
Lattice QCD Calculation of Electroweak Box Contributions to
Superallowed Nuclear and Neutron Beta Decays

Peng-Xiang Ma,1 Xu Feng ,1,2,3,* Mikhail Gorchtein,4,5 Lu-Chang Jin ,6,7,† Keh-Fei Liu ,8,9 Chien-Yeah Seng ,10,11

Bi-Geng Wang,8,9 and Zhao-Long Zhang 1

1School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3Center for High Energy Physics, Peking University, Beijing 100871, China

4Institut für Kernphysik, Johannes Gutenberg-Universität, J.J. Becher-Weg 45, 55128 Mainz, Germany
5PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität, Mainz, Germany
6Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

7RIKEN-BNL Research Center, Brookhaven National Laboratory, Building 510, Upton, New York 11973
8Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

9Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
10Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA

11Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

(Received 1 September 2023; revised 23 January 2024; accepted 16 April 2024; published 8 May 2024)

We present the first lattice QCD calculation of the universal axial γW-box contribution □
VA
γW to both

superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within
the theoretical uncertainties surrounding the extraction of jVudj from superallowed decays. Our calculation is
conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon
four-point correlation functions, we employ the random sparsening field technique. Furthermore, we
incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction
method. Upon performing the continuum extrapolation, we arrive at □

VA
γW ¼ 3.65ð7Þlatð1ÞPT × 10−3.

Consequently, this yields a slightly higher value of jVudj ¼ 0.973 86ð11Þexpð9ÞRCð27ÞNS, reducing the

previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box
contribution to the axial charge gA, denoted as □VV

γW , and explore its potential implications.

DOI: 10.1103/PhysRevLett.132.191901

Introduction.—TheCabibbo-Kobayashi-Maskawa (CKM)
matrix plays a crucial role as a fundamental ingredient of the
standard model (SM) where its unitarity is expected. Recent
findings indicate a 2.1σ tension in the examination of the
first row’s unitarity [1]

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9985ð6ÞjVudjð4ÞjVusj: ð1Þ
Depending on the choice of inputs, tensions can be 3σ or
larger [2]. Further efforts to accurately determine the CKM
matrix elements could unveil new signals and deepen our
understanding of the underlying physics.
The top-left corner element jVudj is most precisely

extracted from neutron and superallowed nuclear beta
decays. The latter currently claims the highest experimental
accuracy, but the former is catching up thanks to

improvements in experimental precision [3–6]. On the
theory side, superallowed nuclear decays suffer from extra
nuclear-structure-dependent uncertainties that are recently
under careful scrutiny [7–9], while neutron decay is theo-
retically cleaner. Nevertheless, a major source of uncertainty
common to both cases is the single-nucleon γW-box dia-
grams (see Fig. 1) that renormalize the neutron vector and
axial charges [10]. They take the following forms [11,12]:

□
VA
γW ¼ ie2

2m2
N

Z
d4q
ð2πÞ4

m2
W

m2
W − q2

ϵμναλqαpλ

ðq2Þ2 TγW
μν ;

□
VV
γW ¼ −

ie2

2m2
Ng̊A

Z
d4q
ð2πÞ4

m2
W

m2
W − q2

ϵμναλqαSλ
ðq2Þ2 TγW

μν ;

TγW
μν ¼

Z
d4xeiq·xhpðp;SÞjTfJemμ ðxÞJWν ð0Þgjnðp;SÞi; ð2Þ

where p and S are the momentum and spin vectors of the
nucleon states. ̊gA is the nucleon axial charge, where the
symbol ̊ indicates that it is defined in the isospin limit. Jemμ is
the electromagnetic current and JWμ the weak current with
JW;V
μ and JW;A

μ its vector and axial-vector part, respectively.
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Specifically, in 0þ → 0þ superallowed beta decay, only□VA
γW

comes into play, while in 1
2
þ → 1

2
þ free neutron beta decay,

both □
VA
γW and □

VV
γW would contribute.

Various approaches to computing□VA
γW range from earlier

works [13,14] to more recent dispersive analyses [7,15].
The latter, in particular, improved the nonperturbative
contribution for loop momentum square Q2 ≤ 2 GeV2

and unveiled the tension with the first-row CKM unitarity,
which was also observed in several follow-up works [16–
19]. In the meantime, while the radiative correction to the
axial charge gA does not directly affect the jVudj extraction,
it is necessary for comparing the experimentally measured
gA with that computed using lattice QCD. The study of
□

VV
γW has so far included estimations inspired by the

holographic QCD model [19] and dispersion relations [11].
Lattice QCD offers a direct nonperturbative approach to

compute the box correction □
VA
γW , especially for

Q2 ≤ 2 GeV2. First lattice calculations of □VA
γW were suc-

cessfully conducted in the pion [20] and kaon channel
[21,22], and have recently been confirmed by an indepen-
dent lattice calculation [23]. The data reported in [20] were
also used for a joint latticeQCD–dispersion relation analysis
[17]. This Letter extends this calculation to the neutron
decay channel, which entails a direct computation of the
nucleon four-point function at the physical pion mass. We
also briefly discuss our numerical result of □VV

γW , and its
implication to the radiative correction to axial charge.
Methodology.—The notations used here align with those

used in [20]. We define the hadronic function HVA
μν within

Euclidean space

HVA
μν ðt; x⃗Þ≡ hHfjT½Jemμ ðt; x⃗ÞJW;A

ν ð0Þ�jHii; ð3Þ
where Hi=f represents the zero-momentum projected neu-
tron/proton state, created by a smeared-source nucleon
operator. The computation of box contribution □

VA
γW

involves a momentum integral

□
VA
γW ¼ 3αe

2π

Z
dQ2

Q2

m2
W

m2
W þQ2

MnðQ2Þ: ð4Þ

MnðQ2Þ is a weighted integral of the hadronic function
Hðt; x⃗Þ ¼ ϵμνα0xαHVA

μν ðt; x⃗Þ, defined as

MnðQ2Þ ¼ −
1

6

ffiffiffiffiffiffi
Q2

p
mN

Z
d4xωðt; x⃗ÞHðt; x⃗Þ; ð5Þ

with mW and mN the masses of the W-boson and the
nucleon. The weighting function is

ωðt; x⃗Þ ¼
Z π

2

−π
2

cos3θ dθ
π

j1ðjQ⃗jjx⃗jÞ
jx⃗j cos ðQ0tÞ; ð6Þ

where jQ⃗j ¼
ffiffiffiffiffiffi
Q2

p
cos θ, Q0 ¼

ffiffiffiffiffiffi
Q2

p
sin θ and jnðxÞ are

the spherical Bessel functions.
To evaluate MnðQ2Þ as prescribed in Eq. (5), it is

necessary to extend the temporal integration range suffi-
ciently to reduce truncation effects. However, as the time
separation between the two currents increases, the lattice
data tend to exhibit greater noise-to-signal ratio. Here we
employ the infinite volume reconstruction (IVR) method
[24] to incorporate the long-distance (LD) contribution
arising from the region where jtj > ts. Here, ts is the time
slice at which the short-distance (SD) and LD contributions
are separated. The IVR method, in addition to eliminating
the power-law suppressed finite volume error, can also
reduce the lattice statistical error in the long distance
region. To elaborate, we divide the integral into SD
contribution, weighted by ωðt; x⃗Þ, and LD contribution,
weighted by ω̃ðt; x⃗Þ

MnðQ2Þ ¼ MSD
n ðQ2; tsÞ þMLD

n ðQ2; ts; tgÞ ð7Þ
with

MSD
n ðQ2; tsÞ ¼ −

1

6

ffiffiffiffiffiffi
Q2

p
mN

Z
ts

−ts
dt

Z
d3x⃗ωðt; x⃗ÞHðt; x⃗Þ;

MLD
n ðQ2; ts; tgÞ ¼ −

1

6

ffiffiffiffiffiffi
Q2

p
mN

Z
d3x⃗ ω̃ðts; tg; x⃗ÞH̄ðtg; x⃗Þ; ð8Þ

and

ω̃ðts; tg; x⃗Þ ¼ 2

Z π
2

−π
2

cos3θ dθ
π

j1ðjQ⃗jjx⃗jÞ
jx⃗j

× Re

�
e−iQ0ts

EQ⃗ −mN þ iQ0

�
e−ðEQ⃗−mNÞðts−tgÞ: ð9Þ

Here, H̄ðt;x⃗Þ¼½Hðt;x⃗ÞþHð−t;x⃗Þ�=2, EQ⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ jQ⃗j2
q

and tg is chosen to be large enough to ensure the ground-
intermediate-state dominance. Once tg is fixed, ts can be
varied to further verify the ground-state dominance. In the
final results, it is natural to choose ts ¼ tg.
Because of the factor 1=Q2 in Eq. (4), we observe that

□
VA
γW encounters a notably increased noise originating from

MnðQ2Þ at small Q2 region. To mitigate this noise, we can
use the model-independent relationZ

d3x⃗ H̄ðtg; x⃗Þ ¼ −3̊gAðμ̊p þ μ̊nÞ ð10Þ

to substitute MLD
n ðQ2; ts; tgÞ with

FIG. 1. The γW-box diagrams for the semileptonic decay
process Hi → Hfeν̄e.
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MLD
n ¼ −

1

6

ffiffiffiffiffiffi
Q2

p
mN

Z
d3x⃗½ω̃ðts; x⃗Þ − ω̃0�H̄ðtg; x⃗Þ

þ 1

2

ffiffiffiffiffiffi
Q2

p
mN

ω̃0gAðμp þ μnÞ: ð11Þ

Above, as far as ground-state dominance is satisfied,
H̄ðtg; x⃗Þ is independent of tg. μ̊p;n denote the proton or
neutron magnetic moments defined in the isospin limit.
During the substitution process, we incorporate experi-
mentally measured values for gA and μp;n as depicted in
Eq. (11). The difference is of a higher order and numeri-
cally negligible. Furthermore, ω̃0 is defined as

ω̃0 ¼ 2

Z π
2

−π
2

cos3θdθ
π

jQ⃗j
3

Re

�
1

Q2

2mN
þ iQ0

�

¼ 1

3

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ ffiffiffi
τ

p

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ ffiffiffi
τ

p Þ2 ; with τ ¼ Q2

4m2
N
: ð12Þ

Importantly, the convergence of the integral with ω̃ − ω̃0 at
Q2 → 0 is considerably faster than that with ω̃, enabling a
more efficient control over statistical uncertainties. We refer
to the calculation of MLD

n using Eq. (8) and Eq. (11) as the
“direct” and “substitution” methods, respectively.
We introduce a four-momentum squared scale Q2

cut,
which separates the Q2 integral into two regimes,

□
VA
γW ¼ □

VA;≤Q2
cut

γW þ□
VA;>Q2

cut
γW

¼ 3αe
2π

�Z
Q2

cut

0

dQ2

Q2
þ
Z

∞

Q2
cut

dQ2

Q2

�
m2

W

m2
W þQ2

MnðQ2Þ:

ð13Þ

For □VA;≤Q2
cut

γW we use lattice results as inputs. Conversely,

for □VA;>Q2
cut

γW , we utilize the perturbative QCD and employ
the leading twist contribution from the operator product
expansion [25–27]. Further details can be found in
Ref. [20]. A common representative value for the scale
of Q2

cut is 2 GeV2. It is also feasible to vary this value to
investigate potential systematic effects.
Numerical analysis.—We use two lattice QCD gauge

ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2þ 1-flavor domain
wall fermion [28]. The ensemble parameters are outlined in
Table I. Both ensembles utilize Iwasakiþ DSDR action.
For each configuration we produce 1024 point-source and
1024 smeared-source propagators at random spatial-tem-
poral locations and calculate the correlation function
hψpðtfÞJemμ ðxÞJW;A

ν ðyÞψ†
nðtiÞi with tf ¼ maxftx; tyg þ

Δtf and ti ¼ minftx; tyg − Δti using the random sparsen-
ing-field technique [29,30]. Local vector and axial vector
current operators are contracted with the renormalization
factors quoted from Ref. [31]. We calculate all the con-
nected insertions, discarding disconnected insertions which
vanish under the flavor SU(3) limit.

To incorporate the LD contribution, the appropriate
values for tg and ts must be determined. We calculate

the LD contribution to□VA;≤2 GeV2

γW usingMLD
n ðQ2; ts; tgÞ as

inputs, labeling the relevant part of the box contribution as

□
VA;≤2 GeV2

γW ðts; tgÞ. For small tg values, a visible contami-
nation from excited states is anticipated. To extend this

analysis, we calculate □
VA;≤2 GeV2

γW ðts; tsÞ with tg ¼ ts for
various ts values and construct a ratio

Ratio ¼ □
VA;≤2 GeV2

γW ðts; tgÞ
□

VA;≤2 GeV2

γW ðts; tsÞ
; ð14Þ

as depicted in Fig. 2. Evidently, for tg below 0.39 fm, the
ratio is not fully consistent with 1 for ts ≥ tg. However, at
tg ≥ 0.58 fm, the LD contribution reconstructed using
Hðts ¼ tg; x⃗Þ and Hðts > tg; x⃗Þ agree well. This implies
that at tg ¼ 0.58 fm, the ground state begins to dominate
the hadronic function, and statistical deviations between the
reconstruction at ts > tg and ts ¼ tg are negligible.

TABLE I. Ensembles used in this Letter. For each ensemble we
list the pion mass mπ , the spatial and temporal extents, L and T,
the inverse of lattice spacing a−1 [32], and the number of
configurations used, Nconf . The lattice spacing is determined
using the mass of the Ω baryon as input.

Ensemble mπ (MeV) L T a−1 (GeV) Nconf

24D 142.6(3) 24 64 1.023(2) 207
32D-fine 143.6(9) 32 64 1.378(5) 69

FIG. 2. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. Δti þ Δtf is
fixed at 0.77 fm.
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To further verify the ground-state dominance, we present
in Fig. 3 the SD, LD, and total contributions to□VA;≤2 GeV2

γW
for both the 24D and 32Dfine ensembles. The LD con-
tribution is reconstructed utilizing the lattice data of
Hðtg; x⃗Þ with tg ≈ 0.6 fm. When the SD and LD contribu-
tions are combined, a discernible plateau emerges for
ts ≳ 0.6 fm, indicating that the influence of excited-state
contributions beyond this specific time slice is nota-
bly mild.
In Fig. 4 we present a plot of□VA;≤2 GeV2

γW as a function of
Δti þ Δtf utilizing ts ¼ tg ≈ 0.6 fm for both 24D and
32Dfine. The maximal source-sink separation extends
to ∼1.8 fm. In our analysis, we note that when

ffiffiffiffiffiffi
Q2

p
< 0.2 GeV, the substitution method’s error is less

than that of the direct method. Thus, we adopt the
substitution method for calculating the momentum integral
for □VA;≤2 GeV2

γW when
ffiffiffiffiffiffi
Q2

p
< 0.2 GeV, and resort to the

direct method for integrals exceeding this threshold. For
Δti þ Δtf ≳ 0.7 fm lattice results manifest a discernible
plateau for both 24D and 32Dfine ensembles. By fitting to a
constant, we obtain □

VA;≤2 GeV2

γW values for each ensemble,
which in turn serve as the basis for a continuum extrapo-
lation, as carried out in Fig. 5, where we obtain
□

VA;≤2 GeV2

γW ¼ 1.490ð51Þ × 10−3 in the continuum limit.
In the study of the pion decay [20], we observed that the
continuum extrapolation derived from the two Iwasaki
ensembles with finer lattice spacings, 48I=64I, deviates
from the outcomes of the 24D/32Dfine ensembles by
2.4 × 10−5. Considering that lattice discretization effects
predominantly arise from short-distance effects in the loop
momentum integral, we anticipate consistency between the
pion and the nucleon. In practice, we adopt a more
conservative approach by assigning a twice-larger uncer-
tainty, i.e., 4.8 × 10−5, for the nucleon than for the pion. A
future calculation performed at finer lattice spacings would
be beneficial for a more robust error estimate. The other
systematic effects including finite-volume effects (FV),
excited-state contaminations (ES), and contributions from
disconnected diagrams (disc) [33] are also estimated, with
the details incorporated in the Supplemental Material [34].
Finally, we obtain

□
VA;≤2GeV2

γW ¼1.490ð51Þstatð48Það11ÞFVð12ÞESð15Þdisc×10−3;

¼1.490ð73Þ×10−3: ð15Þ
This value is in agreement within 1σ with the value
□

VA;≤2 GeV2

γW ¼ 1.62ð10Þ × 10−3 obtained from dispersive
analysis [7,15].

FIG. 3. SD, LD, and total contributions to □
VA;≤2 GeV2

γW as a
function of ts. The IVR is performed at tg ¼ 0.58 fm for 24D and
tg ¼ 0.57 fm for 32Dfine. Δti þ Δtf is set at ∼0.75 fm for both
ensembles.

FIG. 4. □
VA;≤2 GeV2

γW for 24D and 32Dfine as a function of
Δti þ Δtf . Here ts and tg are maintained as ts ¼ tg ≈ 0.6 fm.

FIG. 5. Continuum extrapolation for □VA;≤2 GeV2

γW . The lattice
result at the continuum limit is slightly lower than prediction from
dispersive analysis.
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At the leading-twist level, the perturbative contri-
bution to □

VA;>2 GeV2

γW aligns with that for the pion decay.
Therefore, we utilize the 4-loop analysis detailed in
Ref. [20] to deduce

□
VA;>2 GeV2

γW ¼ 2.159ð6ÞHLð3ÞHT × 10−3; ð16Þ
where the first error accounts for the higher-loop truncation
effects. This is determined by contrasting the results from
four-loop and three-loop perturbative calculations. The
second error pertains to higher-twist truncation effect
and is gauged through diagrams involving two currents
positioned on distinct quark lines, thus containing solely

higher-twist contributions. Upon combining □
VA;>2 GeV2

γW

and □
VA;≤2 GeV2

γW , the final result becomes

□
VA
γW ¼ 3.65ð7Þlatð1ÞPT × 10−3: ð17Þ

To assess the Q2
cut dependence, we also consider Q2

cut ¼ 1

and 3 GeV2, with remarkably consistent results, as is seen
from Table II.
Results and conclusion.—According to the PDG [1],

precise values of jVudj2 are obtained from superallowed
nuclear and neutron beta decays [14,35–37] as

jVudj2 ¼
0.971 54ð22Þexpð54ÞNS

ð1þ ΔV
RÞ

; superallowed; ð18Þ

jVudj2 ¼
0.9728ð6Þτnð16ÞgA

ð1þ ΔV
RÞ

; free neutron: ð19Þ

For superallowed decays, the first uncertainty stems from
analyzing the half-lives of 15 precisely measured decays
[36]. Additionally, an uncertainty associated with the
nuclear structure, ð54ÞNS, is quoted from Ref. [8]. For
neutron decays, the primary contributors to the uncertainty
of jVudj are of the experimental origin, namely, the neutron
lifetime τn ¼ 878.4ð5Þ s and the ratio of axial-vector to
vector couplings, gA ¼ 1.2754ð13Þ [1]. It is worth noting
that due to the SM radiative corrections gA deviates from
the axial charge ̊gA calculated in lattice QCD. ΔV

R denotes a
universal, nuclear-structure-independent electroweak radi-
ative correction. In the framework proposed by Sirlin [10],
ΔV

R is given by

ΔV
R ¼ α

2π

�
3 ln

MZ

mp
þ ln

MZ

MW
þ ãg

�
þ δQEDHO þ 2□VA

γW ð20Þ

with ãg ¼ −0.083 representing the OðαsÞ QCD correction
to all one-loop diagrams except the axial γW box.
Additionally, δQEDHO ¼ 0.001 09ð10Þ [37] summarizes the
leading-log higher-order QED effects, which can be
accounted for via the running αe (see an updated discussion
in Ref. [38]). Using the lattice results for □VA

γW, we obtain

ΔV
R ¼ 0.024 39ð15Þlatð10ÞHO; ð21Þ

jVudj ¼ 0.973 86ð11Þexpð9ÞRCð27ÞNS ð22Þ
for superallowed beta decays. Upon entering jVudj, the
uncertainties from both lattice results and δQEDHO contribute
collectively as ð9ÞRC, with the lattice uncertainty account-
ing for 83%. Likewise, for free neutron decay,

jVudj ¼ 0.9745ð3Þτnð8ÞgAð1ÞRC: ð23Þ
We note that the primary source of uncertainty is attributed
to the experimental measurements of gA. In this Letter, we
also calculate the γW box correction to gA using the formula
provided in [19]

gA ¼ ̊gA½1þ□
VV
γW −□

VA
γW � þ f:f: ð24Þ

Interestingly, the vector γW-box term largely cancels the
axial one, resulting in a value of□VV

γW −□
VA
γW ¼ 0.07ð11Þ ×

10−3 that aligns with zero. This outcome also agree with the
value of 0.13ð13Þ × 10−3 derived from dispersive analysis
[11]. It is essential to emphasize that the γW box correction
to gA does not constitute the dominant contribution.
Reference [39] suggests that the most substantial radiative
correction originates from vertex corrections, and may
approach a percent level. To address this possibility on
the lattice, one would need to include, e.g., the radiative
corrections to the axial form factors (“f.f.” in the equation
above). This, in turn, requires computing 5-point correla-
tion functions on the lattice.
To conclude, we perform the first lattice QCD calcu-

lation of the γW-box contribution to the superallowed
nuclear and free neutron beta decays. As depicted in Fig. 5,
lattice results for both ensembles are consistent with the
outcome obtained from dispersive analysis. The only
distinction arises in the slightly smaller value exhibited
by the continuum-extrapolated result in comparison to the
dispersive analysis. It is always advisable to have future
independent checks using different discretizations of QCD.
Using the updated jVudj as provided in Eq. (22) and
combining it with jVusj ¼ 0.2243ð8Þ from PDG [1], we
obtain

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9987ð6ÞVud
ð4ÞVus

: ð25Þ

This result exhibits 1.8σ tension with CKM unitarity.

TABLE II. Utilizing the scale Q2
cut partition the integral range,

we present the contributions of □VA;≤Q2
cut

γW from lattice QCD and

□
VA;>Q2

cut
γW from perturbation theory.

Q2
cut □

VA;≤Q2
cut

γW □
VA;>Q2

cut
γW □

VA
γW

1 GeV2 1.32ð7Þ × 10−3 2.31ð2Þ × 10−3 3.63ð7Þ × 10−3

2 GeV2 1.49ð7Þ × 10−3 2.16ð1Þ × 10−3 3.65ð7Þ × 10−3

3 GeV2 1.59ð7Þ × 10−3 2.06ð1Þ × 10−3 3.65ð7Þ × 10−3
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