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We investigate the transmission of vector beams, correlated in their polarization and spatial degrees of
freedom, through cold atoms in the presence of a transverse magnetic coupling field. The resulting phase-
dependent dynamics allow us to imprint the spatially varying polarization of a vector beam onto atomic
spin polarizations, thereby establishing a direct link between optical space-polarization correlations and
atomic-state interference. We find that the resulting absorption profiles show interference fringes whose
modulation strength is given by the squared concurrence of the vector beam, letting us identify optical
concurrence from a single absorption image. We expect impact across a diverse range of applications,
including spintronics, quantum memories, metrology, and clocks.
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Introduction.—Optical information can be encoded in
the polarization degree of freedom, parametrized by the
optical spin, and in the spatial degree of freedom, i.e.,
the phase and intensity profile of the transverse optical
modes [1,2]. Vector beams combine both polarization and
spatial information. Composed of orthogonal polarization
components with different complex amplitudes, they
exhibit spatially varying polarization profiles, offering a
wide range of applications [3–5]. Atomic dipole transi-
tions are sensitive to polarization via selection rules, and
to the complex light amplitude via the Rabi frequency,
making atoms active optical elements that can modify and
be modified by the intrinsic properties of vector beams.
This two-way interaction allows for the creation of
complex optical phenomena, which have been studied
extensively over the last few decades [6]. Vectorial light-
atom interaction can generate spatial anisotropy [7–9]
and coherence [10–12] in atoms, and tailor nonlinear
effects [13–16]. Vector beams have also been stored [17,18]
and converted [19,20] in atomic systems.

In this Letter, we establish, theoretically and experimen-
tally, a direct link between polarization-spatial correlations
of light and atomic-state interference, which can be
expressed as an uncommonly simple relationship between
fringe visibility and optical concurrence. We investigate the
transmission of vector beams through an atomic gas, and
demonstrate that the degree of correlation between the
polarization and spatial degree of freedom, i.e., the “vector-
ness,” or optical concurrence [21–24], influences the light-
matter interaction. Specifically, we show that the resulting
absorption profile contains interference fringes, whose
visibility is determined by the concurrence. We can there-
fore identify the optical concurrence from a single absorp-
tion measurement, whereas conventional all-optical
measurements require at least four, more commonly six,
measurements [23].
We realize an atomic-state interferometer in cold 87Rb

formed by a vector beam driving a two-photon Λ transition
between two Zeeman sublevels, which are coupled by a
transverse magnetic field (TMF). The atomic medium
effectively allows us to “interfere” optical amplitudes
encoded in the orthogonal polarization components, thereby
converting concurrence to intensity modulation. Interaction
with the vector beam establishes spatially varying spin
polarizations in the atomic medium, which in turn modify
the transmitted light. Through spatial analysis of the result-
ing absorption pattern, we can quantify this dependency and
identify the optical concurrence. Recent work [25] has
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demonstrated a similar transfer of vector beams to the spatial
spin texture in a semiconductor quantum well, leading to
rotating spin waves. Both quantum wells and atomic gasses
are promising candidates for spintronics, offering interfaces
for the storage and manipulation of the high-dimensional
state space provided by vector light fields.
Concept and theoretical model.—Every paraxial vector

beam (with Ez ¼ 0) can be expressed as Eðr⊥Þ ¼
u1ðr⊥Þσ1 þ u2ðr⊥Þσ2, where r⊥ denotes the transverse
position, ui (∀ i∈ 1, 2) are complex spatial modes, and
σi are orthogonal polarization directions. Homogeneously
polarized light can be expressed as a product state uσ,
whereas orthogonal spatial modes u1⊥u2 signify maxi-
mal correlations between the spatial and polarization
degrees of freedom. The nonseparability is captured by
the concurrence [23]

C ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1; u1Þðu2; u2Þ − ðu1; u2Þ2

q
; ð1Þ

which ranges from 0, for homogeneous polarization, to 1, for
maximal correlation. Here, ðui;ujÞ¼

R
dr⊥u�i ðr⊥Þujðr⊥Þ

denotes the spatially averaged (global) scalar product
between the participating spatial light modes. An alternative
expression, in terms of the experimentally accessible global

Stokes parameters, isC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðS21 þ S22 þ S23Þ=S20

p
, where

S0 is the total intensity, S1 describes the intensity difference
between horizontal and vertical, S2 between diagonal and
antidiagonal, and S3 between right and left circular polari-
zation components.
We illustrate our method for vector beams of the form

E ¼ EðrÞ½sinðχÞe−iψe−ilφσþ þ cosðχÞeiψeilφσ−�: ð2Þ

Here, the polarization is defined in terms of right and left
circular components σ� to facilitate mapping to the usual
atomic bases. The spatial degree of freedom is addressed by
transverse light modes with equal and opposite orbital
angular momentum (OAM) expð�ilφÞ and varying ampli-
tudes. The orthogonal states expð�ilφÞσ∓ then form the
poles of a high-order Poincaré sphere (HOPS, Fig. 1) [26],
where the polar angle χ ∈ ½0; π=2� controls the relative
amplitude, and the azimuthal angle ψ ∈ ½0; π� changes the
relative phase. The former is responsible for changing the
degree of spin-orbit correlation.When χ ¼ π=4, states lie on
the equator and contain spatially varying linear polarizations
which rotate as a function of the azimuthal angle ψ . These
show maximal spin-orbit correlations. States located at the
poles (χ ¼ 0 or χ ¼ π=2) are homogeneously right or left
circularly polarized and hence fully separable in their
polarization and spatial degrees of freedom.More generally,
from Eqs. (1) and (2), we can identify the concurrence as

C ¼ sinð2χÞ: ð3Þ

The σ� components in Eq. (2) couple atomic transitions
between magnetic states with ΔmF ¼ �1. For a suitable
atomic system, these transitions can be closed either
optically [10] or magnetically [27], facilitating phase-
coherent atomic dynamics. The σ� transitions then act
as two arms within an atomic-state interferometer, render-
ing the atomic response sensitive to the phase difference
imposed by the complex light amplitudes driving these
transitions. For spatially varying phase differences, like in
our vector beams, the atomic response then also varies
spatially, which manifests as fringes in the absorption
profile. Changing the relative weighting between the
transition channels will change the fringe visibility, thus
linking polarization modulation (optical concurrence) to
intensity modulation (the visibility of interference fringes).
In the following text, wemodel the transmission of vector

beams, with varying concurrence, through cold atoms using
both optical Bloch (OB) equations and partially dressed
perturbation theory. The latter results in a concise analytical
formula for the transmission profile, with fringe visibility
determined by the optical concurrence.
In line with our experiment, we consider a standard

Zeeman configuration for the F ¼ 1 → F0 ¼ 0 transition
driven by a weak, resonant vector probe beam [Eq. (2)] in
the perturbative regime and in the presence of a static B
field along the x axis, as shown in the inset of Fig. 2. The
quantization axis is set along the light propagation direc-
tion. Thus, we obtain an atomic-state interferometer con-
necting the F ¼ 1, mF ¼ �1 Zeeman sublevels j � 1i via
the F0 ¼ 0, m0

F ¼ 0 excited state jei in a Λ-type optical

FIG. 1. (a) Schematic illustration of the HOPS with σ�e∓i2φ

forming the poles and simulated vector beams located along the
red line with 2ψ ¼ π, and 2χ ¼ 0, π=10, 7π=30, 11π=30, and
π=2. (b) Corresponding experimentally generated vector beams.
The inset on the top left shows our color encoding for the
different polarization states.
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transition by orthogonal circular polarization components
with opposite OAM and by magnetic coupling due to the
TMF. The Hamiltonian of the system in the Zeeman basis
under the rotating wave approximation is

ĤZ=ℏ¼−ΩLj�1ih0j=
ffiffiffi
2

p
−Ω�j�1ihejþH:c:; ð4Þ

where ΩL ¼ gFμBjBj is the Larmor frequency, gF the
Landé g factor, and μB the Bohr magneton. The parameters
Ω� denote the optical coupling with

Ω� ¼ ΩR

2
ffiffiffi
3

p
�
cosðχÞ
sinðχÞ

�
e�iðlφþψÞ; ð5Þ

where ΩR ¼ EðrÞσ� · de� is the Rabi frequency, with de�
being the transition dipole moments for the σ� polarization,
respectively, and the factor of 1=

ffiffiffi
3

p
originates from

appropriate Wigner-Eckart coefficients [28].
We first consider the OB model for the Zeeman basis

Hamiltonian [Eq. (4)]. In conjunction with terms describing
relaxation Γ̂ ¼ P

i γjiihij þ ðγ þ ΓÞjeihej and repopulation
Λ̂ ¼ P

i
1
3
ðγ þ Γρ̂e;eÞ, where Γ represents the spontaneous

emission and γ the transit decay rate, we obtain the
Liouville equations [29]:

d
dt

ρ̂ ¼ −
i
ℏ

�
ĤZ; ρ̂

�
−
1

2

�
Γ̂ ρ̂þρ̂ Γ̂

�þ Λ̂: ð6Þ

Solving the Liouville equation (Bloch equations) numeri-
cally under the steady-state condition [30–32], we obtain
the atomic absorption through the steady-state excited state
population ρeeðt → ∞Þ; see Supplemental Material [33].
To develop physical understanding of the dynamics, we

rewrite the Zeeman basis Hamiltonian [Eq. (4)] in a

partially dressed state basis. We define the coupling,
noncoupling, and intermediate states, respectively, as

jψCi ¼ e−iðlφþψÞ sin χj þ 1i þ eiðlφþψÞ cos χj − 1i;
jψNCi ¼ −e−iðlφþψÞ cos χj þ 1i þ eiðlφþψÞ sin χj − 1i;
jψ1i ¼ ½− sinð2χÞjψNCi − Jj0i�=N;

jψ2i ¼ ½J�jψNCi − sinð2χÞj0i�=N; ð7Þ

where the normalization constant is defined by N2ðχ;φÞ ¼
½1þ cosð2lφþ 2ψÞ sin 2χ�=2 and, for notational conven-
ience, J ¼ ½e−iðlφþψÞ sin χ þ eþiðlφþψÞ cos χ�= ffiffiffi

2
p

and J̄ ¼
½−eþiðlφþψÞ cos χ þ e−iðlφþψÞ sin χ�= ffiffiffi

2
p

. When expressed
in the basis of jei, jψCi, jψ1i, and jψ2i, the Hamiltonian
takes the form

ĤD

ℏ
¼ −

ΩR

2
ffiffiffi
3

p jψCihej þ ΩLNðχ;φÞjψCihψ1j

þΩL
J̄�ðχ;φÞ½J�ðχ;φÞ�2

N2ðχ;φÞ jψ1ihψ2j þ H:c: ð8Þ

The rate at which the light induces a transition between the
dark state jψ2i and the excited state jei is then given to third
order in perturbation theory (PT) as

T2→e ∝ jhejĤDjψCihψCjĤDjψ1ihψ1jĤDjψ2ij2
∝ Ω4

LΩ2
R½1 − sin2ð2χÞcos2ð2lφþ 2ψÞ�: ð9Þ

The transition rate shows a 2l-fold rotational symmetry
and depends on the angles ψ and χ, which characterize the
vector beam on the HOPS. Transitions at certain angular
positions within the beam φ will be suppressed, resulting in
interference fringes. Remarkably, we can identify their
modulation

M ¼ maxðT2→eÞ −minðT2→eÞ
maxðT2→eÞ

¼ sin2ð2χÞ ð10Þ

with the concurrence of Eq. (3). For a beam with maximal
concurrence (χ ¼ π=4), the transition rate vanishes at
certain angular positions, so that jψ2i becomes a dark
state in which light and atoms do not interact and the atoms
are rendered transparent. The absorption pattern will there-
fore show interference fringes with maximal visibility. If χ
deviates from this value, the modulation of the transmission
and the resulting fringe visibility will decrease and vanish
for homogeneously polarized light. This indicates that the
concurrence can be identified from a single atomic absorp-
tion profile, a result that should hold beyond the specific
example considered here. We note that a rotation of the
polarization profile by 2ψ rotates the transmission rate and
absorption profile by the same angle, in agreement with our
previous work [34,35]. Naturally, PT is limited in its

FIG. 2. Simplified experimental setup. Optical elements for
vector beam generation and analysis: HWP, half wave plate;
QWP, quarter wave plate; QP, q plate; L, lens; B, magnetic field;
WP, Wollaston prism; CCD, charge-coupled device. The bottom
left inset shows the atomic level scheme indicating the Λ
transition driven by the vector beam and transverse magnetic
coupling.
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applicability, and is unsuitable for strong interactions or
appreciable dissipation. In the following section, we
compare the two models with the experimental results.
Experimental realization and discussion.—Our simpli-

fied experimental setup is shown in Fig. 2. A cold cloud of
87Rb atoms was collected in a magneto-optical trap and
spatially compressed by a dark spontaneous-force optical
trap (SpOT) following the experimental procedure outlined
in [36]. For the current work, approximately 3 × 107 atoms
were prepared in the SpOT, distributed equally over the
F ¼ 1 ground states. The atomic cloud expanded freely
for 3.5 ms, reaching an average atomic density of
2 × 1010 cm−3 and a temperature of 100 μK before inter-
action with the probe beam. The background magnetic field
was canceled, and a TMF B was added along the x axis
with a fixed magnitude of 1 G using three orthogonal sets of
rectangular coils. The frequency of the vector beam was
locked to the F ¼ 1 → F0 ¼ 0 transition of theD2 line, and
its power set to 0.20 μW (corresponding to an intensity of
0.052 mW=cm2 in the area of interest).
The vector beam was generated by an l ¼ þ2 vortex

retarder, and the beam evolution on the HOPS was realized
by the combination of a half and quarter wave plate, whose
rotations control the polar angle χ and the azimuth ψ in
Eq. (2), respectively. To identify the polarization structure
of the beam, we perform full spatially resolved Stokes
tomography using the set of (optional) optical components
shown in Fig. 2. These measurements also allow us to
identify the optical concurrence. Setting 2ψ ¼ π and
increasing χ from 0 to π=4 generates vector beams with
a concurrence ranging from 0 to 1. A selection of measured
polarization and intensity profiles is shown in Fig. 1(b),
alongside the corresponding simulated vector beams in
Fig. 1(a). As the orthogonal polarization components do
not interfere, the intensity profile has the typical doughnut
shape of OAM beams.
We explore the atomic transmission of these vector

beams by measuring changes to the light intensity after
interaction. For each vector beam, images of the light
profile are recorded with a CCD in the presence of atoms
(Iatoms), in the absence of atoms (Iprobe), and without lasers
(Idark) (the latter to subtract spurious light signals unrelated
to the experiment). In the Supplemental Material [33], we
show the recorded intensity and polarization structures after
interaction with the atoms, which indicate that the atomic
response is determined by the interplay between the local
polarization direction and the TMF. The spatially varying
optical attenuation is more clearly expressed by the optical
density (OD),

OD ¼ ln
Iprobe − Idark
Iatoms − Idark

; ð11Þ

as this yields a measure of the total absorption [37],
effectively visualizing interference of the transition

amplitudes in our atomic-state interferometer. Measured
OD images for the selection of vector beams displayed in
Fig. 1(b) are shown in the top rowof Fig. 3(a), and additional
experimental results for the full range of 2χ ∈ f0; πg can be
found in the Supplemental Material [33]. As predicted by
Eq. (9), an increase in concurrence is associatedwith a larger
variation in the transmission.
According to Eq. (9), and for l ¼ 2 and 2ψ ¼ π, the

transition rate T2→e is minimal when φ ¼ nπ=4 ∀ n∈Z.
This corresponds to positions where the polarization is
parallel or perpendicular to the external (horizontal) mag-
netic field. Here, the population of jψ2i is rapidly repopu-
lated by incoherent decay, rendering the atoms more
transparent to the light and leading to a reduced OD. We
compare our data with simulations according to the OB
model and analytical results from the PT model. The
parameters for all calculations, in accordance with experi-
ment, are Γ ¼ 2π × 6 MHz, γ ¼ 10−7 Γ, ΩL ¼ 0.02 Γ,
ΩR ¼ 0.1 Γ, and l ¼ 2. In the middle row of Fig. 3(a)

FIG. 3. (a)Measured and predicted peak-normalizedOD images
(0.8 × 0.8 mm2) for selected beams with increasing concurrence
[see Fig. 1(b)], with high (low)OD corresponding to beam areas of
large (small) absorption. (b) The equivalence between the squared
concurrence of thevector beam and themodulation depthM of the
atomic absorption profile as a function of 2χ. The black line shows
M according to the PTmodel, which is identical toC2 of the target
vector beams. The measured C2 values are shown in blue, and the
measured M in red, with error bars representing the standard
deviation of five runs. The dashed red line indicatesM according
to the OB model.
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we plot ρeeðr⊥Þ, which is a good measure of the trans-
mission amplitude, and in the lower row we show the
normalized transition rate T2→e. While the simple ana-
lytical expression obtained via PT gives a reasonable
qualitative explanation of the physical processes, it does
not include a quantitative description of decoherence, and
in particular it does not explain the difference in modu-
lation at positions where the polarization is parallel or
perpendicular to B. We expect this to be a higher-order
effect not captured by third-order perturbation theory.
Analysis based on the full Liouville equations, however,
gives better agreement with the experimental data but
lacks a simple analytical explanation.
Qualitatively, our results confirm that the absorption

pattern, specifically the modulation of the fringe visibility,
depends strongly on the beam concurrence. The atoms
respond uniformly to circularly polarized light, whereas
they become transparent to areas of vector beams where the
polarization axis is parallel or orthogonal to the applied
magnetic field, thus producing structured OD patterns with
distinct fringe visibility. We examine this quantitatively in
Fig. 3(b) by showing the equivalence of the squared optical
concurrence of the input vector beam to the fringe
modulation of the absorption pattern. According to PT,
the modulation of the transmission rate between jψ2i → jei
is given byM ¼ sin2ð2χÞ, which is identical to the squared
concurrence of the vector beam displayed as a black line.
We compare these with measurements of the optical
concurrence and of the fringe modulation obtained from
the OD data. For each vector beam with a specific target
value of 2χ, we identified the concurrence based on Stokes
tomography, and plotted the measured C2 values as blue
disks in Fig. 3(b). These deviate slightly from the target
values due to small imperfections in beam generation and
the tomography process. Measured values consistently
exceed the target value, especially for small values of C,
which would be a natural result of optical noise. While the
fringe visibility according to the PT model is a simple
geometric function, for experimental data, as well as for
simulation via the OB model, it has to be extracted
numerically. We note that, for our vector beams, the
modulation strength M is identical to the l ¼ 2 Fourier
coefficient of the transition amplitude T2→e, and it can
therefore be extracted by a Fourier series expansion [34].
Applying this method to the experimental data allows us to
average over the different peaks, thereby reducing the effect
of noise. The resulting values for M are shown as red
squares in Fig. 3(b). Similarly, we obtain a corresponding
theoretical M from simulations of the excited state
population based on our OB model shown as a dashed
red line. We find that the model based on the OB equations
deviates slightly from the PT model and is in excellent
agreement with the data. Overall, the results confirm that
we can identify vector beam concurrence from a single
absorption image.

Conclusions.—We demonstrated how to map the con-
currence of vector beams to steady-state populations and
transitions in an atomic cloud. An atomic-state interfer-
ometer was constructed by combining optical coupling via
vector beams and magnetic coupling in an external TMF.
This allowed us to transfer the correlations between the spin
and spatial degree of freedom present in vector beams to
spatially varying spin polarizations in atoms, which in turn
led to spatially varying absorption patterns. More specifi-
cally, we derived theoretically and demonstrated in experi-
ment that the visibility of the fringe pattern in the
absorption profile is given by the squared concurrence
of the vector beam. This illustrates the direct impact of
correlations between the spatial and polarization degree of
freedom of light on atomic-state interference.
In the current setup, an atomic-state interferometer was

constructed by combining magnetic and optical coupling in
a degenerate two-level system. Other coupling methods,
e.g., microwave coupling [38], may expand such an
interaction to bichromatic fields. Our demonstration was
performed for a specific form of simple vector beams, but
the principle may be generalized to arbitrary vector modes,
such as topological light [39–41] or optical lattices [42–44].
The proposed scheme provides an effective approach for
information transfer and manipulation of vector beams in
atomic systems, and potentially the control of entanglement
between atoms and polarization-structured photons. The
degree of correlation between polarization and spatial
degrees of freedom may be transferred to the internal state
of the atoms, offering opportunities for a new branch of
vectorial light-matter interaction that may be extended to
atomic BECs [45–47], ions [48,49], or molecules [50].
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