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Recent experimental developments in multimode nonlinear photonic circuits (MMNPCs), have
motivated the development of an optical thermodynamic theory that describes the equilibrium properties
of an initial beam excitation. However, a nonequilibrium transport theory for these systems, when they are
in contact with thermal reservoirs, is still terra incognita. Here, by combining Landauer and kinematics
formalisms we develop a universal one-parameter scaling theory that describes the whole transport
behavior from the ballistic to the diffusive regime, including both positive and negative optical temperature
scenarios. We also derive a photonic version of the Wiedemann-Franz law that connects the thermal and
power conductivities. Our work paves the way toward a fundamental understanding of the transport
properties of MMNPCs and may be useful for the design of all-optical cooling protocols.
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Introduction.—Recently, we have witnessed a surge in
understanding and harnessing the convoluted behavior of
light propagation in multimode nonlinear photonic circuits
(MMNPCs). These platforms have been used for exploring
exotic optical phase transitions [1–4], beam self-cleaning
phenomena [5–7], spatiotemporal mode locking [8], multi-
mode solitons [9], etc. In parallel, their implementation in
fiber-optical communications might resolve urgent tech-
nological needs associated with the looming information
“capacity crunch” [10,11] or the quest for high-power light
sources [8].
Nonlinearities lead to multiwave mixing processes or

photon-photon “collisions” through which the many modes
can exchange energy via a multitude of possible pathways.
Evidently, modeling, predicting, and harnessing the res-
ponse of such exceedingly complex configurations is
practically impossible using conventional brute-force time-
consuming computations that obscure the underlying
physical laws. Fortunately, a new universal approach inspi-
red by concepts from statistical thermodynamics emerged
recently [12]. Under thermal equilibrium conditions,
the methodology has identified intrinsic variables (optical
temperature T and chemical potential μ) that play the role
of optical thermodynamic forces leading an initial beam
excitation to a Rayleigh-Jeans (RJ) thermal state [4,12,13]
—a key tenet of this theory that has been confirmed using
multimode optical fibers and time-synthetic photonic lat-
tices [14–17].
Here, we develop a universal transport theory that

describes the nonequilibrium steady states generated in a
MMNPC (a photonic junction) when it is in contact with
two optical reservoirs at different optical temperatures

and/or chemical potentials. The proposed optical kinetics
framework allows for the evaluation of various kinetic
coefficients like optical power and thermal conductivities in
full analogy with physical kinetics in condensed matter
[18]. The presence of two conserved quantities (total
optical power and electrodynamic momentum flow,
referred to below as internal energy) requires considering
the coupling between thermal and power currents mediated
by nonlinear interactions—a complication that is not
present in phonon heat transport in solids. Using a
combination of Landauer (ballistic limit) and Boltzmann
(diffusive limit) transport theories, we established a one-
parameter scaling theory that describes the crossover from a
ballistic to a diffusive limit as the size of the photonic
junction increases beyond a characteristic thermalization
length scale lT . Our universal theory is applicable for both
positive and negative optical temperatures and incorporates
the specific characteristics of the topology of the reservoirs
and their contacts with the optical junction. Furthermore,
the dependence of the transport features in various physical
parameters (e.g., optical temperature, chemical potential,
nonlinearity strength, system size, etc.) is encoded only in
the ratio of the thermalization length lT over the system
size. Finally, we analyze the interdependence of optical
power and heat transport by deriving the photonic analog of
Wiedemann-Franz law that connects the thermal and power
conductances. Their ratio is inversely proportional to
temperature—as opposed to the linear temperature behav-
ior for typical thermoelectric devices—which is a signature
of relaxation scale separation between the energy and
power currents. The optical kinetic theory approach that
has been developed in this work is general. It sets the basis

PHYSICAL REVIEW LETTERS 132, 193802 (2024)
Editors' Suggestion

0031-9007=24=132(19)=193802(6) 193802-1 © 2024 American Physical Society

https://orcid.org/0000-0002-0786-4392
https://orcid.org/0000-0002-1423-6706
https://orcid.org/0000-0002-6019-1246
https://orcid.org/0000-0001-6769-5984
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.193802&domain=pdf&date_stamp=2024-05-08
https://doi.org/10.1103/PhysRevLett.132.193802
https://doi.org/10.1103/PhysRevLett.132.193802
https://doi.org/10.1103/PhysRevLett.132.193802
https://doi.org/10.1103/PhysRevLett.132.193802


for the development of novel thermophotonic devices and
paves the way for the design of novel photonic refrigerators
or engines.
Physical setting.—For presentation purposes, we con-

sider the specific setup shown in Fig. 1. It consists of two
optical reservoirs and a junction that facilitates thermal and
power transport between the reservoirs. The left (L) and
right (R) reservoirs consist of arrays of (weakly) nonlinear
coupled optical waveguides (or, alternatively, multimode or
multicore optical fibers) supporting a finite (but large)

number γ ¼ 1;…;M of linear supermodes
��ϕðL=RÞ

γ i—all
propagating along the paraxial direction z with propa-

gation constants ωðL=RÞ
γ . At each reservoir, we launch

a beam prepared at some state jΨðL=RÞðz ¼ 0Þi ¼P
γ C

ðL=RÞ
γ

��ϕðL=RÞ
γ i; where CðL=RÞ

γ ¼hϕγjΨðL=RÞi are the pro-
jection coefficients to their supermodes. Initially, the reser-
voirs are decoupled from one another and, therefore, their

total optical powerN L=RðfCðL=RÞ
γ gÞ¼P

γ jCðL=RÞ
γ j2≡AðL=RÞ

and internal energy HL=RðfCðL=RÞ
γ gÞ ≈P

γ jCðL=RÞ
γ j2ωγ ≡

EL=R are constants of motion that are used to determine
the optical temperature T and chemical potential μ that

define their RJ thermal state nL=RðωðL=RÞ
γ Þ ¼ hjCðL=RÞ

γ j2i≡
½TL=R=ðωγ − μL=RÞ� [4,12,19,20].
Once each reservoir reaches a thermal equilibrium with

ðTL; μLÞ ≠ ðTR; μRÞ at paraxial distances zR, they are
coupled with an optical junction: an array of coupled
(weakly) nonlinear single-mode waveguides supporting

α ¼ 1;…; N linear supermodes
��ϕðJÞ

α i that propagate with
paraxial propagation constants ωðJÞ

α .
The junction facilitates heat and power transport between

the reservoirs. Obviously, the characteristics of the

junction, i.e., coupling between waveguides, nonlinearity
strength, size, etc., will determine these currents, and, in
turn, the paraxial length zGT at which the whole system
reaches a global thermalization. We are not interested in the
behavior of the system at these (practically irrelevant) large
paraxial length scales. Rather, we focus our investigation
on a physically relevant intermediate (but still large) length
scale ztrð∼10−2zRÞ < z ≪ zGTð∼50zRÞ, where (after a
transient paraxial length ztr) the currents through the
junction acquire (quasi-)steady-state values [21]. For physi-
cal implementations, see Supplemental Material [21] and
Refs. [14,15,17]. We develop a nonequilibrium transport
theory for power and heat transfer at these intermediate
length scales.
Mathematical modeling.—The beam dynamics at the

junction and the left and right reservoirs are described by a
temporal coupled mode theory (TCMT),

i
dΨl

dz
¼ −

X
j

JljΨj þ χjΨlj2Ψl; ð1Þ

where Ψl ≡ hljΨi is the field amplitude at the lth wave-
guide, ϵl ¼ −Jll is its propagation constant, and χ is the
Kerr nonlinearity coefficient. The connectivity of the net-
work is dictated by the coupling coefficients Jlj ¼ J�jl. At
the junction Jlj ¼ Jδl;l�1 (ϵl ¼ ϵ ¼ 0). The corresponding

linear dispersion relation takes the form ωðJÞ
α ¼ −2J cosðkÞ

where the wave vector k∈ ½−π; π�. The two reservoirs
consist of a square lattice of Nr ¼ 40 × 40 ¼ 1600 wave-
guides with Jlj ¼ J. To avoid spectral degeneracies, we
consider propagation constants given by a uniform distri-
bution ϵl ∈ ½−ðW=2Þ; ðW=2Þ� with W ¼ 0.5. The junction-
reservoir coupling is Jb−r ¼ 0.2J. We have confirmed via
direct dynamical simulations of the composite system the
existence of a (quasi-)steady-state regime, maintained for
propagation distances zGT, during which the temperature
and chemical potential at each reservoir remain (approx-
imately) constant when M ≫ N. We have further validated
our theory using Monte Carlo reservoirs, which are
ignorant of their specific topology [22].
Onsager matrix formalism.—We consider the power

aðxÞ and energy hðxÞ densities at any junction segment
ðx; xþ dxÞ which includes many unit cells. At the (quasi)
stationary regime, these segments are at local equilibrium
characterized by a local temperature and chemical poten-
tial, i.e., T ¼ TðxÞ, μ ¼ μðxÞ which slowly change with the
position. The currents are evaluated by expanding the
spatial gradients of μ, T up to the first term [23,24],

j ¼ L̂f; L̂ ¼
�
Laa Laq

Lqa Lqq

�
: ð2Þ

Above, j ¼ ðja; jqÞT , where ja; jh; jq ¼ jh − μja are the

power, energy, and heat currents, and L̂ is the Onsager

FIG. 1. The two photonic reservoirs (L=R) consist of a large
number of coupled nonlinear waveguides. We initially inject two
beams at each of the reservoirs with different internal energy and
power. At the steady state, the power distribution is given by a RJ
thermal state with predetermined temperatures TL=R and chemical
potentials μL=R. After reaching a thermal state, the two reservoirs
are coupled by an optical junction that transports heat and power
currents. For intermediate, but large, length scales these currents
acquire a quasi-steady-state jh, ja.
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matrix, while the affinities f ¼ ð−∇μ=T;∇ð1=TÞÞT are the
thermodynamical forces that induce the currents. For
systems preserving time reversal symmetry, the Onsager
reciprocity relations hold, i.e., Lqa ¼ Laq [23,31].
We distinguish between two limiting cases of short N ≪

lT (ballistic) and long N ≫ lT (diffusive) junctions where
lT ¼ vgzT , vg is a typical group velocity of the linear
supermodes, while zT ¼ zTðχ; J; T; aÞ is a relaxation dis-
tance that dictates the thermalization process of a non-
equilibrium state in the isolated junction toward its RJ
distribution [20,25]. Strictly speaking, the concept of local
equilibrium used in Eqs. (2) applies to the diffusive regime
only while in the ballistic regime; the meaningful quantities
are the temperatures TL;R and chemical potentials μL;R of
the two reservoirs. In this case, we can formally define
∇T ≡ ðTR − TLÞ=N; ∇μ≡ ðμR − μLÞ=N to have unified
notations for both regimes.
The various transport coefficients are extracted from the

Onsager matrix elements (2). For example, the power
conductivity is σ ≡ La;a=T, the thermal conductivity is
ϰ ¼ det L̂=ðT2LaaÞ, while the Seebeck and Peltier co-
efficients that describe thermopower transport are S ¼
Laq=ðTLaaÞ and Π ¼ T S (see Supplemental Material for
details [21]).
Ballistic regime: In this regime, the nonlinear inter-

actions are not able to enforce mixing among the linear
modes. The power and energy fluxes through the junction
are evaluated using Landauer’s theory [26]

jaðhÞ ¼
Z

dω tðωÞωs½nLðωÞ − nRðωÞ�; ð3Þ

where s ¼ 0 (s ¼ 1) for power (energy) current. We further
assume that the transmittance tðωÞ ¼ t0 ¼ const for all
supermodes in the band ½−2J; 2J� and zero otherwise.
Equation (3) can be evaluated analytically, thus allowing us
to extract the Onsager matrix elements (see Supplemental
Material [21])

Laa ¼ t0N
4JT2

μ2 − 4J2
; Lqq ¼ t0N4JT2

Laq ¼ Lqa ¼ −t0NT2 ln

�
1 −

4J
−μþ 2J

�
; ð4Þ

where T ¼ ðTL þ TRÞ=2, μ ¼ ðμL þ μRÞ=2, and
jΔμj ≪ jμj − 2J and ΔT ≪ T (linear response regime).
Equations (4) allow us to derive exact expressions for the
transport coefficients σ; ϰ ∝ N. We conclude that when
lT ≫ N, Fourier’s law is violated.
While the weak nonlinear interactions cannot enforce

sufficient mode-mode mixing, they can induce a nonlinear

frequency shift ωðJÞ
α → ωðJÞ

α þ 2aχ (see Supplemental
Material [21] and Ref. [27]) which might affect the
currents. Nevertheless, Eq. (3) still applies with the

modification that the transmittance is constant t0 inside a
shifted frequency window ωðJÞ ∈ ½−2J þ 2χa; 2J þ 2χa�
and zero everywhere else. As a result, Eq. (4) still applies
with the substitution μL;R → μL;R − 2aχ. This correction

jaðhÞ → jðχÞaðhÞ is insignificant for high temperatures, T ∼
jμj ≫ 2aχ but it becomes important when jμj ∼ 2J.
Diffusive transport: In the other limiting case of

N ≫ lT , the nonlinear mode-mode interactions become a
dominating mechanism of power and heat transport. They
are responsible for a local equilibrium within lT segments
of the junction, thus allowing us to define slowly varying
local temperatures TðxÞ and chemical potentials μðxÞ. In
parallel, the modal occupations become a local quantity,
i.e., a function of coordinate x, wave vector k, and
propagation distance z, n ¼ nðx; k; zÞ. We proceed by
invoking a kinetic equation (KE) approach [27]

dn
dz

¼ ∂n
∂z

þ ðvg ·∇nÞ ¼ Stn; ð5Þ

where nðk; xÞdkdx represents the power (number of par-
ticles) in a macroscopic volume element dkdx of the phase
space and Stn is a collision integral. Next, we consider the
stationary regime ∂n=∂z ¼ 0 and assume that n depends on
the position x via the temperature TðxÞ and chemical
potential μðxÞ. Further, we linearize Eq. (5), assuming
small deviations from the local equilibrium, n ¼ nð0Þ þ δn,
where nð0Þ is the (local) equilibrium RJ distribution. Since
Stnð0Þ ¼ 0, the rhs of Eq. (5) becomes Stδn ≈ −δn=zTðkÞ
(“time”-relaxation approximation). Then, the solution of
the linearized KE reads

δnðkÞ ≈ −zTðkÞ
nð0Þ

T

�ðvg · ∇μÞnð0Þ þ ðvg ·∇TÞ�; ð6Þ

resulting in power and heat currents

jaðqÞ ¼
Z

dk
ð2πÞ vgðkÞ

�
ωðJÞðkÞ − μ

�
sδnðkÞ: ð7Þ

Evaluation of the above integrals (see Supplemental
Material for details [21]) together with Eq. (2) leads to

Laa ¼ −T2

�
1þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − 4J2
p

	
zT; Lqq ¼ 2J2T2zT;

Laq ¼ Lqa ¼ −T2

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4J2

q 	
zT; ð8Þ

where we omitted the k dependence of the relaxation
distance zT . Finally, within the linear response theory
[∇T ∼ ΔT=N ≪ T̄ ≡ ðTL þ TRÞ=2, ∇μ ∼ Δμ=N ≪ μ̄≡
ðμL þ μRÞ=2], we neglect the x dependence of temperature
TðxÞ and chemical potential μðxÞ and approximate the
Onsager elements as LijðTðxÞ; μðxÞÞ ≈ LijðT̄; μ̄Þ. We find
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that, contrary to the ballistic domain, ja; jq ∝ 1=N featur-
ing the so-called normal transport, where the transport
coefficients ϰ, σ are independent of the system size and
Fourier’s law holds.
One-parameter scaling theory.—We have established a

one-parameter scaling theory that controls the variation of
ja as the size of the junction increases. Specifically,

∂pN

∂lnN
¼ βðpNÞ; pNðχ; J; T̄; μ̄Þ≡ ja

jðχÞa

; ð9Þ

where β is a function of the rescaled power current pN
alone. The renormalization of the current with its ballistic

value jðχÞa scales out the details of the contact geometry

(which is encoded in jðχÞa ), thus resulting in a contact-

independent β function. Notice that jðχÞa can be exactly
calculated using Eq. (3)—even for complex contacts where
its numerical evaluation is always possible.
The scaling ansatz of Eq. (9) is equivalent to postulating

the existence of a function fðxÞ such that

pN ¼ fðλ≡ N=lTÞ ∝


1; λ ≪ Oð1Þ;
1
N ; λ ≫ Oð1Þ: ð10Þ

The scaling parameter λ≡ N=lT encodes all the informa-
tion about the relaxation process toward a nonequilibrium
(quasi-)steady-state current and describes the number of
thermalized segments with length lT ∼ vgzT contained in a
junction of length N. In the ballistic limit lT ≫ N, the
junction consists of a single segment and the nonlinear
interactions are unable to enforce thermalization of the
modes. Therefore, the transport is essentially ballistic and

ðja=jðχÞa Þ ≈ 1. On the other hand, when N ≫ lT , the net-
work consists of a number of λ ≫ 1 uncorrelated segments.
This situation is reminiscent of the law of additive
resistances connected in series. As in this case, the total
current decays inversely proportional to the number of
segments ja ∝ 1=N. The relaxation distance that defines lT
is z−1T ∝ ðχ2a2=JÞ tanh �T=ζJa� and has been previously
evaluated in Ref. [25] (a ∼ 1 is the average value of norm
per site, and ζ ≈ 8 is a best fitting parameter).
To validate our scaling ansatz (9), we have performed

numerical simulations for various nonlinear coefficients χ,
system sizes N, and temperatures T (see Fig. 2). Our
simulations utilized two methods: (1) modeling the large
collections of M modes in the bundles by Monte Carlo
reservoirs [22] with effective thermostats at fixed ðT; μÞ
(see filled symbols in Fig. 2); (2) solving numerically the
TCMT (1) for the whole system reservoirsþ junction) with
reservoirs consisting ofM ¼ 1600 coupled modes forming
a square lattice (see Supplemental Material [21]). The
scaling ansatz (10) is also satisfied for negative temperature
reservoirs (see orange asterisks in Fig. 2)—assuming that
the linear response theory conditions are applicable. An

interpolating law that describes our data is

fðλÞ ¼ 1

1þ λ=λ�
; ð11Þ

where λ� ¼ 5.65 is the best fitting parameter.
Photonic Wiedemann-Franz law and thermal current.—

In thermoelectric devices, the Wiedemann-Franz (WF) law
connects the thermal and current conductivity: their ratio is
proportional to the temperature, i.e., ϰ=σ ¼ LT with a
constant L which, in typical metals, takes a universal value
[32]. This proportionality relation indicates that a good
electrical conductor is also an efficient heat conductor—a
property that is rooted in the fact that heat and charge
currents are associated with the flux of the same (quasi)
particles. Deviations from the WF law signify the existence
of multiple thermal and/or electrical flux transport mech-
anisms, enabling the independent control of electrical and
thermal transport [31,33].
The equivalent of charge (particle) conductivity in

photonics is power conductivity. It is natural, therefore,
to extend the above definition of WF law and analyze the
corresponding ratio of thermal conductivity to power
conductivity. By combining Eqs. (4) and (8), we obtain

ϰ

σ
≈
J2

T
; for jμj ≫ ð2JÞ; ð12Þ

signifying a novel form of WF law that occurs in
MMNPCs. This theoretical prediction is nicely confirmed
by our simulations using Monte Carlo optical reservoirs
(see main panel of Fig. 3). The various values of the
nonlinear coefficient χ and junction size N that have been
used in these simulations were chosen to guarantee that we
have spanned the full transport domain from ballistic to
diffusive regimes.

FIG. 2. Normalized power current ja=j
ðχÞ
a versus the scaling

parameter λ ¼ N=lT for a 1D junction of (transverse) size N. The
different values of the current ja for a variety of parameters
ðχ; J; T̄; μ̄Þ are shown in the inset. The black dashed line is the
interpolating function (11), while the solid line indicates a 1=N
behavior and is drawn to guide the eye.
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The inverse temperature dependence of the ratio ϰ=σ
signifies the decoupling of thermal and power transfer. A
similar phenomenon has been also observed in ultracold
atomic gases [34] implying that atom-atom interactions
affect the associated thermal and particle conductivities in
radically different ways. Specifically, it was shown that
there is a timescale separation for the equilibration of
temperature and particle imbalances between the two
reservoirs. We have demonstrated the different equilibra-
tion times by performing dynamical simulations with small
composite (junctionþ reservoirs) system sizes. In these
simulations, we have utilized a microcanonical approach
for the whole system and found different relaxation scales
for the internal energy and power differences between the
two reservoirs (see insets of Fig. 3).
Let us finally point out that, unlike the familiar case of

metals, in the developed optical kinetics framework, the
results for the WF law are sensitive to the definition of ϰ. If,
for example, we had defined the thermal conductivity under
the constraint ∇μ ¼ 0 (as opposed to the traditional ja ¼ 0
used above), we would end up with a different result for
ϰ=σ [see Eqs. (S12) and (S19) of the Supplemental Material
[21] ]. In this case, at the high-temperature limit where
nð0Þ ≈ 1, we get the familiar expression ϰ=σ ∝ T.
Conclusion.—We have developed an optical kinetics

framework that predicts the response of MMNPCs in
contact with optical reservoirs. Our methodology can be
utilized for the design of all-optical cooling protocols and

thermal rectifiers [35,36]. It will be interesting to extend
our formalism to include transverse localization effects or
the influence of paraxial noise (Markovian [37] or non-
Markovian fluctuations where memory effects are impor-
tant [38]) in the steady-state currents.

Note added.—Recently we became aware of Ref. [39]
which analyzed the optical WF law using a microcanonical
ensemble combined with the RJ power distribution. Their
analysis is confined to the ballistic regime using Landauer’s
theory. Their results on the violation of the standard WF
law are in agreement with ours.
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high-performance computing cluster of IMIT (CONICET-
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