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In a generic theory of gravity coupled to matter fields, the Smarr formula for black holes does not work
properly if the contributions of the coupling constants defining the theory are not incorporated. However,
these couplings, such as the cosmological constant or the dimensionful parameters that appear in the
Lagrangian, are fixed parameters defining the theory, and they cannot be varied. Here, we present a robust
method, applicable to any covariant Lagrangian, that upgrades the role of the couplings from being
constants in the theory to being free parameters of the solutions. To this end, for each one of the couplings
in a theory, a pair of auxiliary scalar and gauge fields is introduced. The couplings are shown to be
conserved charges of the global part of the implemented gauge symmetry. Besides, their conjugate
chemical potentials are defined as the electric potential of the corresponding gauge fields on the black hole
horizon. Using this method, we systematically extend the first law and the Smarr formula by coupling
conserved charges and their conjugate potentials. The thermodynamics of a black hole solution in a
quadratic gravity theory is given as an example.
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Introduction.—In the last decades, the cosmological
constant Λ [1] has been the focus of astronomical observa-
tions [2,3] as well as theoretical research such as the
AdS/CFT correspondence [4,5] and the black hole
thermodynamics [6–8] and chemistry [9–24]. Although a
constant in the Lagrangian, it plays the role of pressure in
black hole thermodynamics, which is traditionally a prop-
erty of the solution. Despite this perplexing behavior,
variation of the cosmological constant has to be included
in the black hole first law to have a consistent Smarr formula
[25] (see a review in [17]). In addition, there are applications
for the extension of black hole thermodynamics in the AdS/
CFTas the central charge of the dual description [26], aswell
as phase transitions [27], holographic complexity [28], and
weak cosmic censorship conjecture [29].
However, by fiat, Λ is a constant in the Lagrangian and

not a property of a particular solution (such as the mass or
the charge or angular momentum of the solution). Thus, it
is not clear how it can be varied to fit into the first law of
black hole thermodynamics. Besides, its conjugate chemi-
cal potential lacks a firm geometrical prescription as a
volume. The lack of a universal definition for the conjugate
chemical potentials or the issue of constant parameter
variation in the Lagrangian are two examples of how the
literature, despite many excellent ideas and contributions,
lacks a coherent and universal construction.
As a remedy, the Lagrangian can be modified by an

auxiliary gauge field [30–33] such that the Λ changes its
role to be the conserved charge of the induced gauge
symmetry and hence a parameter in the solution. In
addition, its conjugate is defined naturally as the horizon
gauge potential [34,35].

The Smarr formula is democratic as far as the coupling
constants other than Λ are considered and cannot be
satisfied unless other couplings are also included in the
black hole thermodynamics. It suggests a general formu-
lation that can capture all couplings as conserved charges in
black hole physics. In this Letter, we provide a modification
of the Lagrangian that can put the black hole chemistry
with all couplings on firm ground. The main idea is the
same as in [30–35]: the introduction of new symmetries.
However, there are two main differences in the construc-
tion: (1) instead of a single gauge field associated with the
couplings, for each one of the couplings (including the
cosmological constant), a pair of fields (one gauge and one
scalar field) is implemented, and (2) the Lagrangian of the
gauge fields is no longer quadratic but linear in the field
strength. These differences are crucial for a general method
that works for an arbitrary coupling.
The Letter is organized as follows: In the next section,

pairs of auxiliary fields are introduced in the Lagrangian,
which allows one to interpret the coupling constants as
parameters in the solutions. In section “coupling constants
as conserved charge,” we show that the couplings are
conserved charges. Section “conjugate chemical potentials
for the coupling constants” is devoted to introducing
conjugate chemical potentials. The first law of black hole
thermodynamics and the Smarr formula are extended in
Section “extension of the first law of black hole. thermo-
dynamics.” In the last section, a clarifying example, which
is a well-studied, 3D higher curvature gravity, is given to
show the validity of our approach.
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Couplings as solution parameters.—In a D-dimensional
space-time, we consider the action

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L; L ¼ L0 −

X
i

αiLi; ð1Þ

where L0 is Lagrangian that includes the kinetic term and
comes with no coupling constant such as the Einstein-
Hilbert term (Newton’s constant is set to unity, or it
multiplies the whole action); and Li’s are some number
of other Lagrangian densities labeled by index i that are
coupled with the corresponding coupling constant αi. The
densities can be, e.g., the (cosmological) constant term,
higher curvatures, scalar tensor theories, Maxwell gauge
fields, and in general, any covariant term that is built of the
metric gμν, curvature Rα

βμν, covariant derivative ∇μ, and
other dynamical fields in the theory. The action (1) can
be conventionally rewritten in terms of the volume D
form ϵ, i.e.,

ϵ ¼
ffiffiffiffiffiffi−gp
D!

ϵμ1…μDdx
μ1 ∧ … ∧ dxμD;

I ¼
Z

L ¼
Z �

L0 −
X
i

αiLi

�
; ð2Þ

where we defined the D-forms as

L≡ Lϵ; L0 ≡ L0ϵ; Li ≡ Liϵ; ð3Þ
with ϵ01…D−1 ¼ þ1 for the Levi-Civita symbol. Variation
of L with respect to all dynamical fields, collectively
denoted by ΦðxÞ including the metric gμν, yields

δL ¼ EΦδΦþ dΘ; ð4Þ

in which the summation convention over the fields should
be understood. Setting δL ¼ 0 yields the field equations
EΦ ¼ 0 associated with each one of the fields in the set Φ;
appropriate boundary conditions must also be provided for
the well-posedness of the problem. We note that EΦ and Θ
are linear in terms of the Lagrangian components, namely,

EΦδΦ ¼
�
EΦ

0 −
X
i

αiEΦ
i

�
δΦ; Θ ¼ Θ0 −

X
i

αiΘi:

ð5Þ
It is possible to introduce pairs of auxiliary fields in the

Lagrangian in order to promote αi’s to be free parameters in
the solution, not the theory. Each pair, labeled also by the
index i, is composed of one scalar field denoted by αiðxÞ
and one (D − 1)-form gauge field Ai. The field strength
Fi ≡ dAi is a top form that is invariant under the gauge
transformation

Ai → Ai þ dλi: ð6Þ

Equipped with the auxiliary field pairs, a given action I
in (2) can be modified to an extended action Ĩ as

Ĩ ¼
Z

L̃≡
Z �

L0 −
X
i

αiðxÞðLi − FiÞ
�
: ð7Þ

This action is symmetric under the gauge transforma-
tion (6) since Fi is gauge invariant by construction.
Besides, it reproduces the dynamics of the fields in the
original action (2) on shell. To this end, we denote the
collection of the fields fΦ; αi;Aig by Φ̃. Then, the variation
of (7) followed by the standard integration by parts gives

δL̃ ¼ EΦ̃δΦ̃þ dΘ̃; ð8Þ

in which the modified variations read as

EΦ̃δΦ̃ ¼ EΦ
0 δΦ −

X
i

��
αiðxÞEΦ

i − dαiðxÞ
∂Li

∂ðdΦÞ
�
δΦ

þ ðLi − FiÞδαiðxÞ þ dαiðxÞδAi

�
; ð9Þ

Θ̃ ¼ Θ0 −
X
i

αiðxÞΘi þ
X
i

αiðxÞδAi: ð10Þ

For clarity, the x dependency of the scalar fields αi is shown
explicitly. In order to find the field equations by the action
principle δL̃ ¼ 0, the coefficients of δΦ, δαiðxÞ, and δAi
in (8) should vanish independently. The equations that arise
from the last two terms yield the on-shell relations

Fi ¼ Li; dαiðxÞ ¼ 0; ð11Þ

respectively. The last equality above implies

αiðxÞ ¼ const; ð12Þ

which means that αi’s are some free solution parameters
that are constant over space-time. Inserting this crucial
result in the overall coefficient of δΦ in (8) the original
equations of motion in (5) are recovered.
The argument above shows that, as far as the dynamics

of the fieldsΦ are concerned, one can use the LagrangianL
and L̃ interchangeably. However, the main advantage of L̃
is to promote the coupling constants αi’s in L to be free
parameters of the solutions Φ̃. This vantage point of view is
important for the rest of this Letter, where we need the
variations of αi ’s as solution parameters to be considered in
the first law of black hole thermodynamics. Interestingly,
one can go further and show that not only αi’s can be
considered as free parameters in the solutions, but there are
also conserved charges, which we discuss next.
Coupling constants as conserved charges.—Motivated

by the analysis in [34,35] where the cosmological constant
was reinterpreted as a conserved charge, this section is
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devoted to showing that in a theory that is described by
the action I in (2) or equivalently by Ĩ in (7), the coup-
ling constants or the solution parameters αi in (12) are
conserved charges associated with the global part of the
gauge symmetries in (6). For this purpose, the “covariant
phase space” formulation of charges, also known as the
Iyer-Wald formulation [36–39] (initiated and followed in
[40–43]) is apt. The formalism is reviewed, e.g., in [44–46]
and applied to various theories (e.g., see Ref. [47]).
Let us first focus on the action I in (2). In the covariant

phase space method, the symplectic current ω is defined by
taking an exterior derivative ofΘ on the field configuration
space, i.e.,

ωðδ1Φ; δ2Φ;ΦÞ ¼ δ1Θðδ2Φ;ΦÞ − δ2Θðδ1Φ;ΦÞ: ð13Þ

If the fields Φ and their variations δΦ satisfy the field
equations and their linearized versions respectively, then
the symplectic current is locally conserved, i.e., dω ¼ 0. As
a result, it is possible to define the symplectic 2-form

Ωðδ1Φ; δ2Φ;ΦÞ≡
Z
Σ
ωðδ1Φ; δ2Φ;ΦÞ; ð14Þ

which makes the field configuration space a phase space.
The hypersurface Σ is a Cauchy surface, and the result
in (14) is independent of its choice by the conservation ofω
and the appropriate boundary conditions.
Having the symplectic form in hand, one can associate a

charge variation δHϵ to a symmetry generator ϵ≡ fξμ; λg
that is composed of a diffeomorphism xμ → xμ − ξμ and
some Maxwell (or Yang-Mills) gauge transformation
Aμ → Aμ þ ∂μλ. The charge variation is defined as δHϵ≡
δϵΦ ·Ω, which yields

δHϵðΦÞ ¼
Z
Σ

�
δΘðδϵΦ;ΦÞ − δϵΘðδΦ;ΦÞ�

¼
Z
Σ

�
δΘðδϵΦ;ΦÞ − LξΘðδΦ;ΦÞ�; ð15Þ

where in the last equation the gauge invariance ofΘ is used.
By the Cartan identity, LξΘ ¼ ξ · dΘþ dðξ ·ΘÞ, and the
on-shell relation dΘ ¼ δL the charge variation in (15) is
equal to

Z
Σ

	
δ
�
ΘðδϵΦ;ΦÞ − ξ ·L

�
− d

�
ξ ·ΘðδΦ;ΦÞ�


¼
Z
Σ
d
�
δQϵðΦÞ − ξ ·ΘðδΦ;ΦÞ�: ð16Þ

The last equality follows from the celebrated Noether
current

Jϵ ¼ ΘðδϵΦ;ΦÞ − ξ ·LðΦÞ; dJϵ ¼ 0 ⇒ Jϵ ¼ dQϵ;

ð17Þ

in which the Poincaré lemma is used to introduce Q as the
Noether charge density, and δd ¼ dδ was also used. By
Stokes’ theorem, the right-hand side of (16) can be written
as a surface integral:

δHϵ ¼
I
∂Σ
kϵ; kϵðδΦ;ΦÞ≡ δQϵðΦÞ − ξ ·ΘðδΦ;ΦÞ:

ð18Þ
Notice that similar to the field equations and Θ in (5), k is
also linear in the Lagrangian components of arbitrary
action, e.g., for the action I in (2):

k ¼ k0 −
X
i

αiki: ð19Þ

Now, we are ready to follow these steps verbatim, this
time for the action Ĩ in (7). Considering the additional
gauge symmetry in (6), the charge generator ϵ is extended
to capture this feature, namely

ϵ̃≡ fξμ; λ; ½λi�g ð20Þ

for i number of gauge generators fλig. Then, replacing
L → L̃ andΘ → Θ̃ in (17) and (18) with multiple usage of
the on-shell condition (12) we find

δHϵ̃ ¼
I
∂Σ
k̃ϵ̃; k̃ϵ̃ ¼ kϵ þ

X
i

�
ξ ·Aiδαi þ δðαiλiÞ

�
:

ð21Þ
This relation can be used to calculate the charges of the
diffeomorphism and gauge symmetries, and we will use it
to find mass, angular momentum, entropy, and other black
hole charges in the last section. However, here we focus on
a very specific symmetry that is a global part of the gauge
transformation (6). The generator that we choose is propor-
tional to f0; 0; ½λi�gwith only one nonzero gauge generator,
calling it λj, that satisfies dλj ¼ 0. The rest of gauge
generators in fλig, i.e., all λi for i ≠ j vanish. To fix the
normalization of the generator, we can divide it by the
factor jλjj≡

H
∂Σ λj, which is a constant, i.e., independent of

the arbitrarily chosen ∂Σ as well as the xμ (explained
below). So, we define

λ̂j ¼
λj
jλjj

; ϵ̃j ≡ f0; 0; λ̂jg: ð22Þ

For such generators that are solely composed of the gauge
transformations (6), the only relevant part of the charge
variation is the last term in (21). So,
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δHϵ̃j ¼
I
∂Σ
δðαjλ̂jÞ ¼ δαj; ð23Þ

where the last equation is a result of the on-shell xμ

independency of αi, δλ̂j ¼ 0, and the normalization con-
vention in (22). This result is one of the main achievements
of this work because it shows that the coupling αj is the
conserved charge Hϵ̃j ,

Hϵ̃j ¼ αj: ð24Þ

In order to complete the argument, we clarify why
H
∂Σ λj

is a constant if dλj ¼ 0. By the last term in (21), the charge
variation δH for the generator λj is proportional to this
surface integral. However, the transformation is an exact
symmetry, i.e., δλjΦ̃ ¼ 0, whose symplectic current ω
vanishes. This feature makes the charges not only to be
conserved, i.e., independent of some time coordinate, but
also independent of the choice of the ∂Σ. The remaining
D − 2 coordinates that parametrize ∂Σ are integrated out.
So, no space-time and ∂Σ dependency remain.
Conjugate chemical potentials for the coupling

constants.—The electric charge in Maxwell’s electrody-
namics is the charge of the global part of the Uð1Þ gauge
symmetry A → Aþ dλ with dλ ¼ 0. For a black hole, its
conjugate chemical potential is the electric potential, i.e.,
ΦH ≡ ξH · A calculated on the event horizon, in which ξH is
the horizon generating Killing vector field. Motivated by
this potential, for the action Ĩ in (7) which has the gauge
fields Ai with associated conserved charges αi, we can
define their conjugate chemical potentials on the event
horizon as

Ψi
H ≡

I
H
ξH ·Ai: ð25Þ

Such a definition of chemical potential for a coupling
constant was first introduced in the context of upgrading
the cosmological constant to be conserved charge in [34].
It has been proven that it reproduces the conjugate
thermodynamic volume and has been examined for various
examples [35]. In the next section, we use the coupling
constants as conserved charges (23) and their conjugates
(25) to extend the first law of black hole thermodynamics.
Extension of the first law of black hole thermo-

dynamics.—Let us consider a stationary black hole in
the coordinates where the horizon generating Killing vector
is given as ξH ¼ ∂t þΩn

∂φn in which n runs over the axial
isometries, and Ωn are corresponding horizon angular
velocities. In [37,38], Iyer and Wald showed that entropy
for nonextremal black holes is a conserved charge of this
vector normalized by the Hawking temperature TH ¼
ðκH=2πÞ [8], where κH is the surface gravity of the
Killing horizon H. Later in [48,49], an infinite number

of horizon-killing vectors whose charges are the entropy of
extremal black holes were found in their near-horizon
region. However, in the presence of electromagnetic gauge
fields, integrability shows that the proposed Killing vectors
(both for extremal and nonextremal) have missed a con-
tribution from the gauge fields. In [50,51] it was shown that
to have integrable and gauge, as well as, diffeomorphism-
invariant conserved charges, their vector field generator
should be augmented by some gauge transformations (the
reader is invited to read [52–55] for reviews and applica-
tions). Here, we focus on the action Ĩ in (7) that, in addition
to some probable Maxwell field Aμdxμ, also has the
auxiliary gauge fields Ai. Then, in appropriately chosen
gauges, the generator of the integrable entropy is

ϵ̃S ¼
2π

κH

�
ξH;−ΦH; ½−Ψi

Hλ̂i�
�
: ð26Þ

Let us denote the symplectic symmetry generators of the
mass M, angular momenta Jn, and electric charge Q by
ϵ̃M ¼ f∂t; 0; ½0�g, ϵ̃Jn ¼ f−∂φn ; 0; ½0�g and ϵ̃Q ¼ f0; 1; ½0�g,
respectively. They are assumed to be “exact” symmetries,
i.e., they satisfy δϵ̃Φ̃ ¼ 0. Then, (26) reads

κH
2π

ϵ̃S ¼ ϵ̃M −Ωn
Hϵ̃Jn −ΦHϵ̃Q −

X
i

Ψi
Hϵ̃i; ð27Þ

where definition of ϵ̃i in (22) was also used. However, by
the linearity of charge variations δHaϵ̃1þbϵ̃2 ¼ aδHϵ̃1 þ
bδHϵ̃2 in (21), the first law of black hole thermodynamics
is derived as

THδS ¼ δM −Ωn
HδJn −ΦHδQ −

X
i

Ψi
Hδαi: ð28Þ

This method of proving the first law was first introduced
in [50], where the nonextended version of (28) was derived
directly from the local identity (27), i.e., without addressing
the surfaces of integration on the horizon and at infinity
(which is used in the Iyer-Wald proof of the first law).
It works because the generators in (27) are all “exact”
symmetries, and as a result, their charge variations in (21)
are independent of the surface of integration [56].
By dimensional analysis and scaling argument, the

Smarr formula can be deduced from the first law (see,
e.g., [18,57]). The same analysis for the extended first law
yields

ðD − 3ÞM ¼ ðD − 2ÞTHSþ ðD − 2ÞΩn
HJn

þ ðD − 3ÞΦHQþ kðiÞΨi
Hαi: ð29Þ

Details of the derivation can be found in Sec. 6 of Ref. [35].
The factor kðiÞ is the scaling of the αi, i.e., if the length l is
scaled by a factor z as l → z × l, then αi → zk

ðiÞ
× αi.
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Example: Thermodynamics of the rotating Banados-
Teitelboim-Zanelli (BTZ) black hole in the new massive
gravity.—In [35] some black hole solutions were studied
of which the Smarr formula was not satisfied if the
contribution of the couplings was not included. Here,
we provide one of these as an example: the rotating
Banados-Teitelboim-Zanelli (BTZ) black hole solution
of the new massive gravity theory [58] in the coordinates
xμ ¼ ðt; r;φÞ [59,60]:

L ¼ 1

16π

�
R − 2Λ − β

�
3

8
R2 − RμνRμν

��
: ð30Þ

The metric is given as

ds2 ¼ −Δdt2 þ dr2

Δ
þ r2ðdφ − ωdtÞ2;

Δ≡ −mþ r2

l2
þ j2

4r2
; ω≡ j

2r2
; ð31Þ

for Λ ¼ ð−1=l2Þ þ ðβ=4l4Þ, Λ < 0, and β > 0. The black
hole outer and inner horizons are at the radii rþ and r−,
which satisfy 2r2� ¼ l2ðm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − j2=l2

p
Þ, where m and

j are free parameters of the solution. The thermodynamic
properties of this solution are [59,61]

M ¼
�
1þ β

2l2

�
m
8
; J ¼

�
1þ β

2l2

�
j
8
;

Ω� ¼ r∓
lr�

; T� ¼ r2� − r2∓
2πl2r�

; S� ¼
�
1þ β

2l2

�
πr�
2

;

ð32Þ
with the horizon-killing vectors ξ� ¼ ∂t þΩ�∂φ. The mass
and angular momentum follow from the general construc-
tion of conserved charges in higher derivative theories of
gravity [62,63].
It is easy to check that the quantities in (32) do not satisfy

the Smarr formula if the last term in (29) is omitted.
Examples such as this led us to the current attempt to rescue
the Smarr formula. To remedy this issue, we can apply the
procedure described above. The couplings Λ and β are
promoted to the scalars ΛðxÞ and βðxÞ, and their paired
field strengths FΛðxÞ and FβðxÞ [which are related to FΛðxÞ
and FβðxÞ in (7) by a Hodge dual transformation] are
implemented in the Lagrangian (30)

L̃ ¼ 1

16π

�
R − 2ΛðxÞ�1 − FΛðxÞ

�

− βðxÞ
�
3

8
R2 − RμνRμν − FβðxÞ

��
: ð33Þ

It is clear that there is a conventional normalization in
defining the couplings, e.g., instead of the Λ one can
consider ðΛ=8πÞ as the coupling. Nonetheless, as is

expected, such a convention does not affect the physical
thermodynamic laws because these factors are compen-
sated in the conjugate potentials.
By variation of the Lagrangian with respect to the new

pairs of fields, equations of motion in (11) are derived that
imply the following on-shell relations:

FΛðxÞ ¼ 1; FβðxÞ ¼
3

8
R2 − RμνRμν; ð34Þ

as well as the constancy of the Λ and β. Therefore,

FΛðxÞ ¼ ϵ ¼ ffiffiffiffiffiffi
−g

p
dt ∧ dr ∧ dφ ¼ r dt ∧ dr ∧ dφ; ð35Þ

FβðxÞ ¼
�
3

8
R2 − RμνRμν

�
ϵ ¼ 3r

2l4
dt ∧ dr ∧ dφ: ð36Þ

The gauge fields whose field strengths are calculated
above are

AΛðxÞ ¼ −
�
r2

2
−

βml2

2β − 4l2

�
dt ∧ dφ; ð37Þ

AβðxÞ ¼ −
�
3r2

4l4
−

mðβ − 4l2Þ
4l2ðβ − 2l2Þ

�
dt ∧ dφ: ð38Þ

Notice that the second term in each one of the parentheses
is a pure gauge, which can be fixed by different methods,
e.g., we have requested that the integrability of the black
hole charges be respected by the new contribution of
ξ ·Aiδαi in (21) (kϵ can be found in [35,53]). Now, we
can insert the gauge fields into (25) to find the chemical
potentials

ΨΛ
� ¼ −π

�
r2� −

βml2

β − 2l2

�
;

Ψβ
� ¼ −π

�
3r2�
2l4

−
mðβ − 4l2Þ
2l2ðβ − 2l2Þ

�
: ð39Þ

One can check that the first law and the Smarr formula are
satisfied for each one of the horizons as

δM ¼ T�δS� þΩ�δJ þ ΨΛ
�δ

�
Λ
8π

�
þ Ψβ

�δ
�

β

16π

�
; ð40Þ

0 ¼ T�S� þΩ�J − 2ΨΛ
�

�
Λ
8π

�
þ 2Ψβ

�

�
β

16π

�
; ð41Þ

respectively. The numerical factors ð1=8πÞ and ð1=16πÞ in
the coupling charges are conventional, and come from how
αi and Li are defined from the combination αiLi in the
Lagrangian (33). However, independent of this convention,
the relation

ΨΛ
�δ

�
Λ
8π

�
¼ V�δP ð42Þ
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reproduces the volume-pressure term in black hole chem-
istry in which V is the “thermodynamic volume” intro-
duced in [18] (note the conventional minus signs that
cancel each other in V and P). This result is not accidental,
and proof of it can be found in Sec. 2 of the Ref. [35].
Conclusions.—When various dimensionful couplings

enter a theory of gravity has matter fields, the cosmological
constant, and higher derivative terms, the first casualty of
black hole thermodynamics is the beautiful Smarr formula
expressing the relation between the conserved charges.
One has two options: accept that the Smarr formula is an
accident of Einstein’s gravity, or try to rescue it by
upgrading the coupling constants of the theory to be
conserved charges of the corresponding solution. But this
requires a crucial step: first, the coupling constants are
assumed to be space-time-dependent fields that are set to
be constants as a consequence of the field equations.
This can be done by the introduction of auxiliary
Abelian gauge fields as described in this work. The vantage
point presented here, which enlarges the theory by con-
sidering the coupling constants as space-time fields that
take constant values as a result of the field equations, saves
the Smarr formula. We have given a detailed account of this
above and applied the new formalism to the rotating BTZ
black hole in the new massive gravity (a quadratic theory
much studied in the last decade).
The construction of all couplings and their contribution

to black hole chemistry by the new symmetries is not a
trivial task and may have far more consequences than the
extended black hole thermodynamics. Furthermore, inter-
esting questions arise from considering couplings as con-
served charges via the new Lagrangian in Eq. (7). The
physical meaning of the corresponding pair of auxiliary
fields and couplings as charges must be considered in the
classical regime. Furthermore, it would be fascinating to
investigate how the initial and boundary conditions deter-
mine them. It is also possible to investigate their dynamics
and how they relate to the couplings’ renormalization group
flows. Our understanding of the couplings in nature can be
impacted at the quantum level by the quantization of the
fields and its consequences for the couplings.
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