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We present a top-down construction of a three-dimensional nonlocal theory of massive gravity. This
“nonlocal massive gravity” (NLMG) is obtained as the gravitational theory induced by Einstein gravity on a
brane inserted in anti–de Sitter space modified by an overall minus sign. The theory involves an infinite
series of increasingly complicated higher-derivative corrections to the Einstein-Hilbert action, with the
quadratic term coinciding with new massive gravity. We obtain an analytic formula for the quadratic action
of NLMG and show that its linearized spectrum consists of an infinite tower of positive-energy massive
spin-2 modes. We compute the Newtonian potential and show that the introduction of the infinite series of
terms makes it behave as ∼1=r at short distances, as opposed to the logarithmic behavior encountered when
the series is truncated at any finite order. We use this and input from brane-world holography to argue that
the theory may contain asymptotically flat black hole solutions.
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Gravity is simpler in three dimensions. The Riemann
tensor is fully determined by the Ricci tensor and all
solutions of Einstein gravity are locally maximally sym-
metric. Additionally, local dynamics is trivial in the absence
of matter, as metric perturbations propagate no degrees of
freedom [1].
Nontrivial dynamics can be obtained by adding higher-

curvature corrections to the Einstein-Hilbert action [2,3]. The
prototypical instance corresponds to “new massive gravity”
(NMG) [4,5], where a smart choice of quadratic correction
gives rise to a theory that propagates a unitary massive
graviton. The construction relies on an unusual overall minus
sign in the action which heals the otherwise ghostlike mode
associated to the quadratic term. This procedure would
transform the Einstein graviton into a ghost in higher
dimensions, but not in three, where it does not exist at all.
In D ¼ 4, quadratic corrections render Einstein gravity

perturbatively renormalizable at the price of making it
nonunitary [6]. On the other hand, NMG is power-counting
UV finite, and unitary, although ultimately nonrenormaliz-
able perturbatively [7,8].
Numerous generalizations of NMG have been studied in

the literature attending to different criteria. One direction
entails demanding the corresponding theories to admit a
holographic c theorem [9–12]. This includes a Born-Infeld-
type extension of NMG [13]. Additional theories are

selected by the condition that they can be written in a
Chern-Simons-like form [14–16]. Yet a different route
involves considering certain D → 3 limits of higher-
dimensional theories [17,18]. Alternative ideas include
[19–25]. Despite their variety, all these approaches follow
from bottom-up considerations.
In this Letter, we present a unitary, nonlocal extension of

NMG which we dub “nonlocal massive gravity” (NLMG).
Our construction is top down in the sense that the theory is
uniquely defined as the gravitational action induced on a
codimension-1 brane inserted near the boundary of anti–
de Sitter (AdS) spacetime by four-dimensional Einstein
gravity, modified by an overall minus sign, namely,

INLMG ≡ −Ibgrav: ð1Þ

The above action involves an infinite tower of higher-
curvature corrections to the Einstein-Hilbert action,

INLMG ¼ −
Z

d3x
ffiffiffiffiffiffi−gp
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where l is a gravitational coupling with dimensions of
length. The quadratic and cubic densities read, respectively,

Lð2Þ ¼ −RabRab þ 3
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Lð2Þ is nothing but the NMG density, whereas higher
orders give rise to an increasingly complicated structure
of densities which involve the Ricci tensor and its covariant
derivatives [26]. Explicit expressions up to n ¼ 6
can be found in [27], where it has been conjectured
that every density can always be written as LðnÞ ¼
Sn½Rab� þ Tn½∇a; Rab�, where the piece involving covariant
derivatives vanishes on conformally flat backgrounds and
Sn½Rab� has second-order equations on cosmological and
domain wall ansatze—see also [28–30].
As we show below, the linearized spectrum of NLMG

consists of an infinite tower of massive spin-2 modes that
carry positive energy. This follows from an analysis of the
quadratic action of the theory, which can be written in closed
form in terms of elementary functions of the Laplace
operator—see Eq. (9). We find an analytic formula for
the Newtonian potential and show that the infinite tower of
terms has the effect of producing a ∼1=r behavior near the
pointlike source. This remarkably differs from the logarith-
mic behavior encountered when the series is truncated at any
finite order and suggests the existence of a new class of
three-dimensional asymptotically flat black-hole solutions.
NLMG from brane-world gravity.—The origin of the

higher-curvature densities appearing in the action of
NLMG can be understood as follows. Consider Einstein
gravity in the presence of a negative cosmological constant
in four dimensions. Inserting a brane near the AdS
boundary allows us to reinterpret the bulk theory in terms
of an induced gravitational theory on the brane coupled
to a cutoff conformal field theory (CFT) [32–35].
Schematically, one has IEH þ Ibrane ¼ Ibgrav þ ICFT. In this
expression, IEH is the Einstein-Hilbert action (plus the
Gibbons-Hawking boundary term), Ibrane is the brane
world-volume action, ICFT is the cutoff CFT, and Ibgrav
is the brane-world gravity action previously mentioned.
The brane-world theory is defined by projecting the bulk

Einstein equations on the brane and then decomposing
them on intrinsic curvature and extrinsic curvature—which
plays the role of the brane stress-energy tensor. One of the
components of the bulk Einstein equations yields [37]

Π ¼ l
2

�
Rþ ΠabΠab −

1

2
Π2

�
; ð5Þ

where R is the Ricci scalar of the induced metric on the
brane, Πab ≡ ð2= ffiffiffiffiffiffi−gp Þðδ=δgabÞIbgrav is the equation of
motion of the brane-world theory [38], Π is its trace,
and l is the AdS radius in the bulk. As shown by [26], the
relation (5) is enough to derive the form of the induced
gravity action Ibgrav. Writing the brane-world Lagrangian as
a series expansion in derivatives of the metric yields a
recursive relation for the trace that has the form

Πðn≥2Þ ¼
1

2

Xn−1
i¼1

�
ΠðiÞabΠab

ðn−iÞ −
ΠðiÞΠðn−iÞ

2

�
; ð6Þ

whereΠab
ðnÞ is the equation of motion of the nth density. The

above relation is complemented with the seed condition,
Πð1Þ ¼ R=2, together with

ΠðnÞ ¼ ð3 − 2nÞLðnÞ; ð7Þ

which holds up to total derivatives and follows from
consistency of the induced gravity action under Weyl
rescalings of the metric [26]. These expressions allow
one to unambiguously determine, order by order, the full
tower of Lagrangian densities—see Refs. [26,27].
Observe that the Einstein-Hilbert piece of the NLMG

action contains a somewhat unusual negative sign which,
just like in the NMG case [4], is required for the linearized
massive modes of the theory to have positive kinetic
energy—see below. While this would make the usual
massless graviton become a ghost in higher dimensions,
in D ¼ 3 no such mode exists in the linearized spectrum—
it is pure gauge—which saves the consistency of the
construction [1].
Note also that even though INLMG is an extremely

complicated gravitational Lagrangian, the special relations
satisfied by the equations of motion can give us some hints
on the solutions of the theory. In particular, observe that

Πab ¼ 0 ⇒ R ¼ 0; ð8Þ

namely, all solutions of NLMG have a vanishing Ricci
scalar, a property which is obviously shared by Einstein
gravity, but not by NMG.
Quadratic action.—The linearization of the theory

around flat space is useful for constructing perturbative
solutions and is essential for assessing the spectrum of the
theory. The linearization of a higher-curvature theory can
always be reduced to the problem of obtaining an equiv-
alent quadratic action which involves all terms with two
powers of curvature tensors [40,41]. In the case of NLMG,
the quadratic action can be straightforwardly obtained from
the results presented in [42]. It can be written in the
remarkably compact form

Ið2ÞNLMG¼−
Z

d3x
ffiffiffiffiffiffi−gp

16πG

�
R−l2RabFðl2□Þ

�
Rab−

3

8
gabR

��
;

ð9Þ

where we defined

FðxÞ≡ sinð ffiffiffi
x

p Þ
x sinð ffiffiffi

x
p Þ þ ffiffiffi

x
p

cosð ffiffiffi
x

p Þ ; ð10Þ

and □ ¼ gab∇a∇b. Similarly to the full NLMG action, its
quadratic version also provides a nonlocal completion
of NMG. Indeed, expanding around x ¼ 0, one finds
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FðxÞ ≈ 1 − 2
3
xþ ð7=15Þx2 þ � � �, so the first term in the

infinite expansion yields the usual NMG density [4].
Linearized spectrum.—Let us now study the linearized

equations of NLMG on a Minkowski background—which
is itself a trivial solution of the equations of motion. Hence,
we consider an expansion of the metric of the form

gab ¼ ḡab þ hab; ð11Þ

where ḡab is the Minkowski metric and hab is a small
perturbation. Using the method developed in [43], it is
straightforward to obtain the linearized equations of the
NLMG theory. The result reads

1

32πG
½−1þ Fðl2

□Þl2
□�Gð1Þ

ab ¼ 0; ð12Þ

Rð1Þ ¼ 0; ð13Þ

where Gð1Þ
ab and Rð1Þ are the linearized Einstein tensor and

Ricci scalar, respectively,

Gð1Þ
ab ¼ ∇ðaj∇chcjbÞ −

1

2
□hab −

1

2
∇a∇bh −

1

2
ḡabRð1Þ;

Rð1Þ ¼ ∇a∇bhab −□h: ð14Þ

Equation (13) implies that the linearized metric propagates
no scalar modes, a feature shared by brane-world gravities
in general dimensions as well as by the usual NMG theory.
Fixing the harmonic gauge,∇hab ¼ 1

2
∇bh, the vanishing

of the linearized Ricci scalar can be used to set h≡
ḡabhab ¼ 0 and the linearized Einstein tensor simply

becomes Gð1Þ
ab ¼ 1

2
□hab. Inserting this in (12) and Fourier

transforming the resulting expression we can read off
the propagator of the theory. Up to a fixed tensorial
structure [8], the result is

PNLMGðkÞ ¼ −
1

l2k2
þ tanhðlkÞ

lk
: ð15Þ

For each pole we have k2 ¼ −m2, where m2 is the squared
mass of the corresponding mode. There is an obvious pole
at k2 ¼ 0, corresponding to the would-be massless graviton
of Einstein gravity, which is pure gauge in three dimen-
sions. Additionally, one finds an infinite tower of poles
corresponding to massive spin-2 modes

PNLMGðk2 → −m2
nÞ ≈

þ2

l2ðk2 þm2
nÞ

þ � � � ; ð16Þ

with masses

mn ¼
π

2l
ð2n − 1Þ; ð17Þ

all of which have positive kinetic energy, following from
the positivity of the residue at each pole [44]. Again, this
represents a generalization of the NMG case, for which one
has a single massive mode of mass m ¼ 1=l.
Newtonian potential.—In the Newtonian approximation,

the metric can be written as

ds2 ¼ −ð1þ 2ΦÞ dt2 þ ð1 − 2ΨÞ dx⃗2; ð18Þ

and it is determined by two potentials Φ and Ψ, of which
the former is the usual Newtonian potential. Assuming a
pressureless stress energy tensor with energy density
ρ ¼ Ttt, these potentials satisfy the equations

□Ψþ 1

2
Fðl2

□Þl2
□

2ðΦþ ΨÞ ¼ −8πGρ; ð19Þ

□ðΨ −ΦÞ ¼ −8πGρ: ð20Þ

Notice that the second equation, coming from the trace
of the equations of motion, is unchanged with respect to
Einstein gravity (except for an overall sign). This is related
to the fact that NLMG does not propagate scalar degrees of
freedom.
Let us then consider the case of a point particle, with

ρ ¼ Mδð2Þðx⃗Þ. The second equation implies that Ψ −Φ ¼
−2GM logðr=r0Þ, which can be seen to be (locally)
equivalent to a gauge transformation [45]. In the case of
Einstein gravity, we furthermore have Φ ¼ 0, so that the
whole metric is flat. This is no longer the case in NLMG.
By solving the equations in momentum space and then
converting back to position space, one can see that the
Newtonian potential is given by

ΦNLMGðrÞ ¼ −4πGlM
Z

∞

0

dk J0ðkrÞ tanhðlkÞ; ð21Þ

where J0ðkrÞ is a Bessel function of the first kind.
This formula secretly contains information on the

massive degrees of freedom of the theory. To make this
manifest, we utilize the following representation of the
tanh function,

tanhðlkÞ ¼ 2

l

X∞
n¼1

k
k2 þm2

n
; ð22Þ

wheremn are precisely the masses in (17). Now, the integral
in (21) can be performed for each term in this series and
we get

ΦNLMGðrÞ ¼ −8πGM
X∞
n¼1

K0ðmnrÞ; ð23Þ

where in this case, K0ðmrÞ is a modified Bessel function of
the second kind. Clearly, this shows that the full Newtonian

PHYSICAL REVIEW LETTERS 132, 191402 (2024)

191402-3



potential is a sum of the potentials from each individual
massive graviton. In particular, the potential for NMG is
given by a single term ΦNMGðrÞ ¼ −8πGMK0ðmrÞ [46].
The formula (23) is useful in order to determine the

asymptotic behavior of the potential. Indeed, the Bessel
function K0ðmnrÞ decays exponentially, and therefore for
large distances the potential is dominated by the lightest
mode. More precisely we have,

ΦNLMGðr → ∞Þ ¼ −
8π3=2GMffiffiffiffiffiffiffiffiffiffiffi

2m1r
p e−m1r; ð24Þ

which is the same behavior as in NMG with m ¼ m1.
Let us then examine the behavior for small radius. For

mr ≪ 1, the modified Bessel functions posses a logarith-
mic divergence K0ðmrÞ ∼ − logðmrÞ. Thus, for NMG and
for any theory with a finite number of massive gravitons
the Newtonian potential diverges logarithmically near the
origin. However, the result changes qualitatively when the
full tower of massive modes is included. The easiest way
to see this is to evaluate (21) for r ≪ l. In that regime,
the main contribution to the integral comes from lk ≫ 1
and hence the leading behavior is captured by setting
tanhðlkÞ ¼ 1. Thus, we get

ΦNLMGðr ≪ lÞ ¼ −
4πGlM

r
; ð25Þ

and remarkably, one recovers the usual 1=r behavior of a
point particle in the four dimensional bulk space. As we
noted, this cannot happen in any theory with a finite
number of derivatives (hence a finite number of modes),
so this is a genuine nonlocal effect. We illustrate this in
Fig. 1 where we show how the Newtonian potential
approaches that of NLMG as the number of massive

gravitons is increased. We can also interpret this as the
fact that the theory effectively becomes four dimensional at
length scales shorter than l, where the massive modes
become active.
Black holes?—The fact that the Newtonian potential

exhibits a 1=r behavior at short distances suggests that
NLMG has asymptotically flat vacuum black holes. We
have not been able to confirm this directly, but further
support comes from recent developments in brane-world
holography [47–49].
In this context, the four-dimensional AdS C metric has

been used to describe three-dimensional, asymptotically
AdS “quantum Bañados-Teitelboim-Zanelli (BTZ)” black
holes localized on a brane. The effective action on the brane
consists of a gravitational theory coupled to a (cutoff) CFT.
The gravitational sector of the theory is equivalent to
NLMG with a cosmological constant and modified by
an overall minus sign.
The tension of the brane plays two roles. It governs the

strength of the quantum backreaction of the CFT on the
brane geometry and also gives the cutoff of the CFT—see
Fig. 2. In the limit of large tension, the gravitational
dynamics on the brane turns off, the cutoff goes to zero,
and one is left with a strongly coupled CFT on a
nondynamical BTZ black hole. On the other hand, in
the tensionless limit, the CFT degrees of freedom are
completely integrated out to yield a purely gravitational
theory on the brane, albeit a strongly coupled one (i.e.,
with large coupling constant). Crucially, this theory is not
coupled to matter, so the overall minus sign relative to
NLMG becomes irrelevant: solutions of the brane theory
are also solutions of NLMG (with cosmological term) in
this limit.
One can show that in the tensionless limit, the metric on

the brane is an equatorial slice of the Schwarzschild-AdS4
black hole—cf. Sec. 2.3 of [47]—with metric function
fðrÞ ¼ 1–2m=rþ r2=l2

4. This confirms that the cosmo-
logical extension of NLMG does indeed contain black
holes, at least in the limit of large coupling. Moreover,
because of the 1=r term in the metric function, the existence

FIG. 1. Newtonian potential for NLMG and for theories with
n ¼ 1, 10, and 100 massive gravitons, obtained by truncating the
sum (23). In the log-log scale the NLMG potential appears as a
straight line for r ≪ l, indicating that ΦNLMG ∝ 1=r. For any
finite number of gravitons the profile for r ≪ l is logarithmic
instead. For large r all the potentials decay exponentially.

FIG. 2. Visual depiction of brane-world holography. Left: a
brane (in red) near the AdS boundary, representing the high-
tension limit that approaches conventional AdS=CFT as tension
drives the brane to the boundary. Right: the tensionless limit,
where all CFT degrees of freedom are eliminated, leaving a
purely gravitational, yet strongly coupled, brane theory.
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of a horizon is not merely a consequence of the cosmo-
logical constant length scale. Since this term likely arises
from the Newtonian potential, this all suggests that NLMG
very likely contains black holes at finite coupling and in the
asymptotically flat setting as well.
Discussion.—Nonlocal massive gravity is a new unitary

and nonlocal generalization of three-dimensional Einstein
gravity and NMGmotivated from top-down considerations.
As we have seen, the linearized spectrum of the theory
shows that it is perturbatively unitary at the quantum level,
a fact which crucially relies on the trivial linearized
dynamics of Einstein gravity combined with the unusual
overall minus sign. Additionally, the presence of higher-
derivative terms makes the theory power-counting UV
finite. However, analogously to NMG, we expect that
the absence of scalar degrees of freedom makes the theory
nonrenormalizable [7,8]. In addition, we observe that the
propagator of NLMG behaves as PNLMGðkÞ ∼ 1=k for
k → ∞ as opposed to the 1=k4 behavior of NMG or the
1=k2 of Einstein gravity. This makes NLMG even “less
renormalizable” than those, which can ultimately be traced
back to the fact that NLMG is somehow four-dimensional
Einstein gravity in disguise.
The anomalous degree of divergence of the propagator

of NLMG is also behind the unusal behavior of its
Newtonian potential, which diverges as 1=r, contrary to
the logarithmic behavior of any truncation of the infinite
tower of higher-derivative terms. This, along with the
aforementioned connections with the quantum BTZ sol-
ution and the four-dimensional “origin” of the theory
suggest that NLMG admits nontrivial asymptotically flat
black holes. In this regard, it is worth mentioning that
nonlocal theories of gravity have been traditionally
considered with the goal of resolving spacetime singu-
larities [50–55]. The nature of our construction leads to a
situation that turns out to be the opposite. This shows that
nonlocal theories do not necessarily reduce the degree of
divergence of spacetime singularities.
There are many possible future directions suggested by

this work. Foremost among these would be studying the
cosmological extension of NLMG, which would allow for
direct holographic analysis of the theory. In our case, the
construction of the quadratic action, which governs the
linearized perturbations, relied crucially on the absence
of a cosmological constant and so new techniques will be
required to tackle this problem efficiently. It would also be
of considerable interest to explicitly construct, or establish
additional evidence for, black holes in the theory. Perhaps
this could be achieved via a suitable generalization of the
brane-world holography approach used in [47], or it may
be possible to utilize methods based on null shell collapse
to understand the formation of mini black holes in the
linearized regime [52]. Yet another possibility is to study
the nature of curvature singularities in NLMG, which may
provide a toy model for understanding the implications of

quantum effects for the classical properties of singular-
ities, such as ultralocality and chaos [56].
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