
Approaching Maximal Precision of Hong-Ou-Mandel Interferometry
with Nonperfect Visibility

O. Meskine,1,* E. Descamps ,1,2,* A. Keller,1,3 A. Lemaître ,4 F. Baboux ,1 S. Ducci ,1,† and P. Milman 1,‡
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In quantum mechanics, the precision achieved in parameter estimation using a quantum state as a probe
is determined by the measurement strategy employed. The quantum limit of precision is bounded by a value
set by the state and its dynamics. Theoretical results have revealed that in interference measurements with
two possible outcomes, this limit can be reached under ideal conditions of perfect visibility and zero losses.
However, in practice, these conditions cannot be achieved, so precision never reaches the quantum limit.
But how do experimental setups approach precision limits under realistic circumstances? In this Letter, we
provide a model for precision limits in two-photon Hong-Ou-Mandel interferometry using coincidence
statistics for nonperfect visibility and temporally unresolved measurements. We show that the scaling of
precision with visibility depends on the effective area in time-frequency phase space occupied by the state
used as a probe, and we find that an optimal scaling exists. We demonstrate our results experimentally for
different states in a setup where the visibility can be controlled and reaches up to 99.5%. In the optimal
scenario, a ratio of 0.97 is observed between the experimental precision and the quantum limit, establishing
a new benchmark in the field.
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The Hong-Ou-Mandel (HOM) interferometer is often
used to demonstrate the phenomenon of bunching of two
identical, independent bosonic quantum particles, such as
single photons [1] (see Fig. 1). In this setup, photons are
made to interfere on a balanced beam splitter (BS) and their
detection in coincidence at the output indicates whether
they have bunched or not. To control the distinguishability
of the two paths of the interferometer, a time delay can be
introduced for one of the input photons, consequently
changing the coincidence detection probability. Despite its
seemingly straightforward operating principles, the HOM
interferometer has found diverse applications beyond its
original scope [2]: the coincidence detection signal at the
BS output has been demonstrated to serve as an entangle-
ment witness [3–5], to provide phase space information
about the spectral function [6–8], and to enable the
simulation of different quantum exchange statistics
[9,10], among other applications [11–13]. In particular,
the HOM interferometer is a valuable apparatus for
quantum parameter estimation both in the time unresolved
[14–20] and time resolved measurement regimes [21]: its
low-intensity regime opens the possibility of applying the
tools of quantum metrology to small and fragile probes,
such as biological ones [22]; since the HOM effect is based
on two-photon interference, it is robust against background
noise, group velocity dispersion [23], and phase perturba-
tions [24]. Last but not least, theoretical and experimental

results indicate that it can arbitrarily approach the quantum
precision limit for time delay (or path difference) estima-
tion [14,15,18,20,21]. However, in spite of the recent
experiments reaching up to attosecond precision on time
delay estimations [16–18,20,25], the mechanisms deter-
mining the limits and limitations of different quantum states
for time measurement precision using the HOM with
respect to the maximal achievable precision are unknown
under realistic conditions of nonperfect visibility. In par-
ticular, such limitations depend on the adopted measure-
ment strategy. In this Letter we will concentrate on the time
unresolved measurement regime with unresolved photon
number detection where, if losses are ignored, photons

FIG. 1. Experimental setup for investigating the metrological
performance of the Hong-Ou-Mandel (HOM) experiment, show-
ing the generation, joint spectral amplitude (JSA) engineering,
and HOM interferometer stages.
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either bunch or antibunch at each run of the experiment,
leading to a two possible outcomes experiment [26]. A
curious result observed not only for HOM interferometers
but also for any parameter estimation protocol based on
dichotomic measurements (see also [33,34], for instance)
concerns the behavior of precision with the visibility V at
the point where, in the ideal case, the former is expected to
saturate the quantum limit. For instance in the HOM setup,
if V ¼ 1, one can attain the quantum precision limit at zero
delay, where photons either perfectly bunch or antibunch.
Nevertheless, in the experimentally realistic case where the
visibility V < 1, total bunching or antibunching is no
longer observed and precision drops down to zero at this
time delay. A way to circumvent this in the context of a
Mach-Zender interferometer was studied in [27] using a
mode-engineering-based strategy. As for the HOM experi-
ment, for finite visibility, the quantum precision limit can
only be approached, and the maximal attainable precision
will occur for a finite delay between photons, as discussed
later in this Letter. However, it is not clear if and how the
maximal achievable precision depends on the probe’s state
spectral function in a HOM experiment for a given visibility
[15,17–19].
In this Letter, we provide a theoretical model and its

experimental demonstration explaining both qualitatively
and quantitatively the performance of the HOM experiment
as a quantum metrological tool, as a function of the input
state and visibility. For such, we have exactly theoretically
predicted and experimentally confirmed the wave function
dependency of the scaling of the maximal precision with
the visibility for different wave functions and interpreted
our results in terms of phase space properties. For some
configurations, we reach the highest ratio between the
achieved precision and the maximum possible one to date,
thereby setting a new benchmark in this field.
In a typical metrological protocol, a probe is prepared in an

initial state, and undergoes a dynamical evolution depending
on a parameter to be estimated, θ. The probe is measured
providing an outcome k, which is used to estimate θ.
By associating the function pkðθÞ to the probability of
obtaining an outcome k, the precision on the estimation of
θ is bounded by the relation δθ ≥ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi

νFðθÞp

, whereFðθÞ ¼
P

kð1=pkðθÞÞ½∂pkðθÞ=∂θ�2 is the Fisher information (FI) and
ν is the number of repetitions of the experiment. When using
quantum mechanical resources—as individual photons,
which is the case in a HOM experiment—one can define
the quantum Fisher information (QFI) by using a quantum
state as a probe [35]. The probe’s evolution depends on the
parameter θ, and for pure states and unitary evolutions, this
dependency can be expressed as jψðθÞi ¼ eiĤθjψi, where Ĥ
is the Hamiltonian generating the dynamical evolution.
Precision is thus limited by the relation δθ ≥ 1=

ffiffiffiffiffiffiffi

νF
p

, where
F is the QFI, obtained by maximizing FðθÞ over all possible
measurements on jψðθÞi. In the case discussed above,
F ¼ 4Δ2Ĥ, where the variance is taken with respect to

the initial state jψi [36]. The bound 1=
ffiffiffiffiffiffiffi

νF
p

is called the
“quantum Cramér-Rao bound” (QCR) [37], the quantum
precision limit [38].
There is no general rule for finding an experimental

measurement strategy where FðθÞ ¼ F , even though opti-
mization procedures can be applied to particular states
[39,40] and symmetry arguments can be evoked in specific
situations [41,42], as in the HOM experiment [14,16]. As
shown in the literature, time precision in HOM interfer-
ometry with perfect visibility can reach the QCR bound
[15,16,18,20]. Consequently, several attempts have been
made to reach this bound, obtaining astonishing precision
on the estimation of time delays in HOM experiments
[17–20]. To analyze these results, we consider as initial
state (probe) a photon pair prepared in an arbitrary pure
state that enters the two input arms 1,2 of a perfectly
balanced BS,

jψi ¼
Z Z

dω1dω2fðω1;ω2Þâ†1ðω1Þâ†2ðω2Þj0i; ð1Þ

where fðω1;ω2Þ is the complex-valued normalized joint
spectral amplitude (JSA). Before impinging the balanced
BS, one of the photons in (1) is subjected to a time delay τ,
the parameter to be estimated. This delay is described by a
unitary evolution associated to the Hamiltonian Ĥ ¼
ℏ
R

dωωâ†1ðωÞâ1ðωÞ ¼ ℏω̂1 (we have supposed that arm 1

is delayed). State (1) becomes jψðτÞi ¼ eiĤτ=ℏjψi ¼ Ûjψi.
After the BS, the probability of detecting both photons in
coincidence PcðτÞ ¼ 1

2
ð1 − hψ jÛ†Ŝ Û jψiÞ [14], where

Ŝâ†1ðω1Þâ†2ðω2ÞŜ† ¼ â†1ðω2Þâ†2ðω1Þ is a swap of spatial
modes. PcðτÞ is typically directly obtained from the
recorded experimental data. PaðτÞ, the probability of
anticoincidences, can either be inferred from direct detec-
tion [20] or using PaðτÞ ¼ 1 − PcðτÞ [43]. Finally, the QFI
can be expressed as [26] F ¼ 4Δ2ω̂1. For perfectly
symmetric (S) [antisymmetric (AS)] states jψiSðASÞ with

respect to the exchange of spatial modes, ŜjψiSðASÞ ¼
�jψiSðASÞ and Pcðτ ¼ 0Þ ¼ 0ð1Þ. Hence, the HOM has
perfect visibility and the QFI can be reached.
The HOM experiment provides information about the

collective variables ω− ¼ ω1 − ω2 [16]. We will consider
that the input photons of the interferometer are gene-
rated by spontaneous parametric down-conversion and that
fðω1;ω2Þ ¼ f−ðω−ÞfþðωþÞ in (1), with ω� ¼ ω1 � ω2.
Functions f− and fþ are normalized functions related
to the phase matching condition and to the energy con-
servation, respectively. The best configuration for metrol-
ogy is the one where fþ is a Dirac function centered
on ωp (the pump’s frequency) and ωþ is close to con-
stant (strict energy conservation), maximizing the fre-
quency correlation between photons [44,45]. Therefore,
supposing that both photons have the same spectral
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variance, F¼4Δ2ω1¼Δ2ω−. In addition, hψ jÛ†Ŝ Û jψi ¼
R

dω−eiω−τf−ðω−Þf�−ð−ω−Þ ¼ Wð0; τÞ. Here, Wðμ; τÞ de-
notes the chronocyclic Wigner function associated with
f−ðω−Þ on the time-frequency phase space (TFPS), spe-
cifically on the axis μ ¼ 0 while τ, the time delay, is
variable. Hence, μ is the phase space variable associated
with ω−. It was shown in [6] and experimentally validated
in [7,8] that the HOM experiment directly measures the
Wigner function points Wð0; τÞ, i.e., along the axis μ ¼ 0
of TFPS. Adopting this representation facilitates an intui-
tive understanding of the factors that dictate the limitations
imposed by nonperfect visibility, which we study in the
following.
To this aim, we model the dependency of PcðτÞ with the

visibility V as [26]

PcðτÞ ¼
1

2
−
V
2
Wð0; τÞ; ð2Þ

where 0 ≤ V ≤ 1 and Wð0; τÞ is the Wigner function of a
perfectly symmetric state [46], so Wð0; 0Þ ¼ 1 and
Pcð0Þ ¼ ð1 − VÞ=2, defining the visibility. We are not
considering explicitly the role of experimental noise or
losses in the measurement, evolution, or preparation steps:
they can either be included in the QFI, which is con-
sequently modified, or in the state’s purity [47,48].
Including noise in the state corresponds to considering a
different (nonpure) state as a probe, so a different function
Wð0; τÞ. Thus, state noise or measurement losses have no
incidence on the model (2), that remains valid. In addition,
loss and visibility are independent quantities and even for
pure states in a lossless configuration a nonunit visibility
can be observed due to state preparation imperfections that
cannot be circumvented [26]. Hence, we will focus exclu-
sively on the visibility in the present work. Using (2), the FI
at point τ is given by

FðV; τÞ ¼ V2
½W0ð0; τÞ�2

1 − V2W2ð0; τÞ ; ð3Þ

where 0 denotes the time derivative. By defining

maxτFðV; τÞ¼defF̃V , we obtain, for V ¼ 1 (perfectly S or
AS states), F̃1 ¼ Fð1; 0Þ ¼ F [14,16,42]. This shows that
the quantum precision limit can be achieved for perfect
visibility. For V ≠ 1 we can still compute F̃V , which is
obtained at a point τ ¼ τM ≠ 0. As a matter of fact, for
τ ¼ 0, the function FðV; 0Þ, when considered as a function
of V, exhibits a discontinuity at V ¼ 1: indeed,
FðV < 1; 0Þ ¼ 0, while Fð1; 0Þ ¼ F̃1 ¼ F , as previously
shown. For V < 1, the maximal values of F̃V<1 satisfying
F̃V<1 ¼ −W00ð0; τMÞ=Wð0; τMÞ. Experimental investiga-
tions of these results were conducted in [17,19,20], and
[33], but the overall behavior of the attainable values of F̃V
and how their limitations and their scaling with visibility is

related to the state’s wave function remains unknown. We
will now elucidate how F̃V approaches F . Importantly, we
find that this approach depends not only on the visibility
but we also identify a relation with the effective phase space
occupation of the state’s Wigner function Wðμ; τÞ. Indeed,
the scaling of F̃V with V is connected to how far the
quantum state is from saturating the time-frequency
Heisenberg uncertainty principle [49,50]. A first remark
is that since V ≤ 1, Eq. (3) leads to FðV; τÞ ≤ V2Fð1; τÞ, so
F̃V ¼ V2F is the best possible scaling of the FI with V.
This is a proof that for V < 1 the HOM can never reach
the QCR bound, even in the absence of losses. In addition,
using (3) we see that the best possible scaling is obtained
when Wð0;τMÞ¼0 (i.e., PcðτMÞ¼1=2) and W0ð0; τMÞ ≠ 0.
A sinusoidal function of frequency

ffiffiffiffi

F
p

satisfies these
conditions (a solution also leading to a constant FI in τ
for V ¼ 1 [26,51]). This unphysical solution represents the
limit situation of states occupying a large effective area
in TFPS [52], as Schrödinger-cat-like (SC-like) states
[18,20,53] with Δ2ω̂−Δ2t̂ ≫ 1 [26]. Surprisingly, SC-like
states exhibit remarkable robustness in the presence of
decreased visibility, making them the most resilient
states in HOM-based quantum metrology, which is yet
another interesting quality of these states in quantum
metrology [54].
States leading to the worst possible scaling of F̃V with V

minimize F̃V<1 ∀ V. The quantity −W00ð0; τÞ in the region
τ ≪ Δω̂− is minimized by Gaussian states [55,56].
Consequently, in this region (where lies the value of the
parameter to be estimated), Gaussian states also minimize
W0ð0; τÞ, so Wð0; τÞ is maximal. For this reason, they are
the states exhibiting the worst scaling of F̃V<1 with V, even
when they have the same limit value for the FI as SC-like
states for V ¼ 1 and τ ¼ 0, i.e., the QFI. Interestingly, their
scaling with V does not depend on the values of Δω̂− orΔt̂,
but on the associated function (Gaussian), which is univ-
ocally determined by the product of the two quantities. As
states’ phase space occupation change from the Gaussian to
the sinusoidal behavior, their scaling with visibility
improves. Interestingly, while the wave function shape
does not play a role in the value of F [26,45] it does play a
role in the scaling of F̃V with V, in a way that is related to
the effective occupation of the TFPS. Previous works [52]
established the connection between metrological properties
and the state’s occupation of the quadrature phase space
[57,58], where small structures determine quantum proper-
ties such as the QFI. Our analysis indicates that such
structures also contribute to the optimization of the scaling
of precision with visibility. We emphasize that our analysis
is applicable to various experimental setups where the
model (2) holds [33,34], such as experiments with more
than two photons [59], where the scaling with V is
important to determine the tolerance of the sub-shot-noise
region to visibility decrease (see Refs. [26,33]).
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We now validate our model using an experiment
allowing to engineer two-photon states described by differ-
ent functions f−ðω−Þ exhibiting diverse scaling behaviors
with the visibility V. The quantum source consists of an
AlGaAs Bragg reflector waveguide, generating polariza-
tion-entangled photon pairs via type II spontaneous para-
metric down-conversion at telecom wavelengths and
operating at room temperatures [60]. A sketch of the
experimental setup is provided in Fig. 1. A continuous-
wave laser having a wavelength λpump ¼ 772.42 nm is
coupled into the waveguide using a microscope objective.
The output signal is collected by a second microscope
objective, and the pump beam is filtered out using a long-
pass filter. The generated photon pairs are then collected in
a single mode fiber and possibly directed to a program-
mable filter (Finisar 4000 s), enabling the JSA engineering.
When the filter is not inserted, the state generated by the
source is described by f−ðω−Þ ¼ sincðaω2

− þ bω− þ cÞ
where the coefficients a, b, and c are related to optical
properties of the material such as birefringence and
chromatic dispersion [26,28].
In addition to the study of this case, three different filter

shapes are used: a 15 nm-wide rectangular filter centered on
the degeneracy wavelength λdeg ¼ 1544.8 nm, a Gaussian
filter of identical width centered at the same wavelength,
and a combination of two 5 nm-wide rectangular filters
centered at λ1 ¼ 1560 nm and λ2 ¼ 1530 nm correspond-
ing to energy-matched channels and allowing to create a
SC-like state, analogously to as described in [61,62]. The
functions f− andWð0; τÞ associated with the four states are
presented in Table I. They can be classified according to the
parameter S ¼ Δ2ω̂−Δ2t̂, which determines the scaling
with respect to V (see Ref. [26] for details).
At the output of the filtering process, the photon pairs are

separated by a polarizing beam splitter (PBS). The H (V)
polarized photon enters the HOM interferometer through
the arm 1 (2). Precise control over the polarization
distinguishability, and thus the HOM visibility, is enabled
by two fibered polarization controllers, one in each arm
(FPC1 and FPC2). The temporal delay between the two
photons is controlled by a motorized optical delay line
(MDL). The two paths are recombined and separated by a
50=50 BS, then directed to superconducting nanowires
single photon detectors (SNSPD). Temporal correlations
between the detected photons are analyzed by a time-to-
digital converter (TDC).

We perform a series of measurements on the four states,
systematically varying V to investigate the scaling of the
ratio F̃V=F . Figure 2 illustrates the results obtained. The
coincidence counts data (red points) are fitted (red lines)
using PcðτÞ of Eq. (2) and the theoretical expression of
each wave function [26]. The FI FðV; τÞ (blue lines) is then
computed using Eq. (3). The error bars associated to the
experimental points are estimated assuming Poissonian
statistics.
First, we notice that a reduction in visibility leads to a

decrease in FðV; τÞ. As expected, with finite visibility, the
value of FðV; τÞ drops to zero at τ ¼ 0. Remarkably high
visibilities exceeding 99% are achieved with the Gaussian,
rectangular, and SC-like states. Because of a small modal
birefringence of the AlGaAs source, the maximum visibil-
ity attainable with the full state is 94,9%, still an excellent

TABLE I. f− andWð0; τÞ functions corresponding to the four states studied. The different variables introduced are
defined in the left column of Fig. 2.

State f−ðω−Þ Wð0; τÞ
Sinc sincðaω2

− þ bω− þ cÞ R

dω−f−ðω−Þf�−ð−ω−Þe−iω−τ

Gauss expð−ω2
−=2σ2ω−

Þ expð−τ2σ2ω−
=2Þ

Rect Πðω−=Δω−Þ sin cðΔω−τ=2Þ
SC Π½ðω− − ω0Þ=Δω0� þ Π½ðω− þ ω0Þ=Δω0� sin cðΔω0τ=2Þ cos ðω0τÞ

FIG. 2. Left column: Joint spectral amplitude of the four
different states analyzed in this Letter. Central and right columns:
corresponding Hong-Ou-Mandel coincidence probability PcðtÞ
and FI for different values of visibility V.
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value given the broad spectral width it covers, ≈100 nm.
This broad spectrum results in a narrow HOM curve PcðtÞ,
leading to a high FI value of 2100 ps−2, which is 2 orders of
magnitude higher than those obtained with the Gaussian
and rectangular states. Filtering the quantum state decreases
the number of detected photons, therefore influencing the
overall performance of the metrological protocol in a given
integration time. Nevertheless, in this proof-of-principle
experiment, we are mainly interested in testing the scaling
of the ratio F̃V=F ¼ maxτFðV; τÞ=Δ2ω− to demonstrate
our model, which can serve as a guideline to other
experiments using different strategies. In Fig. 3, the
evolution of this ratio with respect to visibility for the four
engineered states is reported, both for experiments (points)
and theory (lines). The error bars associated to the
experimental points are estimated by extracting the vis-
ibility from the HOM interferogram fit reported in Fig. 2.
The theoretical plots are obtained by using the functions f−
and Wð0; τÞ defined in Table I. We clearly observe that the
SC-like state exhibits the most favorable scaling behavior,
in contrast to the Gaussian state, which displays a less
optimal one. For instance, at a visibility level of around
99.4% (83%), the ratio drops to 0.97 (0.64) for the SC-like
state and to 0.85 (0.35) for the Gaussian state.
In conclusion, we have presented a well-grounded

theoretical model and experimentally confirmed it, show-
ing how precision limits scale with both visibility and the
state’s wave function in practical metrological protocols
employing the HOM effect in the broadly used regime of
time unresolved measurement. The very good agreement
between the experimental results and the simulations
supports the validity of the model given by Eq. (2). Our
findings show that reaching the precision limits in realistic
conditions presents challenges that depend on the particular
state under consideration. Moreover, our theoretical and
experimental analysis establishes a general framework for
interpreting previous experimental results [17–20,63]. We
focused on the time unresolved measurement regime
rather in the time resolved measurements one, or other

measurement strategies based on modal filtering or post-
selection [61,63–66] because the latter do not depend on
the initial wave function [62]. However, the obtained
filtered modes will obey the same behavior as the one
detailed in the present work, so these settings can also
benefit from our results. Our Letter holds significant
implications, particularly in aiding the identification of
optimal conditions to advance HOM-based quantum met-
rology protocols, leading to enhanced precision in mea-
surements while minimizing the number of repetitions.
Finally, some aspects of the presented results can be readily
extended to other experiments where parity measurements
are employed for quantum parameter estimation [6,67–70].
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