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We formulate scalar field theories coupled nonconformally to gravity in a manifestly frame-independent
fashion. Physical quantities such as the Smatrix should be invariant under field redefinitions, and hence can
be represented by the geometry of the target space. This elegant geometric formulation, however, is
obscured when considering the coupling to gravity because of the redundancy associated with the Weyl
transformation. The well-known example is the Higgs inflation, where the target space of the Higgs fields is
flat in the Jordan frame but is curved in the Einstein frame. Furthermore, one can even show that any
geometry of OðNÞ nonlinear σ models can be flattened by an appropriate Weyl transformation. In this
Letter, we extend the notion of the target space by including the conformal mode of the metric, and show
that the extended geometry provides a compact formulation that is manifestly Weyl-transformation or field-
redefinition invariant. We identify the cutoff scale with the inverse of square root of the extended target-
space curvature and confirm that it coincides with that obtained from two-to-two scattering amplitudes
based on our formalism.
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Introduction.—Physical quantities should remain invari-
ant under transformation between different descriptions of
the same system. Such a redundancy has advantages in
simplifying calculation. However, it also unavoidably
induces opacity of the consistency among different descrip-
tions because the calculation can be drastically different.
Any scalar field theory in general is given the concept of

geometry in its field-space manifold, or the target space,
which is known as a nonlinear σ model (NLSM) [1–8].
NLSMs frequently arise as low-energy effective field
theories in various fields of theoretical physics. They are
particularly useful when the system undergoes some
symmetry, whose information is encoded in the target
space, e.g., the coset space for the effective theory of
Nambu-Goldstone (NG) modes [9,10]. Since physical
quantities such as the S matrix should be invariant under
field redefinitions, we may take whatever field basis of the
target space so that the calculations become simple, at a
cost of obscuring the field-redefinition invariance. An

elegant approach that makes this invariance manifest is
formulating the physical observables geometrically since
the geometry of target space is also invariant under field
redefinitions [11–18]. However, such a geometric formu-
lation is spoiled once we turn on gravity. The fundamental
building block of gravitational theory is the metric of
spacetime gμν through which all the fields couple to gravity.
Now we can perform the following redefinition of the
metric g0μν ¼ Ω2gμν with Ω an arbitrary function of matter
fields, which is known as the Weyl or frame transformation.
It not only modifies the coupling to the Ricci scalar, but
changes the geometry of the target space of an NLSM.
A famous example in cosmology is the Higgs inflation
(HI) [19–21], which is originally defined in the Jordan
frame where a large nonminimal coupling between the
standard model (SM) Higgs fields and Ricci scalar is
introduced to fit the observation of cosmic microwave
background [22] while the target space of the Higgs fields
is flat. One may perform a Weyl transformation to the
Einstein frame [23] where the Higgs fields are minimally
coupled but the target space is curved. This redundancy
makes the determination of the target-space geometry
ambiguous.
As an NLSM is merely a low-energy effective field

theory (EFT), its validity is restricted up to a certain energy

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 191501 (2024)

0031-9007=24=132(19)=191501(7) 191501-1 Published by the American Physical Society

https://orcid.org/0000-0002-2480-6848
https://orcid.org/0000-0001-5095-5911
https://orcid.org/0000-0003-1951-9497
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.191501&domain=pdf&date_stamp=2024-05-07
https://doi.org/10.1103/PhysRevLett.132.191501
https://doi.org/10.1103/PhysRevLett.132.191501
https://doi.org/10.1103/PhysRevLett.132.191501
https://doi.org/10.1103/PhysRevLett.132.191501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


scale corresponding to the target-space curvature. This
scale Λ can be extracted as the unitarity-violation scale of
tree-level scattering amplitudes, and again the geometric
formulation provides a powerful toolkit [12,14,15,18].
Along the same way, to verify the validity of HI as an
EFT for inflation, the inflation scale needs to stay below Λ
(the momenta of the gauge bosons produced during
preheating can exceed the low cutoff scale, so the system
becomes strongly coupled [24]). However, owing to the
presence of gravity, the geometric formulation is not
applicable, and we had to calculate all relevant processes
in different frames and compare the results to guarantee
consistency [25–32], which has caught intensive attention
and debate due to the ambiguity (see also [33,34]).
In this Letter, we extend the notion of target-space

geometry to preserve the advantages of the geometric
approach even with gravity. Specifically, we include the
conformal mode of the spacetime metric detðgμνÞ as a
coordinate of the target space [35,36]. The extended target-
space geometry is manifestly invariant even under the Weyl
transformation because it corresponds to redefining the
conformal mode. We provide the geometrical meaning of
the cutoff scale, which is manifestly independent of the
frame and state.
Metric Higgs inflation.—We begin our discussion by

considering HI in a metric formulation of gravity, which is
based on the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

Pl þ ξϕ2

2
RJ −

gμνJ
2

δij∂μϕ
i
∂νϕ

j − V

�
:

ð1Þ

Here, gJμν is the metric of spacetime in the Jordan frame
with its determinant being gJ, RJ is the Ricci curvature
determined by gJμν, MPl is the reduced Planck mass, ϕi is a
multicomponent scalar field whose index i runs through
i ¼ 1;…; N with N ⩾ 2, ϕ2 ≡ δijϕ

iϕj, and V is a potential
of the scalar field invariant under OðNÞ rotation. The target
space spanned by ϕi is trivial, i.e., δij. By identifying ϕi as
the SM Higgs doublet for N ¼ 4 and V as the SM Higgs
potential [19–21], one can show that the large expectation
value of the SM Higgs fields exhibits the cosmic inflation
perfectly consistent with observations [22]. In this case, the
SM Higgs fields couples to, e.g., gauge bosons which
acquire mass terms for a finite vacuum expectation value
(VEV) of Higgs fields. In the discussion of unitarity, we are
interested in the behavior at a higher energy than the VEV.
For this reason, only the longitudinal modes are important,
and thereby the Goldstone equivalence theorem guarantees
that our action (1) is sufficient [26,27,32,37,38].
We can write down the same model in a seemingly

different form by performing the following Weyl trans-
formation:

gEμν ¼ Ω2gJμν; Ω2 ≡ 1þ ξϕ2

M2
Pl

; ð2Þ

which leads to the action in the Einstein frame

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

Pl

2
RE −

gμνE
2

GE
ij∂μϕ

i
∂νϕ

j −
V
Ω4

�
; ð3Þ

where the target-space metric is given by

GE
ij ≡ 1

Ω2

�
δij þ

6ξ2

Ω2

ϕiϕj

M2
Pl

�
: ð4Þ

One may readily confirm that the target space of ϕi

is curved in this frame although it is flat in the Jordan
frame (1). Nevertheless, the physical quantities should be
unchanged as the Weyl transformation (2) is merely a field
redefinition.
This observation motivates us to extend the notion of the

target space so that the extended geometry is also invariant
under the Weyl transformation. For this purpose, we extract
the conformal mode of the metric as [35,36,39]

g•μν ¼
Φ2

•

6M2
Pl

g̃μν; detðg̃μνÞ ¼ −1; ð5Þ

where the black dot implies a subscript associated with the
frame, e.g., • ¼ J;E. The Weyl transformation of Eq. (2)
now turns into the field redefinition of

Φ2
E ¼ Ω2Φ2

J : ð6Þ

Once the target space is extended to involve Φ•, its
geometry is manifestly invariant under not only the field
redefinition of ϕi but the Weyl transformation.
We rewrite the action (1) in a field basis of

ðφa
J Þ ¼ ðΦJ;ϕiÞ. A straightforward calculation leads to

the following action:

S ¼
Z

d4x

�
Φ2

J

12
Ω2R̃ −

g̃μν

2
GJ

ab∂μφ
a
J ∂νφ

b
J −

Φ4
JV

36M4
Pl

�
; ð7Þ

where the extended target-space metric reads

ðGJ
abÞ≡

0
@ −Ω2 −ξΦJϕj=M2

Pl

−ξΦJϕi=M2
Pl

Φ2
J

6M2
Pl
δij

1
A: ð8Þ

Here the Ricci curvature R̃ is given by g̃μν. Physical
quantities should be represented by the geometry specified
by GJ

ab.
Let us estimate the cutoff scale of this theory in the

geometric language with the extended target space.
Hereafter, we assume the contribution from the potential
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is subdominant so we can drop it. This is actually true for
HI whose potential is up to quartic order with sufficiently
small coupling. One convenient way of extracting the
cutoff scale is to consider the two-to-two scattering of
ϕi as it grows in proportion to E2

c:m:=Λ2
G with Ec:m: being the

center-of-mass energy. ΛG is the unavoidable UV cutoff
scale above which the graviton becomes strongly coupled,
and to which the ratio of dimensionful quantities acquires
physical meaning, usually chosen as MPl. Thus, one can
extract the cutoff scale by requiring each amplitude to be
smaller than unity. Consider scatterings around the back-
ground of ðφ̄a

J Þ ¼ ð ffiffiffi
6

p
ΛG=Ω̄; v; 0;…; 0Þ [we choose

Ω̄ðvÞΦ̄J ¼
ffiffiffi
6

p
ΛG as background such that the kinetic term

of the graviton is expressed as Λ2
Gð∂ρhμνÞ2=8 with

g̃μν ¼ ημν þ hμν] and ¯̃gμν ¼ ημν, which is relevant for the
unitarity violation during HI. Geometric language provides
the following elegant expression of general four-point
amplitudes [14–16,18]:

MIJ↔KL ¼
2

3

�
sIJR̄IðKLÞJþ sIKR̄IðJLÞKþ sILR̄IðJKÞL

�
; ð9Þ

with sIJ ≡ ðpI þ pJÞ2. The subscripts I specify the states,
where the capital letter indicating that the states should be
canonically normalized, e.g., I ¼ H for the Higgs mode.
The relation between a field basis φa and the canonically
normalized states at φ̄a are provided by the vielbein, e.g.,
ḠJ

ab ¼ ēAa ēBbηAB. The parentheses in the subscripts denote
the symmetrization. The Riemann tensor is

R̄ABCD ¼ ēaAē
b
Bē

c
Cē

d
DR̄abcd; ð10Þ

with the vielbein and Riemann tensor being evaluated at φ̄a.
To estimate the scattering amplitudes among Higgs H and
NG bosons Πi at φ̄a

J , all we need is the following vielbein:

ðēaAÞ ¼
MPlΩ̄
ΛG

0
BBBBB@

ΛG
MPlΩ̄2 −

ffiffi
6

p
ξΛGv=M2

Pl

Ω̄3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ6ξ2v2=ðM2

PlΩ̄
2Þ

p

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ6ξ2v2=ðM2

PlΩ̄
2Þ

p
0

0 1

1
CCCCCA: ð11Þ

In the literature, e.g., [28,29,31,32], the scattering
amplitudes among the Higgs and NG bosons are computed
explicitly to confirm the invariance between the Einstein
and Jordan frames. Owing to the extended geometry of the
target space, the invariance under the frame transformation
with fixed incoming and outgoing states now becomes
manifest. This is because the Weyl transformation is a
particular coordinate transformation with respect to the
field indices a in the extended target space, which are
already contracted as given in Eq. (10).
Furthermore, the physical quantities such as the cutoff

scale should not even depend on the choice of incoming
and outgoing states. This motivates us to consider the Ricci
scalar of the extended target space, which is frame,
coordinate, and states independent,

R̄¼ ḠabḠcdR̄acbd¼2ðN−1Þ
�
R̄HΠk þN−2

2
R̄ΠiΠk

�
: ð12Þ

In the second equality, we have used R̄ABCD ≠ 0

only if all the indices are I ¼ H;Πk, and R̄IKJL ¼
R̄IKðδIJδKL − δILδJKÞ, which follows from Eq. (11) and
Table I. The cutoff scale of the theory is then given
by Λmetric=ΛG ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
N2=R̄

p
=ΛG.

Now we confirm that the cutoff scale extracted from the
scattering amplitudes coincides with the Ricci scalar by
explicit computations. From Table I and Eq. (11), the
nonvanishing scattering amplitudes read

MΠiΠi↔ΠjΠj ¼ −
s12
6Λ2

G

ð1þ 6ξÞ2ðM2
Pl þ ξv2Þ

M2
Pl þ ð1þ 6ξÞξv2 for i ≠ j;

ð13Þ

TABLE I. Target-space Riemann tensor at ðφ̄a
J Þ ¼ ð ffiffiffi

6
p

ΛG=Ω̄; v; 0;…; 0Þ in several examples. The field vector is expanded as
ðφa

J Þ ¼ ðφ̄a
J Þ þ ðδΦJ; h; π1;…; πN−1Þ. Note that the results are independent of frames, so we drop the frame index. R̄others means that at

least one of the indices is δΦJ. We parametrize the Riemann tensor as R̄ikjl ¼ R̄ikðδijδkl − δilδjkÞ.

Metric HI Einstein-Cartan HI NLSM

R̄hπk fð1þ 6ξÞ2Λ2
G=6ðM2

Pl þ ξv2Þ
½M2

Pl þ ð1þ 6ξÞξv2�g
Λ2
G(f½ξð1þ 6r2ξÞv2 þ ð1þ 6ξÞM2

Pl�2
−36ð1 − r2Þξ2M4

Plg=
6ðM2

Pl þ ξv2Þ3½M2
Pl þ ξð1þ 6r2ξÞv2�)

Λ2
G[(Ḡ2 þ 12M2

PlḠðf0 þ v2f00Þ þ 6M2
Plff̄ G0

þf0½6M2
Plðf0 þ 2v2f00Þ − v2G0�g)=

6M4
Plf̄

2ðḠþ 6M2
Plv

2f02f̄−1Þ]
R̄πiπk fð1þ 6ξÞ2Λ2

G=6ðM2
Pl þ ξv2Þ

½M2
Pl þ ð1þ 6ξÞξv2�g

Λ2
G(fξð1þ 6ξÞð1þ 6r2ξÞv2

þ½1þ 12ξð1þ 3r2ξÞ�M2
Plg=

6ðM2
Pl þ ξv2Þ2½M2

Pl þ ξð1þ 6r2ξÞv2�)

Λ2
Gf½ð6M2

Plf̄ þ v2ÞðḠ − 1Þ þ v2ð1þ 6M2
Plf

0Þ2�=
6M4

Plv
2f̄2ðḠþ 6M2

Plv
2f02f̄−1Þg

R̄others 0 0 0
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MHH↔ΠiΠi ¼ −
s12
6Λ2

G

ð1þ 6ξÞ2ðM2
Pl þ ξv2Þ2

½M2
Pl þ ð1þ 6ξÞξv2�2 : ð14Þ

Consequently, we obtain the cutoff scale of the metric HI

Λmetric

ΛG
∼
R̄−1=2
ΠiΠk

ΛG
∼

8>><
>>:
1=ξ for v≲MPl=ξ;

v=MPl forMPl=ξ≲v≲MPl=
ffiffiffi
ξ

p
;

1=
ffiffiffi
ξ

p
forMPl=

ffiffiffi
ξ

p ≲v;

ð15Þ

for N > 2, and

Λmetric

ΛG
∼
R̄−1=2
HΠk

ΛG
∼

8>><
>>:
1=ξ for v≲MPl=ξ;

ξv2=M2
Pl forMPl=ξ≲v≲MPl=

ffiffiffi
ξ

p
;

1 forMPl=
ffiffiffi
ξ

p ≲v;

ð16Þ

for N ¼ 2 where we do not have ΠiΠi ↔ ΠjΠj scattering.
Our results are consistent with the literature, such as
Refs. [26–28,31,32,41]. It is clear that the obtained cutoff
scale indeed coincides with the Ricci scalar given in
Eq. (12), which is frame and state independent. We
emphasize that the physically relevant quantity is the ratio
Λmetric=ΛG, which is frame independent.
Other Higgs inflation.—Our discussion is also applicable

to alternative formalisms of gravity like Palatini HI [42,43].
It is recently realized that HI in the Einstein-Cartan gravity
with a nonminimally coupled Nieh-Yan term [44] can serve
as a general setup that includes the well-known metric and
Palatini cases [45], so here we consider Einstein-Cartan HI
for a general discussion. In Einstein-Cartan HI, the affine
connection Γρ

μν is treated a priori independently of gμν,
although the action is of the same form as Eq. (1). The
nonminimally coupled Nieh-Yan term is [45]

−
ξη
4

Z
d4xϕ2

i ∂μðϵμνρσTνρσÞ; ð17Þ

where ξη is the coupling constant, ϵμνρσ is the Levi-Civita
symbol such that ϵ0123 ¼ 1, and Tρ

μν ≡ Γρ
μν − Γρ

νμ is the
torsion tensor. One can solve the constraint equation for Γ
to obtain an equivalent action in the same form as Eq. (7)
but GJ

ab is replaced by [46]

ðGEC
ab Þ≡

0
B@ −Ω2 −ξΦJϕj=M2

Pl

−ξΦJϕi=M2
Pl

Φ2
J

6M2
Pl

�
δij−

6ð1−r2Þξ2
M2

PlΩ
2 ϕiϕj

�
1
CA; ð18Þ

where we have defined r≡ ξη=ξ. Thus, r ¼ 1 recovers the
results in the previous section, while r ¼ 0 reproduces the
Palatini HI.

Following previous procedures, the frame-independent
cutoff scale is obtained by calculating the Ricci scalar for
the extended target space, whose structure is the same as
Eq. (12): ΛEC=ΛG ∼ R̄−1=2=ΛG. For 1=

ffiffiffi
ξ

p ≲ r ⩽ 1,

ΛEC

ΛG
∼

8>><
>>:

1=ðrξÞ for v≲MPl=ðrξÞ;
v=MPl for MPl=ðrξÞ≲ v≲MPl=

ffiffiffi
ξ

p
;

1=
ffiffiffi
ξ

p
for MPl=

ffiffiffi
ξ

p ≲ v;

ð19Þ

for N > 2, and

ΛEC

ΛG
∼

8>>>>><
>>>>>:

1=ðrξÞ for v≲MPl=ðrξÞ;
rξv2=M2

Pl forMPl=ðrξÞ≲v≲MPl=
ffiffiffi
ξ

p
;

r
ffiffiffi
ξ

p
v=MPl forMPl=

ffiffiffi
ξ

p ≲v≲MPl=ðr
ffiffiffi
ξ

p Þ;
1 forMPl=ðr

ffiffiffi
ξ

p Þ≲v;

ð20Þ

for N ¼ 2. As for 0 ⩽ r≲ 1=
ffiffiffi
ξ

p
, the cutoff is basically

∼1=
ffiffiffi
ξ

p
except for v ≳MPl=

ffiffiffi
ξ

p
in the N ¼ 2 case where

ΛEC=ΛG ∼ v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 12M2

Pl

p
. These results are all frame

independent.
General nonlinear σ model.—We can easily apply our

approach to the general NLSM with gravity. Consider, e.g.,
multiple scalars with curved target space and nonminimal
coupling in metric formalism [47]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

Pl

2
fRJ −

gμνJ
2

Gij∂μϕ
i
∂νϕ

j − V

�
; ð21Þ

where f is a positive-definite scalar function with f ¼ 1 for
ϕi ¼ 0, and Gij is a general nondegenerate target-space
metric both of which depend on ϕi. We further assume the
theory respects OðNÞ symmetry (N ⩾ 2) as a simple
example for NLSM. This symmetry allows us to rewrite
the metric as Gijdϕidϕj ¼ Gðh2Þdh2 þ ðh2=v2Þ½dπ⃗2 þ ðπ⃗ ·
dπ⃗Þ2=ðv2 − π⃗2Þ� with Gð0Þ ¼ 1 in the spherical coordinate
of ϕi ¼ ðh; π⃗Þ, and restricts the form of the nonminimal
coupling to be f ¼ fðh2Þ [48]. Here, h is the radial mode,
and π⃗ are the coordinates on SN−1. v is a parameter to give a
mass dimension one to π⃗. For h ¼ v and π⃗ ¼ 0⃗, the
Riemann tensor of Gij denoted as Rikjl is readily obtained

as R̄πiπk ¼ ðḠ − 1Þ=ðv2ḠÞ and R̄hπk ¼ G0=Ḡ with Ḡ ¼
Gðv2Þ andG0 ¼ G0ðv2Þ. We again parametrize the Riemann
tensor as R̄ikjl ¼ R̄ikðδijδkl − δilδjkÞ. One may confirm the
restoration of OðNÞ symmetry in the limit of v → 0 as
R̄πiπk ¼ R̄hπk ¼ G0

0 with G0
0 ¼ G0ð0Þ.

The extended target-space metric for φa
J ¼ ðΦJ; h; π⃗Þ is

given as
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ðGNL
ab Þ≡

0
BBBBB@

−f −f0ΦJh

−f0ΦJh
Φ2

J

6M2
Pl
Ghh

0

0 Φ2
J

6M2
Pl
ðGπiπjÞ

1
CCCCCA: ð22Þ

The relevant components of the target-space metric and
Riemann tensor are shown in Table I, which are invariant
under frame transformation. We can calculate the frame-
independent cutoff scale in the same way as previous
sections, although the results are now more involved. As an
illustration, we compare our results to those without gravity
in the limit v → 0, where the Riemann tensor respects the
OðNÞ symmetry R̄πiπk ¼ R̄hπk as expected. The frame-
independent cutoff scale is

ΛNLSM

ΛG
∼

ffiffiffiffiffiffiffiffiffiffi
N2

R̄Λ2
G

s
∼

ffiffiffiffiffiffiffiffiffiffiffi
N

N−1

r �
M2

PlG
0
0þ

ð1þ6M2
Plf

0
0Þ2

6

�
−1=2

:

ð23Þ

The first term corresponds to the result without gravity, and
the second term is the correction from the nonminimal
coupling to gravity. The latter vanishes for M2

Plf
0
0 ¼ −1=6,

i.e., the conformal coupling, as expected.
As a final remark, we consider a general frame trans-

formation

Φ2
F ¼ Ω2

FΦ2
J ; Ω2

F ¼
f
fF

; ð24Þ

where fF being an arbitrary function of h2. The extended-
target space metric for ðφa

FÞ ¼ ðΦF; h; π⃗Þ becomes

ðĜNL
ab Þ¼

0
BBBBBBB@

−fF −f0FΦFh

−f0FΦFh
Φ2

F

h
Ghh
6M2

Pl

þh2f

�
f02
f2
−
f2
F0
f2
F

�i
Ω2

F

0

0
Φ2

FðGπiπj Þ
6M2

PlΩ
2
F

1
CCCCCCCA
:

ð25Þ

Interestingly, we can obtain an apparently flat target space
for ϕi by choosing fF such that ĜNL

hh ¼ ð6M2
PlΩ2

FÞ−1Φ2
F for

given f and Ghh, and redefining dϕ̃
i ≡ ffiffiffiffiffiffiffiffiffiffi

fF=f
p

dϕi. In other
words, for a given OðNÞ NLSM, there always exists a
certain frame where the target space of ϕi is completely flat
(this particular frame is the “Jordan frame” for the metric
and Einstein-Cartan HI) [48].
This observation emphasizes the significance of the

inclusion of a conformal mode in the discussion of
NLSM with gravity. As we have shown, all the different
target-space geometries of ϕi in OðNÞ NLSM are

connected by the frame transformation. Hence, the target
space spanned only by ϕi is clearly unphysical once we
introduce the coupling to gravity. To tell the difference, we
have to consider the geometry of the extended target space
including the conformalmode, which ismanifestly invariant
under the frame transformation or field redefinition [48]. As
we have seen, we only need one straightforward calculation
of the curvature of the extended-target space.
Conclusions.—We propose a geometric method for

calculation of physical quantities, e.g., the unitarity-vio-
lation scale, of theories where scalar fields nonconformally
coupled with gravity, from which the results are manifestly
Weyl-transformation or field-redefinition independent as
they should be. The cutoff scale of multiple-scalar theories
is characterized by the geometry of the target space of
scalar fields, which is invariant manifestly under the
redundancy description of field redefinition. However,
coupling to gravity introduces a new redundancy, i.e.,
Weyl transformation or frame choice, which spoils the
advantages of the geometric method. We show that
including the conformal mode of the spacetime metric
to extend the notion of target space can help regain the
merits of geometric method, because the Weyl trans-
formation now becomes simply a field redefinition (of
the conformal mode) in the extended geometry which, by
definition, does not change the geometric or physical
quantities. We show several examples of frame-independent
unitarity-violation scales, such as HI in metric and Einstein-
Cartan formalisms (Table I). These results are consistent
with those calculated in either the Jordan or Einstein frame
in the literature. We also discuss general NLSM where one
can freely choose a frame in which the original target space
is flat or curved, but the extended geometry and physical
quantities are invariant under field redefinition of both
conformal mode and scalar fields.
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