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We discuss relations between closed and open string amplitudes at one loop. While at tree level these
relations are known as Kawai-Lewellen-Tye (KLT) and/or double copy relations, here we investigate how
such relations are manifested at one loop. Although, we find examples of one-loop closed string amplitudes
that can strikingly be written as sum over squares of one-loop open string amplitudes, generically the
one-loop closed string amplitudes assume a form reminiscent of the one-loop double copy structure of
gravitational amplitudes involving a loop momentum. This double copy structure represents the one-loop
generalization of the KLT relations.
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Introduction.—The famous Kawai-Lewellen-Tye (KLT)
relations express a tree-level closed string amplitude as a
weighted sum over squares of tree-level open string
amplitudes [1]. Since the lowest mode of the closed
superstring is a graviton and that of the open superstring
a gluon, the aforementioned relation gives rise to a gauge-
gravity correspondence linking gravity and gauge ampli-
tudes at the perturbative tree level. This connection has far
reaching consequences after elevating it to the double copy
(DC) conjecture [2]. At an abstract level the KLT relations
provide a way of computing tree-level closed string world-
sheet integrals by reducing them to open string integrals.
At the technical level the latter statement means that a
complex sphere integral can be expressed in terms of a
product of two iterated real integrals. While conjectures
based on generalized unitarity for perturbative quantum
gravity as a DC structure exist for field theory loop
level [3], only recently a one-loop analog has been found
in string theory [4]. In [4] a one-loop extension of the KLT
relations has been derived and in this Letter we elaborate on
the underlying DC structure.
Closed vs open string amplitudes.—Closed string ampli-

tudes are described by integrals over compact Riemann
surfaces without boundaries and open string amplitudes are
formulated on world sheets with boundaries. Surfaces with
boundaries are obtained from manifolds without bounda-
ries by involution. While closed string vertex positions are
integrated over the full manifold those of open strings are
integrated along boundaries only. To find relations between
closed and open string amplitudes an analytic continuation

of each complex closed string coordinate is performed to
split the latter into a pair of two real coordinates. The latter
describe open string vertex positions located at the boun-
daries of the underlying world sheet. At the mathematical
level relations between closed and open string amplitudes
are subject to holomorphic properties of the string world
sheet and underlying monodromy relations, cf. [5,6] for
tree level and [7–9] for one loop. In fact, while these
relations are formulated on surfaces with boundaries, they
can be extended to surfaces without boundaries [4].
Complex sphere integral: Closed string tree-level

n-point amplitudes are described by an integral over the
moduli space of n marked points on the sphere C. For
n ¼ 4 we have the integral

Mclosed
4;0 ≔

Z
C
d2zjzj2α0s−2j1 − zj2α0u

¼ Γðα0sÞΓðα0tÞΓðα0uÞ
Γð1 − α0sÞΓð1 − α0tÞΓð1 − α0uÞ ; ð1Þ

with sþ tþ u ¼ 0 and referring to a four-point closed
string tree-level amplitude to be specified below. On the
other hand, with the corresponding open string disk integrals

Aopen
4;0 ≔

Z
1

0

dξ ξα
0s−1ð1 − ξÞα0u ¼ Γðα0sÞΓðα0uþ 1Þ

Γð1 − α0tÞ ; ð2Þ

Ãopen
4;0 ≔

Z
∞

1

dη ηα
0t−1ðη − 1Þα0u ¼ Γðα0tÞΓðα0uþ 1Þ

Γð1 − α0sÞ ; ð3Þ

we have

Mclosed
4;0 ¼ sinðπα0uÞAopen

4;0 Ãopen
4;0 : ð4Þ

Actually, (2) enters the open superstring subamplitude
describing the scattering of four (massless) gluons
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Aopen
4;0 ð1; 2; 3; 4Þ ¼ t8

u
Aopen
4;0 ð5Þ

with canonical color ordering (1,2,3,4). With the four
external gluon momenta pi (subject to the massless con-
dition p2

i ¼ 0) the three parameters s, t, u refer to the kine-
matic invariants s ¼ 2α0p1p2, t ¼ 2α0p1p3, u ¼ 2α0p1p4,
respectively. Likewise, the four graviton closed superstring
amplitude is given by

Mclosed
4;0 ¼ t8 t̃8

u2
Mclosed

4;0 : ð6Þ

Thus we have the gravity-gauge relations or four-point KLT
relation:

Mclosed
4;0 ¼ sinðπα0uÞAopen

4;0 ð1; 2; 3; 4ÞÃopen
4;0 ð1; 3; 2; 4Þ: ð7Þ

Similar results can be stated for higher n or massive
states:

Mclosed
n;0 ¼ κn−2

X
σ;ρ∈ Sn−3

Aopen
n;0

�
1; σð2; 3;…; n − 2Þ; n − 1; n

�
× S½ρjσ�p1

Ãopen
n;0

�
1; ρð2; 3;…; n − 2Þ; n; n − 1

�
;

ð8Þ

involving the KLT-kernel S½ρjσ�p0
(intersection matrix).

Generically, the latter is defined as a symmetric k! × k!
matrix with its rows and columns corresponding to the
orderings σ ≡ fσð2Þ;…; ρðkÞg and ρ≡ fρð1Þ;…; ρðkÞg,
respectively. For given (cyclic) orderings ρ; σ ∈ Sk and
a reference momentum p0 one defines the KLT kernel
as [1,10,11]

S½σjρ�p0
≔S

�
σð1;…;kÞjρð1;…;kÞ�p0

¼
Yk
t¼1

sin

�
πα0
�
p0ptσ þ

X
r<t

prσptσ θðrσ;tσÞ
��

; ð9Þ

with jσ ¼ σðjÞ and θðrσ; tσÞ ¼ 1 if the ordering of the
legs rσ , tσ is the same in both orderings σð1;…; kÞ and
ρð1;…; kÞ, and zero otherwise. For the case at hand (8), we
have p0 ¼ p1 and k ¼ n − 3. Finally, κ is the gravitational
coupling related to Newton’s constant via κ2 ¼ 32π2GN .
Complex torus integral: Closed string one-loop n-point

amplitudes are described by an integral over the moduli
space of n marked points on the elliptic curve T . Let us
discuss the one-loop torus integral (n ¼ 2):

M̂closed
2;1 ≔

Z
T
d2z e2G

ð1Þðz;τÞ

¼ 2τ
1
2

2

���� θ3ð2τÞη6

����2 þ 2τ
1
2

2

���� θ2ð2τÞη6

����2; ð10Þ

referring to a specific two-point closed string one-loop
amplitude to be specified below. Above, we have intro-
duced the bosonic one-loop Green’s function

Gð1Þðz; τÞ ¼ ln

���� θ1ðz; τÞθ01ð0; τÞ
����2 − 2π

ðℑzÞ2
ℑτ

; ð11Þ

the odd Riemann theta function

θ1ðz; τÞ ¼ q
1
8

X
n∈Z

ð−1Þnq1
2
nðnþ1Þ sin½πð2nþ 1Þz�; ð12Þ

and η ¼ q1=24
Q

n≥1ð1 − qnÞ, q ¼ e2πiτ. The complex torus
coordinate is parameterized as z ¼ xþ τy, with x; y ∈
ð0; 1Þ and the measure d2z ¼ τ2dxdy. Actually, the integral
(10) describes a one-loop two-point amplitude. In super-
string theories the latter and thus mass shifts vanish for
massless states, while they do not vanish for massive states,
cf. Fig. 1. The two-point amplitude appears as residuum at
the first massive level in the factorization of a four-point
one-loop amplitude on its double-pole in the s channel
accounting for the mass renormalization in superstring
theory [12]. The integral (10) computes the mass correction
δm2 ¼ Mclosed

2;1 of the least massive string state in type II
superstring theory [12]

Mclosed
2;1 ¼ δðdÞðq1 þ q2Þ

Z
d2τ
τ2

τ−42

Z
T
d2z e−

α0
2
q2
1
Gð1Þðz;τÞ;

ð13Þ

subject to momentum conservation q1 þ q2 ¼ 0 and the
on-shell condition for the first massive string state:

q2i ¼ −4=α0; i ¼ 1; 2: ð14Þ

On the other hand, the corresponding real open string
planar and nonplanar cylinder integrals are

Ap
2;1 ≔

Z
1

0

dξ
θ1ðξ; τÞ2

η6
¼ −

θ2ð2τÞ
η6

; ð15Þ

Anp
2;1 ≔

Z
1

0

dζ
θ4ðζ; τÞ2

η6
¼ θ3ð2τÞ

η6
: ð16Þ

The integrals (15) and (16) describe the one-loop mass
renormalization in SOð32Þ open superstring theory [13].

FIG. 1. One-loop amplitude with two massive closed strings
q2i ≠ 0.
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Thus, the complex torus integral (10) can be cast into the
following quadratic form:

M̂closed
2;1 ¼ 2τ1=22 jAp

2;1j2 þ 2τ1=22 jAnp
2;1j2: ð17Þ

Note, that this is a particular simple DC structure relating a
one-loop closed string integral to a sum over squares of
open string integrals.
To compute the complex integral (10) one starts by

expressing the square of the theta functions (12) as

e2G
ð1Þðz;τÞ ¼ 1

4
e−4πτ2y

2
X

pi ∈ f�1g

X
Ni;Mi ∈Z

ð−1ÞN0þM0

× e2πizN0e−2πiz̄M0q
1
4
ðN2

0
þN2

1
Þq̄

1
4
ðM2

0
þM2

1
Þ;

with the four integers:

N0;1 ¼
p1

2
ð2n1 þ 1Þ � p2

2
ð2n2 þ 1Þ;

M0;1 ¼
p3

2
ð2m1 þ 1Þ � p4

2
ð2m2 þ 1Þ: ð18Þ

Then, the real x integration gives the level-matching
condition:

N0 ¼ M0: ð19Þ

The resulting integer sums over both even and odd N0 can
be used to extend the real y integration to a Gaussian
integral leaving the integer sums with N1, M1 even or
odd subject to the solution (19) with N0 even or odd,
respectfully,

M̂closed
2;1 ¼ 2τ1=22

jηj12
( X

N1;M1even

þ
X

N1;M1odd

)
q

1
4
N2

1 q̄
1
4
M2

1 : ð20Þ

Eventually, the above expression leads to (10).
Actually, the open string amplitudes (15) and (16)

conspire with one-loop open string monodromy relations
[7,8] as

Ap
2;1 ¼ −Ãp

2;1; ð21Þ

Anp
2;1 ¼ Ãnp

2;1 ð22Þ

giving rise to the additional objects

Ãp
2;1 ≔ −

Z
1

0

dζ
θ4ðζ; τÞ2

η6
e2πizq−

1
4; ð23Þ

Ãnp
2;1 ≔ −

Z
1

0

dξ
θ1ðξ; τÞ2

η6
e2πizq−

1
4; ð24Þ

with position dependent phases introduced in [7]. As a
consequence we may also write (17) as

M̂closed
2;1 ¼ 2τ1=22 jAp

2;1j2 þ 2τ1=22 jÃnp
2;1j2: ð25Þ

It is interesting to note, that the integrand of (10) has a Z2

symmetry z → −z, i.e., it is sufficient to only integrate over
a cylinder world-sheet C. Hence, it is instructive to split the
torus integral (10) into two contributions from cylinder
integrals as

M̂closed
2;1 ¼ M̂p

2;1 þ M̂np
2;1; ð26Þ

with the two cylinder integrals

M̂p
2;1 ¼

Z
C
d2z e2G

ð1Þðz;τÞ ¼ 1

2
M̂closed

2;1 ; ð27Þ

M̂np
2;1 ¼

Z
C
d2z e2G

ð1Þ
T ðz;τÞ ¼ 1

2
M̂closed

2;1 ; ð28Þ

which can either be directly computed or by the methods
developed in [14]. Above, we have the twisted bosonic one-
loop Green’s function

Gð1Þ
T ðz; τÞ ¼ ln

���� θ4ðz; τÞθ01ð0; τÞ
����2 − 2π

ðℑzÞ2
ℑτ

; ð29Þ

with the even Riemann theta function:

θ4ðz; τÞ ¼
X
n∈Z

ð−1Þnq1
2
n2 cosð2πnzÞ: ð30Þ

Hereafter, we shall use the alternative expression of (10)
in terms of a loop momentum l which manifestly splits the
integrand into a holomorphic and antiholomorphic sector
(d ¼ 10):

Mclosed
2;1 ¼ δðdÞðq1 þ q2Þ

Z
F 1

d2τ
Z þ∞

−∞
ddle−πα

0τ2l2

×
Z
T
d2ze−iπα

0lq1ðz−z̄Þ
���� θ1ðz; τÞθ01ð0; τÞ

����4: ð31Þ

In fact, integrating first over the torus coordinate z and per-
forming the sum over N0 constrains the loop momentum as

l0q1 ¼ 0 with∶ l0 ¼ lþ 1

2
q1N0: ð32Þ

Then, the remaining loop momentum integral decouples
and can be performed by introducing spherical Lorentzian
coordinates [15] along the axis q1:Z þ∞

−∞
dd l0e−πα0τ2l02δðdÞðl0q1Þ ¼ kq1k−1ðα0τ2Þ12ð1−dÞ: ð33Þ
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Altogether, this yields (20) in a different way thereby
constraining the loop momentum as (32). This result
underpins the holomorphic antiholomorphic factorization
of the result (17). Furthermore, as it can be anticipated from
(33) that the constraint (32) entails the additional τ1=22

factors in (17) and (37).
A similar discussion can be lead for the torus integral:

M̂closed
2;1 ≔

Z
T
d2z eG

ð1Þðz;τÞ ¼ 2τ
1
2

2

���� 1η3
����2: ð34Þ

Similar to (15) and (16) we may introduce the following
open string integrals:

Ap
2;1 ≔

Z
1

0

dξ
θ1ðξ; τÞ

η3
¼ 2

π

q
1
8

η3
X
n∈Z

ð−1Þn q
1
2
ðnþ1Þn

2nþ 1
; ð35Þ

Anp
2;1 ≔

Z
1

0

dζ
θ4ðζ; τÞ

η3
¼ 1

η3
: ð36Þ

Hence, we have the following DC relation:

M̂closed
2;1 ¼ 2τ1=22 jAnp

2;1j2 ¼ 2τ1=22 jÃnp
2;1j2: ð37Þ

In addition, we have the objects

Ãp
2;1 ≔ −i

Z
1

0

dζ
θ4ðζ; τÞ

η3
eπizq−

1
8

¼ 1

π

q−
1
8

η3
X
n∈Z

ð−1Þnq1
2
n2
�

1

2nþ 1
−

1

2n − 1

�
; ð38Þ

Ãnp
2;1 ≔ −i

Z
1

0

dξ
θ1ðξ; τÞ

η3
eπiz q−

1
8 ¼ 1

η3
; ð39Þ

which furnish the following open string monodromy
relation [7]

Ap
2;1 − Ãp

2;1 ¼ 2B1; ð40Þ

with the following boundary term [7]:

B1 ¼
Z

τ=2

0

dz
θ1ðz; τÞ

η3
: ð41Þ

Interestingly, as a side remark the relation (40) demon-
strates the importance of the boundary term (41) derived
in [7]. This fact has also been stressed in [9].
Finally, we shall mention, that expanding the exponential

in the integrands of (10) and (34) yields two-point modular
graph functions [16]

DkðτÞ ¼
Z
T
d2zGð1Þðz; τÞk; ð42Þ

e.g., D1 ¼ 0, D2 ¼ Eð2; τÞ, with the nonholomorphic
Eisenstein series Eðs; τÞ. Likewise, expanding the inte-
grand of (15) and (16) yields two-vertex B- and A-cycle
holomorphic graph functions [17], respectively. Thus, our
relations (17) and (37) are suited to generate relations
between elliptic multiple zeta values and their single-valued
objects, cf. also [18].
Note, that (17) and (37) yield KLT squaring identities

at string one loop in the spirit of (4). It would be very
interesting to find more such examples of complex torus
integrals which can be written as squares of open string
amplitudes in the spirit of (4). For generic n one may expect
a splitting of the torus world sheet into a double of cylinder
world sheets as depicted in Fig. 2. On the other hand, one-
loop closed string amplitudes with logarithmic branch cuts
in their low-energy expansion may not be simple squares of
corresponding open string amplitudes.
Actually, a generalization of the single complex torus

integrals (10) and (34) represents the complex version of
the Riemann-Wirtinger integral with noninteger powers
of θ1 [19]. After proper implementing Riemann bilinear
relations for complex conjugated (co)cycles its DC struc-
ture should be expressible in terms of intersection numbers
of twisted (co)homology classes at genus one [20].
In the following we discuss what DC structure to expect

in the generic one-loop string case for multiple complex
torus integrations.
String one-loop double copy.—In string theory DC

structures and numerators have been elaborated at tree
level for the massless case in [21,22] and for the massive
case in [23,24]. The foundation of these relations are the
tree-level KLT relations [1] and only recently a one-loop
generalization thereof has been derived [4]. As in the tree-
level case holomorphic properties of the string world sheet
are crucial to find such a relation. For this, Cauchy’s
theorem is applied to study monodromies and deformations
of contours. The various steps are rather involved and will
not be displayed here as they have been worked out in quite
detail in [4]. In contrast, here after only briefly sketching
the result we shall put emphasis on both its geometric
impact and working examples.
The one-loop string torus amplitude with n closed

oriented strings is given by

FIG. 2. Splitting the torus n-point amplitude into two cylinder
amplitudes.
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Mclosed
n;1 ðq1;…; qnÞ ¼

1

2
gnc δðdÞ

 Xn
r¼1

qr

!Z
F 1

d2τ
τ2

Mclosed
n;1 ;

ð43Þ
with the closed string coupling constant gc and the
integrand

Mclosed
n;1 ¼ V−1

CKGðT Þ
�Z

T

Yn
s¼1

d2zs

�
Iðfzs; z̄sgÞQðfzs; z̄sg; τÞ;

ð44Þ
with some doubly periodic function Q comprising possible
kinematical factors. Generically, the latter assumes the
form Q ¼ τ1−d=22 QLðτÞQRðτ̄Þ. Furthermore, we have the
integrand

Iðfzs; z̄sgÞ ¼
Y

1≤r<s≤n

�
θ1ðzs − zr; τÞ

θ01ð0; τÞ
�1

2
α0qsqr

×

�
θ̄1ðz̄s − z̄r; τ̄Þ

θ̄01ð0; τ̄Þ
�1

2
α0qsqr

×
Yn
r;s¼1
r<s

e−
πα0
τ2
qrqsℑðzr−zsÞ2 : ð45Þ

Note, that due to the lack of holomorphic double periodic
functions on the torus we are dealing with quasiperiodic
functions (29) with nonharmonic contributions. As a con-
sequence there is no holomorphicj or antiholomorphic
factorization in contrast to the Virasoro-Shapiro ampli-
tude (6). Similar to (31) we introduce the loop momentum
l to holomorphically factorize the integrand as [25]

ðα0τ2Þ−d=2Iðfzs; z̄sgÞ

¼
Z

∞

−∞
ddl exp

	
−πα0τ2l2 − πiα0l

Xn
r¼1

qrðzr − z̄rÞ



×
Y

1≤r<s≤n
θ1ðzs − zr; τÞ12α0qsqr θ1ðz̄s − z̄r; τÞ12α0qsqr : ð46Þ

To split each complex zt integration into a pair of real
integrations one now proceeds like in the tree-level case [1]
by considering contours in the complex plane at the cost of
introducing phase factors. After defining the parametriza-
tion zt ¼ σ1t þ iσ2t , t ¼ 1;…; n with σ1t ∈ ð0; 1Þ and
σ2t ∈ ½−ðτ2=2Þ; ðτ2=2Þ� forℜðτÞ ¼ 0 we may consider some
closed contour in the complex σ2t plane and express the
integration along the real axis σ2t ∈ ½−ðτ2=2Þ; ðτ2=2Þ� as
some integral along the imaginary axis σ2t ∈ ð−i; 0Þ. This
way each complex zt integration is traded into a pair of real
integrations with respect to [4]

ξt ¼ σ1t þ σ̃2t ; ηt ¼ σ1t − σ̃2t ; ð47Þ

subject to some splitting function Ψ to be specified below
and some phases

Πqðr; sÞ ≔ Πðξs; ξr; ηs; ηr; qrqsÞ
¼ e

1
2
πiα0qrqsf1−θ½ðξr−ξsÞðηr−ηsÞ�g ð48Þ

rendering the integrand of (44) to be single valued along
ξs; ηs ∈ ð0; 1Þ. Eventually, inserting the parametrization
(47) into the latter for ℜðτÞ ¼ 0 we obtain [4]

Mclosed
n;1 ðq1;…;qnÞ¼

1

2
δðdÞ
 Xn

i¼1

qi

!�
i
2

�
n−1Z ∞

−∞
ddle−πα

0τ2l2

×
Z

1

0

 Yn−1
r¼1

dξr

!Z
1

0

 Yn−1
r¼1

dηr

!

×

 Yn−1
t¼1

Ψðξt;ηt;lÞ
!
Inþ2;0ðlÞ

×

 Yn
r<s

Πqðr;sÞ
!
Ĩnþ2;0ðlÞ: ð49Þ

The objects in (49) represent specific integrands of (planar)
one-loop open string amplitudes (with gc ¼ g2o):

Inþ2;0ðlÞ ¼ gno

 Yn
r;s¼1
r<s

jθ1ðξs − ξr; τÞj12α0qsqr
!

× e
−iπα0l

Pn
r¼1

qrξr
QLðτ; fξsgÞ; ð50Þ

Ĩnþ2;0ðlÞ ¼ gno

 Yn
r;s¼1
r<s

jθ1ðηs − ηr; τÞj12α0qsqr
!

× e
iπα0l

Pn
r¼1

qrηr
QRðτ̄; fηsgÞ: ð51Þ

As proposed above, the final result (49) furnishes a
splitting of complex torus integrations into holomorphic
and antiholomorphic sectors just like at tree level. However,
the main difference at one loop is the splitting function Ψ,
which accounts for the change of torus coordinates (47).
The underlying world sheet of the expression (49) can be
interpreted as a nonplanar cylinder with a closed string
insertion, cf. Fig. 3. More precisely, the one-loop torus is
sliced along the A cycle with 2n open string positions ξi and
ηj located along the two boundaries, respectively, resulting
in a nonplanar one-loop cylinder configuration. The details
of the cutting procedure is governed by the following
splitting function

Ψðξt; ηt;lÞ ¼
ð1þ e−πiα

0lqtÞ
ð1 − e−2πilqtÞ e

−πiα0lqtθðηt−ξtÞ ð52Þ

PHYSICAL REVIEW LETTERS 132, 191602 (2024)

191602-5



originating from the change of coordinates (47) along
the two boundaries. The function (52) intertwines the real
integrations ξs, ηs with the phase factor Πq. Furthermore,
the splitting function Ψ essentially subjects level matching
conditions to the left and right movers, which will be
evidenced below.
In the large complex structure limit τ → i∞ the closed

string becomes a node connecting two degenerating cyl-
inders. In this limit the torus is pinched to a node along the
B cycle and the diagram Fig. 3 turns into a product of two
disk diagrams each with a single closed string insertion at
the node, cf. Fig. 4. This limit has thoroughly been worked
out in [4]. In particular, the field-theory limit α0 → 0 is
governed by the large complex structure limit τ2 → ∞ of
the integrand of (43) and exhibits a similar structure than
the field-theory DC formula [4]

Mgrav
n;1 ≃

1

2
δðdÞ
 Xn

i¼1

qi

!Z
ddl
l2

×
X

σ;ρ∈Sn−1

Anþ2;0½þl;σð1;…; n− 1Þ; n;−l�

× S½σjρ�lÃnþ2;0½þl;ρð1;…; n− 1Þ;−l; n�; ð53Þ

involving the loop momentum l and the (off shell) nþ 2-
point tree-level gluon amplitudes in the forward limit

An;1ð1;…; nÞ ¼
Z

ddl
l2

X
γ ∈ cycð1;…;nÞ

× Anþ2;0½þl; γð1;…; nÞ;−l�; ð54Þ

with the external momenta �l [26,27]. Furthermore,
there is the field-theory kernel (9), with S½σjρ�l ≔
limα0→0ðπα0Þ1−nS½σjρ�l. In this formulation the loop
momentum l is identified with a light-like external

momentum of a tree-level amplitude Anþ2;0. The expression
(53) has formerly been conjectured in [28].
Let us now return to the example (10) and its loop

momentum description (31) [29]. For this case in the
general expression (44) we have z1 ¼ z, z2 ¼ 0 and (14).
Then (49) becomes

Mclosed
2;1 ðq1; q2Þ ¼

1

4

i
2

X
pi ∈ f�1g

Z
∞

−∞
ddl e−πα

0τ2l2

×
X

Ni;Mi ∈Z

ð−1ÞN0þM0q
1
4
ðN2

0
þN2

1
Þq̄

1
4
ðM2

0
þM2

1
Þ

×
Z

1

0

dξ
Z

1

0

dηΨðξ; η;lÞ

× e2πiξðN0−α0
2
lq1Þe−2πiηðM0−α0

2
lq1Þ: ð55Þ

After performing the real ξ, η integrations we evidence the
imposition of the level-matching condition (19):

Z
1

0

dξ
Z

1

0

dηΨðξ; η;lÞe2πiξðN0−α0
2
lq1Þe−2πiηðM0−α0

2
lq1Þ

¼ −
δðM0 − N0Þ

2πiðM0 − α0
2
lq1Þ

: ð56Þ

After shifting the loop momentum by l ¼ l0 − 1
2
q1M0 in

accord with (32) we may cast (55) into the following form:

Mclosed
2;1 ¼ 2

Z
∞

−∞
ddl0 e

−πα0τ2l02

2πα0l0q1

�
eπα

0l0q1τ2 − e−πα
0l0q1τ2

�
×
	���� θ2ð2τÞη6

����2 X
N0 even

eπα
0l0q1τ2N0

þ
���� θ3ð2τÞη6

����2 X
N0 odd

eπα
0l0q1τ2N0



: ð57Þ

FIG. 3. Slicing the torus along the A cycle into one cylinder
with a closed string insertion of momentum �l.

FIG. 4. Slicing the torus into two cylinders connected by a
closed string node exchanging the loop momentum �l.
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On the other hand, the corresponding expression from (31)
yields

Mclosed
2;1 ¼ 2

Z
∞

−∞
ddl0 e

−πα0τ2l02

2πα0l0q1

�
e2πα

0l0q1τ2 − 1
�

×

	���� θ2ð2τÞη6

����2 X
N0 even

eπα
0l0q1τ2N0

þ
���� θ3ð2τÞη6

����2 X
N0 odd

eπα
0l0q1τ2N0



: ð58Þ

The last two expressions (57) and (58) involve infinite
sums X

N0 even

eπα
0l0q1τ2N0 ¼ τ−12 δðα0l0q1Þ; ð59Þ

X
N0 odd

eπα
0l0q1τ2N0 ¼ τ−12 δðα0l0q1Þ; ð60Þ

and agree subject to the delta-function support (32)
leading to

Mclosed
2;1 ¼ 2

Z
∞

−∞
ddl0 e−πα0τ2l02

δðl0q1Þ

×

	���� θ2ð2τÞη6

����2 þ
���� θ3ð2τÞη6

����2


: ð61Þ

This is the result stemming from the direct computation
(31) and in agreement with (10). A similar check can be
done for the example (34).
Concluding remarks.—In Eqs. (17) and (37) we have

presented examples of fully fledged string-one-loop double
copies for the first time in the literature. In addition, their
underlying one-loop string monodromies are discussed.
Forℜτ ¼ 0 our result (49) generalizes the tree-level KLT

relations to one loop and it can be applied for both the
massless and massive case—with or without supersym-
metry. The result (49) is the first generalization of the
tree-level KLT relations to loop level, which has a great
potential impact on the double copy relations and all their
uses. As a consequence in the field-theory limit our rela-
tions capitalize solid one-loop gauge-gravity relations
including loop-level color kinematics duality. Generali-
zation of (49) to ℜτ ≠ 0 is very interesting. This task
requires extending the analytic continuation of complex
vertex operator positions to nonrectangular tori.
Complementary, in some recent work the imaginary part

of a one-loop string amplitude is computed by considering
unitary cuts of the string world sheet and including massive
states [30]. At tree level there are further relations between
closed and open string world-sheet diagrams due to the
single-valued projection, cf. for [31] a review. Furthermore,
a kind of opposite question is when starting from a

single-valued amplitude and asking how the latter can be
related to a pair of amplitude expressions with multivalued
coefficients, cf. interesting work [32].

S. S. thanks Johannes Broedel and Pouria Mazloumi for
interesting discussions.
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