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3Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain

(Received 8 September 2023; revised 7 January 2024; accepted 12 April 2024; published 7 May 2024)

Attractive p-wave one-dimensional fermions are studied in the fermionic Tonks-Girardeau regime in
which the diagonal properties are shared with those of an ideal Bose gas. We study the off-diagonal
properties and present analytical expressions for the eigenvalues of the one-body density matrix. One
striking aspect is the universality of the occupation numbers which are independent of the specific shape of
the external potential. We show that the occupation of natural orbitals occurs in pairs, indicating the
formation of composite bosons, each consisting of two attractive fermions. The formation of composite
bosons sheds light on the pairing mechanism of the system orbitals, yielding a total density equal to that of
a Bose-Einstein condensate.
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Introduction.—One of the most fascinating quantum
phenomena is Bose-Einstein condensation (BEC), charac-
terized by amacroscopic occupation of a single quantum state
[1]. If BEC occurs, the largest eigenvalue of the one-body
density matrix (OBDM) ρ1ðr; r0Þ ¼ hΨ̂†ðrÞΨ̂ðr0Þi is propor-
tional to the total number of particles N where Ψ̂†ðrÞ [Ψ̂ðrÞ]
are creation [annihilation] operators of a particle at position r,
respectively [2,3]. For a homogeneous gas, the corresponding
eigenvector of the OBDM is the zero-momentum state which
gives rise to the presence of off-diagonal long-range order
(ODLRO), limjr−r0j→∞ρ1ðr; r0Þ → n0 where n0 is the con-
densate density. In stark contrast, due to thePauli principle, no
two fermions are allowed to have the same quantumnumbers,
and atomic condensation is prohibited. Instead, in this Letter
we discuss and explore the possibility that strongly attractive
fermions form composite bosons, whose density is equal to
that of a Bose-Einstein condensate.
One-dimensional geometry is very special as due to

Girardeau’s mapping, bosonic and fermionic systems might
possess exactly the same diagonal properties [4,5]. In that
way, the wave function of impenetrable bosons can be
mapped to the wave function of ideal fermions, known as
Tonks-Girardeau (TG) gas [4,6]. As well, single-component
fermions with a strong p-wave attraction can exhibit
identical diagonal correlations as in an ideal Bose gas,
resulting inwhat is known as the fermionic Tonks-Girardeau
(FTG) gas [7–10]. Recent experimental advances in spin-
polarized fermionswithp-wave resonances pave theway for
the experimental realization of the FTG gas using confine-
ment-induced resonances [11,12].Another peculiarity of the
one-dimensional geometry is that quantum fluctuations
destroy BEC in gases with finite interactions. Indeed, in
uniform systems, the ODLRO vanishes in power-law decay

limjx−x0j→∞ρ1ðx; x0Þ → n=ðnjx − x0jÞ1=ð2KÞ where K is the
Luttinger parameter [13,14]. Formally, the ODLRO is
restored in the limit of the ideal Bose gas (K → ∞). Its
fermionic counterpart corresponds to the FTG gas which
exhibits partial pair condensation as has been discussed in
the case of harmonic trapping [8]. Recently, Kościk and
Sowiński have proven that in FTG gas the eigenvalues of the
OBDM are independent of the shape of the trapping
potential [15]. This fact enables us to conduct a completely
general and universal study of the FTG gas without the need
to constrain the study to a specific system or confining
potential, as has been done in previous works [9].
In this Letter, we analytically study the coherence in a

finite-size FTG state in an arbitrary external field. We
demonstrate that in FTG gas, fermions pair into composite
bosons. As a consequence, each fermionic pair exhibits a
density profile equivalent to that of an ideal boson. To
demonstrate that, we perform natural orbital analysis
diagonalizing the one-body density matrix and deduce
analytical expressions for its occupation numbers and
natural orbitals. We verify the correctness of the obtained
expressions by comparison with numerical diagonalization.
For a large number of particles, we find that the occupation
of the OBDM asymptotically approaches a Lorentzian
shape, the same as the one found in Ref. [16] for the
momentum distribution of a homogeneous FTG gas in the
thermodynamic limit. It is remarkable that eigenvalues are
universal and remain exactly the same for any shape of the
external potential [15]. In particular, for an untrapped
system, the eigenvalues of the OBDM correspond to the
momentum distribution allowing us to obtain its exact
expression. Moreover, we demonstrate that the eigenvalues
of the OBDM come in pairs. In that way, while all the
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individual fermionic eigenstates of the OBDM are differ-
ent, the density of fermionic pairs (i.e., composite bosons)
remains exactly the same, although its specific shape
depends on the external potential. Thus, we provide a
comprehensible picture of the mechanism of composite
boson formation and how this results in the density profile
being equal to that of a Bose-Einstein condensate.
Fermionic Tonks-Girardeau gas.—FTG gas describes N

fermions with coordinates x1;…; xN interacting via short-
range p-wave attraction tuned in such a way that the ground
state wave function

ψFðx1;…; xNÞ ¼ ψBðx1;…; xNÞ
YN
j<k

sgnðxk − xjÞ; ð1Þ

is related to the one of an ideal Bose gas,
ψBðx1;…; xNÞ ¼

Q
N
i¼1 ϕ0ðxiÞ, according to Girardeau’s

mapping [4] where ϕ0ðxÞ is the single-particle ground
state. The coherence properties are encoded in the OBDM,

ρ1ðx;x0Þ¼N
Z

ψFðx;x2;���xNÞψ�
Fðx0;x2;���xNÞdx2 ���dxN:

The OBDM can be expressed in terms of the orbitals of the
noninteracting bosons [16]:

ρ1ðx; x0Þ ¼ Nϕ0ðxÞϕ�
0ðx0Þ½1 − 2Pðx; x0Þ�N−1; ð2Þ

where

Pðx; x0Þ ¼
����
Z

x0

x
jϕ0ðzÞj2dz

����: ð3Þ

To find its eigenvalues, commonly referred to as occupation
numbers, and associated eigenvectors, known as natural
orbitals, one has to solve the following eigenproblem:Z

dx0ρ1ðx; x0Þχkðx0Þ ¼ λkχkðxÞ: ð4Þ

Recently, it has been proven that the eigenproblem can be
reduced to a universal form, showing that the occupation
numbers are independent of ϕ0ðxÞ and, consequently,
completely unaffected by the external potential [15]. The
demonstration is not limited to the OBDM but is applicable
to anyN-body density matrix. The universal ϕ-independent
eigenproblem reads [15]Z

1

0

dy0Nð1 − 2jy − y0jÞN−1vkðy0Þ ¼ λkvkðyÞ; ð5Þ

where the actual eigenvectors χkðxÞ can be obtained from
vkðyÞ using the transformation

χkðxÞ ¼ ϕ0ðxÞvk½FðxÞ�; ð6Þ

where FðxÞ ¼ R
x
−∞ jϕ0ðzÞj2dz. The universal eigenproblem

(5) was solved for the simplest system of N ¼ 2 in
Ref. [15], finding that all the eigenvalues are doubly
degenerate and equal to λk� ¼ 8=½πð2k − 1Þ�2 with corre-
sponding eigenvectors given by

vkþðyÞ ¼
ffiffiffi
2

p
sin½ð2k − 1Þπy�; ð7Þ

vk−ðyÞ ¼
ffiffiffi
2

p
cos½ð2k − 1Þπy�: ð8Þ

In the following, we extend the solution of the universal
eigenproblem for cases where N > 2.
By solving the universal eigenproblem (5) for an

increasing even number of fermions we find that the
eigenvalues always appear in pairs which leads to crucial
physical consequences, as will be discussed below. We find
that the eigenvectors obtained for the N ¼ 2 case remain
valid for larger (and even) numbers of particles. We obtain
the following explicit expressions for eigenvalues
(plus-minus sign denotes the double degeneracy):

λk� ¼ −
384

½πð2k − 1Þ�4 þ
48

½πð2k − 1Þ�2 ð9Þ

for N ¼ 4 and

λk� ¼ 46 080

½πð2k − 1Þ�6 −
5760

½πð2k − 1Þ�4 þ
120

½πð2k − 1Þ�2 ð10Þ

for N ¼ 6 fermions, while eigenvalues up to N ¼ 10 are
reported in the Supplemental Material [17]. By thoroughly
examining the analytic expressions for the occupations of
the natural orbitals, we have arrived at an explicit analytic
expression for the doubly degenerate eigenvalues,

λNk� ¼
8<
:

PN=2
i¼1

ð−1Þiþ14iN!

½ð2k−1Þπ�2iðN−2iÞ! ; evenNPðN−1Þ=2
i¼1

ð−1Þiþ14iN!

½2kπ�2iðN−2iÞ! ; oddN:
ð11Þ

Furthermore, in the Supplemental Material, we introduce a
recurrence relation for the eigenvalues that leads to the
derivation of Eq. (11). Expressions (11) constitute the main
result of our work and provide valuable insights into the
behavior and properties of the system, shedding light on its
fundamental characteristics. In the absence of an external
field, the eigenvalues λk of the OBDM can be related to the
momentum distribution nðkÞ of a gas on a ring of a circum-
ference L, according to λk ¼ nðkÞ=L. The allowed mo-
menta as k ¼ �2kπ=L for odd N and k ¼ �ð2k − 1Þπ=L
for even N and Eq. (11) reproduces the momentum
distribution found in Ref. [18].
For an odd number of fermions, all eigenvalues are

doubly degenerate except the largest one whose value is
always equal to one, λ0 ¼ 1, with v0ðyÞ ¼ 1 being the
corresponding eigenvector. As for the doubly degenerate
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eigenvalues, the eigenvectors are slightly different from
the ones observed in the even case. Specifically, they are
given by

vkþðyÞ ¼
ffiffiffi
2

p
sin½2kπy�; ð12Þ

vk−ðyÞ ¼
ffiffiffi
2

p
cos½2kπy�; ð13Þ

and they remain valid for any number of odd particles.
In particular, the universal eigenproblem (5) can be

applied to a plain box with a flat bosonic single-particle
state, ϕ0ðxÞ ¼ 1=

ffiffiffiffi
L

p
. In that case, function (3) expresses as

Pðx; x0Þ ¼ jx − x0j=L and measures the relative distance.
In a box of size L, OBDM (2) satisfies ρðL; 0Þ ¼
ð−1ÞN−1ρð0; 0Þ which corresponds to periodic (antiperi-
odic) boundary conditions for odd (even) N. Such a choice
of boundary conditions is appropriate for forming closed
shells in a fermionic gas. It can be verified, as shown in the
Supplemental Material, that the exact eigenstates of the
OBDM are given by plane waves χkþðxÞ ¼

ffiffiffiffiffiffiffiffi
2=L

p
cosðkxÞ

and χk−ðxÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p
sinðkxÞ with allowed momenta, i.e.,

k ¼ 0;�2π=L;�4π=L;…� 2kπ=L for odd N and k ¼
�π=L;�3π=L;…� ð2k − 1Þπ=L for even N. The thermo-
dynamic limit N → ∞ is taken on an untrapped system
by increasing the periodicity length L at a fixed density
n ¼ N=L. Quite interestingly, the thermodynamic OBDM
can be evaluated explicitly and it exhibits an exponential
form, ρ1ðx; x0Þ ¼ n expð−2njx − x0jÞ [16], in contrast
to the typical power-law behavior found in compressible
systems and predicted by the Luttinger liquid [14]. Its
Fourier transform provides the momentum distribution
nðkÞ ¼ L=f1þ ½k=ð2nÞ�2g which has a Lorentzian shape.
The relation between the eigenvalues and the momentum
distribution of the untrapped FTG gas, λk ¼ nðkÞ=L,
allows for a concise approximation for the eigenvalues as

λNk� ≈

( 1
1þð�πðk−1=2Þ=NÞ2 ; evenN

1
1þð�πk=NÞ2 ; oddN

ð14Þ

asymptotically decaying as 1=k2 for k → ∞ as also dis-
cussed in Refs. [18,19].
We have conducted numerical verification to validate the

correctness of the derived expressions for λk� across
various values of N. The numerical results confirm the
accuracy and reliability of the analytical findings.
Figure 1 reports the universal values of the occupations

(shown with symbols) of the natural orbitals λk� for the
different number of fermions as compared to the thermo-
dynamic Lorentzian shape (14), shown with lines. We find
that for N ≳ 10, the Lorentzian shape is quite precise
although it fails in a few-body system.
It is crucial to bear in mind that although the occupation

numbers λk are universal and are independent of the
specific shape of the external potential [15], the matrices

and corresponding eigenvectors are strongly influenced by
the type of external potential used. To show that, we report
in Fig. 2 characteristic examples of the OBDM ρ1ðx; x0Þ of
an untrapped FTG gas and a FTG gas in a harmonic
oscillator. The diagonal terms nðxÞ ¼ ρ1ðx; xÞ provide the
density profile of the system which is flat in the untrapped
case and has a Gaussian shape in a harmonic oscillator. The
antidiagonal terms ρ1ðx;−xÞ quantify the loss of coherence
with x → ∞ asymptotic value equal to zero (i.e., ODLRO is
absent).
Composite boson formation.—The formation of compo-

site bosons is evident from the pairing observed in the
occupation numbers of the OBDM. In the case of an even
number of fermions, all occupation numbers exhibit a
double degeneracy whereas for odd N all fermions form
composite bosons except one, whose eigenvector coincides

FIG. 1. Eigenvalues λk� as a function of the pair number k for
different number of fermionsN with symbols. The approximation
to Lorentzian shape, see Eq. (14), is shown with a continuous line
for each number of fermions.

FIG. 2. OBDM for N ¼ 2, N ¼ 4, and N ¼ 10 for the case of
the untrapped case, left column, and a harmonic trap, right
column.
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with the single-particle ground state with unit eigenvalue.
To gain a deeper insight into the pairing mechanism, it is
instructive to explicitly construct an antisymmetric two-
particle state from pairs of eigenvectors of a doubly de-
generate eigenvalue, denoted as χkþðxÞ and χk−ðxÞ:

ψkðx1; x2Þ ¼
χkþðx1Þχk−ðx2Þ − χkþðx2Þχk−ðx1Þffiffiffi

2
p : ð15Þ

The probability of finding a fermion at position x occupy-
ing the paired state is identical for both fermions forming
the composite boson. We denote this probability as
Pkðx1 ¼ xÞ ¼ Pkðx2 ¼ xÞ ¼ PkðxÞ and it is given by

PkðxÞ ¼
jχkþðxÞj2 þ jχk−ðxÞj2

2
: ð16Þ

This quantity physically corresponds to the density profile
of the composite boson with index k. Mathematically, it is
formed from two contributions jχkþðxÞj2 and jχk−ðxÞj2,
each dependent according to Eq. (6) on the bosonic density
profile jϕ0ðxÞj2 and two corresponding eigenvectors vkþðyÞ
and vk−ðyÞ defined in Eqs. (7) and (8) and Eqs. (12) and
(13). The crucial aspect is that potential-dependent function
FðxÞ appears as an identical argument in both eigenvectors,
jvkþ(FðxÞ)j2 and jvk−(FðxÞ)j2, resulting in a summation of
the squares of a cosine and sine functions, which sum up to
unity. Consequently, all composite bosons have exactly the
same density profile given by

PkðxÞ ¼ jϕ0ðxÞj2: ð17Þ

Note that, any linear combination of the orthonormal
eigenvectors defined in Eqs. (7) and (8) for the even case
and Eqs. (12) and (13) for the odd case, would yield exactly
the same density of a fermionic pair. Therefore, the density
of each of the composite bosons is independent of the
freedom of choice of the eigenvectors that one has since the
eigenvalues are doubly degenerated.
The total density sums from identical contributions

arising from composite bosons, that is 2jϕ0ðxÞj2 per pair,
and a single boson contribution of jϕ0ðxÞj2 in the case of an
odd number of particles. Consequently, the total density is
given by

nðxÞ ¼ Njϕ0ðxÞj2 ð18Þ
which is equivalent to the density profile of an ideal Bose
gas. Then, it follows that given a pair of natural orbitals
with the same eigenvalue k, if one of them is occupied the
other is also occupied forming a composite boson with the
contribution to the total density of the system equal to
2jϕ0ðxÞj2 and the total density of the system is equivalent to
that of a Bose-Einstein condensate. Indeed, nðxÞ being a
local quantity, is not affected by the Girardeau mapping and
remains the same in FTG and ideal Bose gas.

To gain further insight into the mechanism of composite
boson formation, we thoroughly examine two distinct
examples of external potential. In the first example, we
consider an untrapped FTG gas with flat bosonic density,
ϕ0ðxÞ ¼ 1=

ffiffiffiffi
L

p
, in a ring of perimeter L. The second

example involves a harmonic oscillator with the single-
particle ground state wave function given by a Gaussian,

ϕ0ðxÞ ¼
1

π1=4
ffiffiffiffiffiffiffiffi
aosc

p e−x
2=ð2a2oscÞ; ð19Þ

where aosc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωÞp

is the harmonic oscillator length,
m the particle mass, and ω the frequency of the trap. In
Figs. 3 and 4 we show the first six atomic natural orbitals
alongside the density of the first three composite bosons in
both the untrapped FTG gas and in the harmonic trap,
respectively.
Notably, while all atomic orbitals differ, as expected for

fermions, the density profiles of composite bosons remain
consistently the same and equal to Pk ¼ jϕ0ðxÞj2 for any k.
This provides a real-space picture of how occupied natural
orbitals, i.e., fermions, effectively pair to result in a total
density equivalent to that of the ideal Bose gas.
In the context of the formation of composite bosons, the

situation recalls the BEC-BCS crossover in two-component
Fermi gases. Both systems involve attractive fermion
pairing, leading to the formation of composite bosonic
pairs. The key difference lies in molecular structure: In the
BCS-BEC crossover, each molecule contains one spin-up
and one spin-down fermion with s-wave interaction,
resulting in the internal structure which is the same for

FIG. 3. Fermionic natural orbitals and composite boson density
profile of an untrapped FTG gas for an even number of particles.
First and second columns, the first six natural orbitals, χkþðxÞ and
χk−ðxÞ, respectively, corresponding to the three largest doubly
degenerate eigenvalues k ¼ 1, 2, 3 of the OBDM. Third column,
the first three composite boson density profiles PkðxÞ.
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all molecules. On the opposite, in a single-component
Fermi gas with p-wave interactions, the Pauli exclusion
principle applies leading to a much more intricate scenario,
as each composite boson has a unique internal configura-
tion while sharing exactly the same density.
Conclusions.—In this Letter, we investigate the coher-

ence properties of a fermionic Tonks-Girardeau gas in the
presence of an external potential. We present an analytical
expression (11), for the eigenvalues of the one-body density
matrix, applicable for any number of fermions N and under
an arbitrary external field. For a large number of fermions
(in practice, N ≳ 10) the eigenvalues of the OBDM
approach a Lorentzian shape (14). A remarkable feature
of the obtained expressions is that they are universal in the
sense that the occupation numbers depend only on N and
remain independent of the specific shape of the external
potential. The natural orbitals exhibit double degeneracy,
implying that pairs of attractive fermions create composite
bosons. In turn, each composite boson exhibits a particle
density profile equivalent to that of an ideal Bose gas. This
physical picture implies that degenerated natural orbitals
must always be either both occupied or both unoccupied.
Finally, this pairing results in the fact that the total density
of the system is equivalent to that of an ideal Bose gas.
These findings emphasize the significance of composite

boson formation. The universality of the results and their
independence from the external potential shed light on
quantum phenomena occurring in p-wave fermions, such

as pairing or strong correlations, and pave the way for
future explorations in the field of cold atoms, nuclear
physics, and condensed matter physics.
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