trion Wigner crystal phase each trion behaves as a
charge-e fermion similar to an electron in an electron
Wigner crystal. However, because the trion mass can be
several times the electron mass, the trion’s Bohr radius is
several times smaller, so the same critical density parameter
rs ¼ 30–40 corresponds to a much higher electron-hole
density. For example, the 2e − 1h trion in WSe2=MoSe2
has total mass 2m0, allowing density parameter rs ¼ 40 to
be reached at hole density 1.29 × 1012 cm−2. At these high
densities, the effect of disorder and finite temperature is less
severe, because all energy scales are larger. We also note
that the possibility of trion crystallization in Van der Waals
heterostructures has been considered recently [58,59].
Another distinctive feature of our trion Wigner crystal is

that the electron layer has zero total spin and a large spin
gap on the order of Eh due to the trion binding energy,
whereas the spins of localized holes interact with each other
through a weak exchange interaction that vanishes in the
low-density limit. Therefore, a small magnetic field can
fully polarize the holes while leaving the spin-singlet

electrons intact. This sharp contrast between the spin
response of electron and hole layers is an indication of
spin-singlet trion formation. As the density increases, the
trion Wigner crystal could melt into a trion Fermi liquid
before the trions dissociate. Such a metallic phase could be
differentiated from the insulating trion Wigner crystal using
transport measurements.
Finally, we discuss the regime d > dc. Here, the trion is

unstable at the three-particle level and unbinds into an
electron and exciton. However, as shown earlier, the
exciton sublattice in the composite crystal is necessarily
unstable against quantum melting in the low-density limit.
Consequently, we propose that, for d > dc and sufficiently
low densities, the ground state is an exciton superfluid
permeating through an electron crystal. This state is
remarkable as it simultaneously exhibits crystallization
and superfluidity. For this reason, we call it an electron-
exciton supersolid, a quantum electron solid in which
interstitial excitons Bose condense. Experimentally, this
phase could be detected by Coulomb drag measurements.
We also note that supersolid phases of excitons have been
studied in density-balanced electron-hole bilayers [60–63].
We emphasize that our predicted phases are robust

against perturbations to the model Hamiltonian in
Eq. (1). For example, deviations from the 1=r potential
at short distances are expected, which modifies the exciton
and trion binding energies [64]. This shifts the phase
boundaries (for example, between the electron-exciton
supersolid and trion crystal), but does not change the
many-body phases that we established in the dilute limit.
We also note that coupling to phonons may lead to polaron
formation [65], which would enhance the already high
effective mass and make our phases even more robust.
Conclusion.—Our Letter introduces the electron-hole

bilayer at commensurate 2∶1 density ratio as a platform
for realizing novel strong-coupling phases. We identify two

FIG. 3. The electron (hole) density is shown in the left (right)
panel. The coloring scheme is consistent for both densities
and is indicated by the color bar in units of 1=a2B;h for aB;h ¼
ð4πϵℏ2=e2mhÞ. The calculation parameters are me ¼ 0.8m0,
mh ¼ 0.4m0, d ¼ 4.83aB;h, hole rs ¼ 8, nh ¼ 36, and equal
electron spin populations.

FIG. 4. Schematic phase diagram for the electron-hole bilayer
at commensurate densities ne=nh ¼ 2, with analytically known
boundaries marked in red and limiting phases labeled.
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dimensionless ratios that govern the phase diagram: the
ratio of the average interparticle spacing to the Bohr radius
a=aB and the ratio of the interlayer spacing to the Bohr
radius d=aB. By a combination of theoretical analysis and
numerical calculation, we find a number of ordered phases,
shown schematically in Fig. 4. In the classical regime
a=aB ≫ 1, d=aB ≫ 1, we identify three crystalline phases:
decoupled crystals in each layer for small a=d, a checker-
board composite crystal composed of electrons and bound
electron-hole dipoles for intermediate a=d, and a honey-
comb composite crystal for large a=d. Focusing on the
dilute regime a ≫ d; aB, as d is decreased, we propose that
large zero-point fluctuations of the excitons partially melt
the composite crystal into an electron-exciton supersolid,
where the unbound electrons remain crystalline, but the
excitons condense into a superfluid. As d is decreased
further to the order of the Bohr radius aB, we show that the
second-order Stark effect mediates an effective attractive
force between electrons and excitons. For sufficiently small
d, this attraction binds excitons to electrons to form spin-
singlet trions, which then subsequently crystallize into a
trion crystal. Finally, we suggest that a combination of
optical spectroscopy, transport, and Coulomb drag mea-
surements may be used to experimentally observe our
proposed phases.
Notably, the trion crystal is stable throughout the low

charge density regime with a lattice constant varying
continuously with the charge density n ¼ ne − nh, pro-
vided that the electron-to-hole density ratio is maintained at
the commensurate value ne=nh ¼ 2. Thus, the trion crystal
is charge compressible with ð∂n=∂μÞ ≠ 0, with μ the charge
chemical potential, but has an energy gap to adding
excitons, i.e., exciton incompressible. This should be
contrasted with the excitonic insulator at charge neutrality
n ¼ 0, which is charge incompressible and exciton com-
pressible. Remarkably, recent capacitance and optical
experiments on WSe2=MoSe2 have shown that the charge
and exciton compressibility can be measured independently
by varying the top and bottom gate voltages concurrently
with ΔVB ¼ �ΔVT . Moreover, the formation of trion is
accompanied by a reduction of spin susceptibility in the
electron (majority carrier) layer, which can be detected by
magnetic circular dichroism. Finally, it is noted that the
binding energy of trions can be further increased by
applying a magnetic field, which we leave to future study.
We hope our theoretical work stimulates experimental
study of TMD electron-hole bilayers at commensurate
electron-hole density ratios.

Note added.—Very recently, evidence of spin-singlet trions
have been observed in optical reflectance measurements
and transport experiments in WSe2=MoSe2 [66,67].
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