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We study the robustness of the evolution of a quantum system against small uncontrolled variations in
parameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative
error to leading order, can be expressed in superoperator form and use this to derive control pulses that are
robust to any class of systematic unknown errors. The proposed optimal control protocol is equivalent to
searching for a sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e., it
constitutes a 1-design. We highlight the power of our results for error-resistant single- and two-qubit gates.
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Introduction.—Tremendous advances in the ability to
manipulate states of light and matter are ushering in the
new generation of quantum-enhanced devices. As recently
remarked [1], it is precisely the ability to develop schemes
to control a system that endows scientific knowledge with
the potential to revolutionize technological landscapes
[2,3]. However, while exquisite levels of control are now
routinely applied in a variety of platforms [4–6], there will
always be systematic errors due to imperfect fabrication
and incomplete knowledge of the parameters, either in
relation to the model itself or the ambient conditions under
which it is operating. Thus, several strategies to explicitly
mitigate such errors have been devised, e.g., shortcuts to
adiabaticity [7–9], numerical optimization [1,10,11], geo-
metric space curves [12–14], composite pulses [15,16], and
dynamical decoupling [17].
When these systematic errors are important, typically the

control problem is cast in such a way that two assumptions,
sometimes implicit, are made regarding the source of the
error: (i) that it arises from a weak perturbation, and (ii) that
its mathematical structure is exactly known. While the
former is a reasonable working condition to assume (if it
were not then the fundamental description of the system
would need to be adjusted), the latter is arguably less well
justified. Indeed, concerted effort is currently invested in
identifying the correct physical description of noisy inter-
mediate-scale quantum devices, e.g., determining the most
relevant noise sources that they are subject to in order to
enhance their efficacy [18]. Ultimately, there will always be
some level of uncertainty in our knowledge of the precise
structure of the noise and therefore it is highly desirable to

develop a framework that allows the coherent manipulation
of quantum systems even in the presence of an unknown
(even possibly unknowable) source of error.
In this Letter, we develop such a framework, one that

accounts for this uncertainty, termed universally robust
control (URC). It provides a straightforward cost function
to be minimized to ensure generic robustness in quantum
control problems. It can also be easily restricted to specific
classes of errors to account for a limited but useful
knowledge of the error type.
Fidelity in the presence of systematic error.—Consider

the full system Hamiltonian HλðtÞ ¼ H0ðtÞ þ λV where
H0ðtÞ is the error-free control Hamiltonian, V is the error
operator acting with unknown strength, λ. We assume a
pure initial state, σ, with no λ dependence.
The time evolution operator ofHλðtÞ is given byUλðt; 0Þ,

which leads to the λ-dependent state ρλ¼Uλðtf;0ÞσU†
λðtf;0Þ

at the final time t ¼ tf. The fidelity between the perturbed and
ideal evolution is FðλÞ ¼ Trðρλρ0Þ, which can be expanded
for small λ as

FðλÞ ≈ Fð0Þ þ F0ð0Þλþ 1

2
F00ð0Þλ2: ð1Þ

BydefinitionFð0Þ ¼ 1 and from this followsF0ð0Þ ¼ 0 [19].
The second derivative can be calculated by noting that,

for pure states, ∂
2
λρλ ¼ 2ð∂λρλÞ2 þ ρλð∂2λρλÞ þ ð∂2λρλÞρλ.

Multiplying by ρ0 and evaluating the trace at λ ¼ 0 we get

F00ð0Þ ¼ −2χSðρλÞ; ð2Þ
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where χSðρλÞ ¼ Tr
�
ρ0ð∂λρλÞ2

��
λ¼0

�
is the fidelity suscep-

tibility [20–22], which quantifies how sensitive the evolu-
tion is with respect to small perturbations, i.e., FðλÞ ≃ 1−
χSðρλÞλ2. It is clear that χSðρλÞ is simply the quantum Fisher
information (QFI) associated to the family of states fρλg
[19]. The QFI quantifies how much information about λ is
encoded in the evolution of the state, thus minimizing the
QFI at λ ¼ 0 is equivalent to increasing the robustness of a
control protocol.
Evaluating explicitly the QFI we find [19]

χSðρλÞ ¼
t2f
ℏ2

ðΔV̄0Þ2; ð3Þ

where

V̄0 ¼
1

tf

Z
tf

0

dsU†
0ðs; 0ÞVU0ðs; 0Þ ð4Þ

is the time average ofV in the interaction picturewith respect
to the unperturbed evolution and the variance is taken with
respect to the initial state,

�
ΔV̄0

�
2 ¼ Tr½σV̄2

0� − Tr½σV̄0�2.
A similar result can be derived for the case of the evolution

of unitaries (instead of states). By defining the correspond-
ing fidelity as FUðλÞ ¼ ð1=d2Þ��Tr�U†

0Uλ

���2, we obtain that
FUðλÞ ≃ 1 − χUðUλÞλ2 [19]. The susceptibility is

χUðUλÞ ¼
t2f
ℏ2d

kV̄0k2; ð5Þ

where k · k is the norm associated with the Hilbert-Schmidt
inner product ðAjBÞ ¼ TrðA†BÞ and d is the Hilbert space
dimension. Robust control protocols then correspond to
finding a H0ðtÞ such that ρ0 ¼ ρtarget or U0ðtf; 0Þ ¼ Utarget

while concurrently minimizing χS for a known perturbation
model V [23–25]. We now demonstrate that such robust
control can be achieved even without knowledge of V.
Universally robust control.—Our construction is based

on a superoperator picture where the operator

M0½V�≡ V̄0 ð6Þ

can be seen as the action of a (linear) superoperator M0

acting on V and we assume that TrV ¼ 0 [26]. To construct
it more explicitly, we go to a doubled Hilbert space. If our
original Hilbert space H is spanned by the orthonormal
basis fjiig where i ¼ 1;…; d, we take

A ¼
X
ij

Aijjiihjj → jAÞ ¼
X
ij

Aijjii ⊗ jji; ð7Þ

where jA) lives in H ⊗ H [19]. From Eq. (6) we define

M0 ¼
1

tf

Z
tf

0

ds½U0ðs; 0Þ ⊗ U0ðs; 0Þ��†: ð8Þ

such that jV̄0Þ ¼ M0jVÞ. The fidelity susceptibility of
Eq. (5) can be expressed in terms of the superoperator
M0 as

kV̄0k2 ¼ ðVjM†
0M0jVÞ: ð9Þ

By virtue of Eq. (5) we can increase the robustness of a
unitary control protocol irrespective of V by choosing
H0ðtÞ to minimize the operator norm ofM0. Intuitively, this
is because kM0jVÞk ≤ kM0k · kjVÞk. This also holds for
state control, c.f. Eq. (3), becauseΔV̄0 is upper bounded by
kM0k [19].
The trace of any operator V is unitarily invariant. For the

identity operator I,M0jIÞ ¼ jIÞ so the norm ofM0 cannot be
arbitrarily reduced. To sidestep this issue, we restrict to the
set of traceless perturbation operators by defining the
projector in the doubled Hilbert space P0 ¼ jIÞðIj=d such
that P0jAÞ ¼ TrðAÞjIÞ=d, and redefine the relevant super-
operator

M̃0 ¼ M0ðI − P0Þ: ð10Þ

For any operator V 0, this acts as

M̃0jV 0Þ ¼ M0ðI − P0ÞjV 0Þ ¼ M0jVÞ ¼ jV̄0Þ; ð11Þ

where V is a traceless version of V 0. We remark that any
observable conserved under H0 will also be an eigenvector
ofM0 with eigenvalue 1, i.e., it cannot be counteracted due
to the limited control terms of the Hamiltonian (see, e.g.,
the discussion in Ref. [27]). Similar limitations to robust-
ness may apply in the case of other experimental con-
straints such as pulse intensity and bandwidth limits.
The goal of URC is to minimize the norm of the modified

superoperator M̃0, which is related to the previous norm as

kM̃0k2 ¼ kM0k2 − TrðM†
0M0P0Þ ¼ kM0k2 − 1: ð12Þ

This allows us to find choices of U0 that yield M̃0 ≃ 0,
thus achieving jV̄0Þ ≃ 0 for any V.
To understand how a single solution for U0ðtÞ can be

made robust to arbitrary perturbations, and when this is
possible in principle, we note the following connection with
unitary designs [28–30]. Discretizing the integral in Eq. (4)
intoL ≫ 1 intervals, we find V̄0 ∼ ð1=LÞPL

k¼1 U
ðkÞ†
0 VUðkÞ

0 ,
which has the form of an average of the operator V

conjugated over a discrete set of unitaries, UðkÞ
0 . If the

distribution of such unitaries is uniform according to the
Haar measure [31], then the average,

EfUðkÞ
0
g½U†VU� ¼ 1

d
TrðVÞ; ð13Þ

is known to vanish for all traceless V [31]. A less stringent
requirement is for the distribution to only match the
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first-order moment of the uniform distribution, i.e., to be a
1-design. In fact, since P0jAÞ ¼ TrðAÞjIÞ=d, we see that the
requirement M̃0 ¼ 0 immediately implies Eq. (13) for any
operator, thus making the path traced by the unitary
evolution operator U0ðtÞ a 1-design. Given that 1-designs
exist in SUðdÞ for any d, this connection serves as a formal
proof of the existence ofURC solutions, i.e., paths in unitary
space that achieve perfect target fidelity while being robust
to all possible perturbations to leading order [19].
Leveraging randomization to increase robustness in

quantum processes is routinely done in the context of
quantum computing, particularly by tools like dynamical
decoupling [17,32], dynamically corrected gates [13,33,34],
and randomized compiling [35]. Our work shows that, for
general quantum systems, it is possible to translate this
connection into a requirement on a single object, the
superoperator M̃0, leading to robustness to any perturbation
to first order. As we show in the following, this allows us to
set up a quantum optimal control problem to find evolutions
that reach a predefined target while at the same time remain
robust to arbitrary perturbations.
Optimal control.—We now demonstrate how URC can

be naturally leveraged in numerical optimizations. A
generic quantum optimal control (QOC) approach consid-
ers a series of control parameters, fϕkg, which determine
the time dependence of H0ðtÞ and aims to maximize the
fidelity between a target process Utarget and the actual
(ideal) evolution operator U0ðtf; 0Þ by minimizing a cost
functional J0 ¼ 1 − FU½Utarget; U0ðtf; 0Þ� with respect to
fϕkg. Additionally, robust QOC usually aims at achieving
resilience to perturbations characterized by a known
operator V. For this task, one can concurrently minimize
the fidelity susceptibility given by the control functional
JV ¼ ð1=dÞkV̄0k2 (see for instance [25,34]). Our proposed
approach of universally robust QOC instead aims at
achieving robustness to an unknown error operator V.
This can be achieved by instead minimizing the functional
JU ¼ ð1=dÞkM̃0k2 [36].
We begin with the simple case of a single qubit with

restricted controls with Hamiltonian

H0ðtÞ ¼ Ω
�
cos½ϕðtÞ�σx þ sin½ϕðtÞ�σy

�
; ð14Þ

where σα are the Pauli operators, and we consider the
control field ϕðtÞ to be piecewise constant with time steps
Δt and values fϕkg, k ¼ 1;…; NP [37]. The model in
Eq. (14) is fully controllable [38,39]. We set the target
transformation to be Utarget ¼ expð−iσzπ=2Þ and numeri-
cally seek the QOC parameters that minimize either only

J target ¼ J0, J
ðzÞ
robust ¼ ðJ0 þ wJV¼σzÞ=ð1þ wÞ, or J univ ¼

ðJ0 þ wJUÞ=ð1þ wÞ, where w is a non-negative weight
that can be changed to improve the resulting balance
between the terms. Note that evaluating these functionals
requires only computing the error-free evolution given by

H0ðtÞ, and so no numerical simulations of the perturbed
dynamics are required at any stage. In Fig. 1(a) we plot the
optimized functional for each case against the evolution
time tf. The curves display behavior reminiscent of Pareto
fronts [40,41], indicative of the fact that optimization
succeeds for sufficiently large tf but fails when the
evolution time becomes too constrained. A minimum
control time, tMCT, can be assigned to each process by
identifying the minimum value of tf such that the opti-
mization succeeds (which in this case we take as yielding
functional values below 10−7). For target-only and robust
control optimizations, we find tTMCT ¼ 2π=Ω and
tRMCT ¼ 4π=Ω, which are consistent with previous analyti-
cal and numerical studies [38,39]. In contrast, universally
robust control demands tUMCT ¼ 5π=Ω (see also [42]).

FIG. 1. Universally robust control for single-qubit gates.
(a) Optimized control functionals as a function of the total
evolution time tf for target-only control (gray, circles), target
and robustness to a known V (blue, squares), and target and
robustness to an unknown V (orange, triangles). (b),(c) Gate
fidelity as a function of perturbation strength λ for the cases where
V ¼ σz and V ¼ n⃗ · σ⃗ with n⃗ a random unit vector (results shown
correspond to the average fidelity over 20 realizations). Lower
panels shows an enlargement of the data of the infidelity 1 − F in
log-log scale. (d) Optimal control fields ϕðtÞ obtained for each
case. We choose a target Utarget ¼ expð−iσzπ=2Þ, NP ¼ 40

control parameters, a balanced functional w ¼ 1, and an oper-
ation time Ωtf=ð2πÞ ¼ 3.5 for (b), (c), and (d).
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To characterize the robustness of these control processes,
we study how well the evolution under the perturbed
Hamiltonian HλðtÞ ¼ H0ðtÞ þ λV is able to achieve the
target transformation. Figure 1 shows the cases for
(b) V ¼ σz and (c) V ¼ n⃗ · σ⃗ with n⃗ a randomly chosen
unit vector. The gate fidelity is plotted against the uncer-
tainty parameter λ for the three types of optimal controls
found. All cases yield high fidelities if λ ¼ 0, but the target-
only optimization results (gray) deviate substantially from
the ideal value once λ ≠ 0. In (b), we see that the robust
control optimization (blue) is insensitive to perturbations in
V ¼ σz, as expected. But (c) reveals that the same control is
sensitive to generic perturbations. Remarkably, the URC
solution (orange) is insensitive to perturbations along any
direction. This holds true even accounting for the faster
minimal control times required for the other protocols [19].
We also highlight that the increase in robustness does not
require the use of a more complex control waveform, as can
be seen from Fig. 1(d).
Generalized robustness.—Building upon the superoper-

ator in Eq. (10) we can generalize this framework to
optimize for robustness to any desired subset of operators.
This is particularly relevant for systems beyond a single
qubit where the nature of the noise or inhomogeneity is
partially known instead of being completely arbitrary.
Thus, rather than making a control protocol robust to all
possible operators V, we can instead focus on achieving
robustness to a particular set of perturbations, for instance,
those generated by local operators. In this case, we are
interested in the action of the superoperator, M0, only on
this reduced set. The advantage of imposing these gener-
alized robustness requirements is that the optimization is
less constrained, as effectively less matrix elements are
being minimized. Therefore, it is easier to find good
solutions even with restricted control time. For example,
the total number of operators for N qubits is 4N , while for
the set of local operators is only 3N.
Consider a quantum system with Hilbert space dimen-

sion, d, and an orthonormal operator basis
�
Λj

�
,

j ¼ 0; 1;…d2 − 1. We introduce a covering of this basis
set, fCkg, such that

�
Λj

� ¼∪K
k¼1 Ck. The projector onto Ck

is PkðAÞ ¼
P

Λj ∈Ck
TrðΛ†

jAÞΛj. In the superoperator pic-
ture, this is equivalent to defining Pk ¼

P
Λj ∈Ck

jΛjÞðΛjj.
These superoperators are clearly projectors, as P2

k ¼ Pk

and
P

K
k¼0 Pk ¼ I. By construction, we take Λ0 ¼ I=

ffiffiffi
d

p
so

that P0 is defined as before. In order to look for controls
that are insensitive to any operator within a given subset,
we seek to minimize the norm of

M̃0 ¼ M0



1 −

X
k∈ η

Pk

�
; ð15Þ

where the sum runs over all relevant operator subsets η
(typically including Λ0). Note that Pk corresponds to the

operators to which our system’s dynamics need not be
robust. To illustrate the procedure of imposing generalized
robustness requirements into a QOC problem, consider a
model of two-qubits with symmetric controls,

H0ðtÞ ¼ ΩxðtÞSx þΩyðtÞSy þ βS2z ; ð16Þ

where Sα ¼ ðσð1Þα þ σð2Þα Þ=2 are collective spin operators
and the interaction strength β > 0 is fixed. The perturbation
operator, V, can be a combination of single-body (C1) or
two-body (C2) operators. We thus have a variety of possible
optimization functionals depending on the level of robust-
ness desired. Here, we compare three cases: robustness to a
single V ¼ Sx, robustness to all single-body operators
(V ¼ V1−body ∈C1) and universal robustness (V ¼ Varb ∈
C1 ∪ C2). Here, V1−body and Varb are chosen randomly
within the corresponding subspaces. We set the target as a
randomly chosen symmetric two-qubit unitary Urandom
[19]. For this system we find that a good balance between
fidelity at zero perturbation and robustness can be achieved
by performing a two-stage optimization. First, we minimize
the target alone until a certain threshold J0 < ε is met. The
resulting optimized field is then seeded to the robustness
optimization that minimizes JV or JU alone, with the added
constraint that J0 never exceeds ε. [43]. In Fig. 2, we
showcase the performance of the optimization using the

FIG. 2. Universally robust control for two-qubit gates. Plots
show the gate fidelity of the perturbed evolution H0ðtÞ þ λV,
where H0ðtÞ is the control Hamiltonian of Eq. (16). Different
curves correspond to different types of optimization procedures:
target only (nonrobust, gray circles), target and robustness to a
fixed V ¼ Sx (blue squares), target and robustness to all single-
body operators (green crosses), target and universal robustness
(orange triangles). The lower row shows the infidelity 1 − FU for
each case. Each column shows the performance of each of the
four optimized solutions under the evolution H ¼ H0ðtÞ þ λV;
(a) V ¼ Sx, (b) V is random 1-body operator, (c) V is a random
arbitrary operator. Evolution time in all cases is βtf=ð2πÞ ¼ 5,
and NP ¼ 50 control parameters are used. Results shown are
averages over 20 instances.
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different variants introduced thus far, in the presence of
various perturbations. As expected, the optimal control
procedure is able to find fields that are robust to arbitrary
single-body perturbations (green curve), but are not nec-
essarily robust to completely arbitrary perturbations. In
contrast, the URC solution (orange curve) results in
evolutions that are markedly more robust to any type of
perturbation, including two-body operators, when com-
pared to the other methods.
The approach outlined above for designing generalized

robustness requirements can be readily carried over to more
complex systems. In the Supplemental Material [19] we
show additional results that illustrate how this framework
can be used to robustly generate entangled states in many-
body systems.
Conclusion.—We have introduced a versatile method,

universally robust control, to mitigate the effects of
unknown sources of error. By recasting the impact of an
arbitrary perturbation to the systems in terms of a single
object, here captured by the superoperator in Eq. (8), we
showed that since this superoperator has no explicit
dependence on the precise operator form of the error, it
can be efficiently minimized to provide the necessary,
highly robust, control pulses. This goes beyond previous
approaches [33,44,45] since it provides a unifying frame-
work for achieving universal robustness for arbitrary finite-
dimensional quantum systems, while concurrently defining
a concise methodology to implement numerical optimiza-
tion to achieve robust controls in practice. We demonstrated
the effectiveness of our approach for the realization of
single- and two-qubit quantum gates, and have shown that
it can be generalized to tackle state control problems or to
the case of classical fluctuations [46]. Furthermore, we
have demonstrated that the URC formalism can exploit
partial information about the source of errors to build
arbitrary robustness requirements into the optimal control
problem. When combined with powerful numerical opti-
mization techniques, we expect this flexible approach to be
able to tackle a broad class of questions in quantum control.
For instance exploring the fundamental trade-off between
robustness and experimental constraints (such as band-
width or evolution time), or determining what control
resources are required to achieve various levels of robust-
ness in a quantum device. Finally, as our protocol
introduces control pulses that dynamically implement
1-designs, this could be generalized to other t-designs that
can be readily exploited for quantum computing protocols
such as randomized benchmarking [47].
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