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The realistic interpretation of classical theory assumes that every classical system has well-defined
properties, which may be unknown to the observer but are nevertheless part of reality and can, in principle,
be revealed by measurements. Here we show that this interpretation can, in principle, be falsified if classical
systems coexist with other types of physical systems. To make this point, we construct a toy theory that
(i) includes classical theory as a subtheory and (ii) allows classical systems to be entangled with another
type of system, called anticlassical. We show that our toy theory allows for the violation of Bell inequalities
in two-party scenarios where one of the settings corresponds to a local measurement performed on a
classical system alone. Building on this fact, we show that measurement outcomes in classical theory
cannot, in general, be regarded as predetermined by the state of an underlying reality.
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Introduction.—Since the early days of Galileo and
Newton, classical theory has been regarded as the golden
standard of a physical theory that describes reality without
any fundamental uncertainty. In this view, every classical
system is assumed to be in a well-defined state, which may
be unknown to the observer, but is nevertheless part of the
physical reality. Statistical mixtures only arise from the
observer’s ignorance about the true state of the system, and
in principle, this ignorance can always be overcome by
performing measurements. In modern terminology, the
view that classical systems are fundamentally in well-
defined (pure) states can be summarized by the statement
that classical pure states are “ontic,” while classical mixed
states are “epistemic” [1-3]. This statement, combined with
the idea that classical measurements reveal some preexist-
ing properties of the measured systems, lies at the core of
the realistic interpretation of classical theory.

In this Letter we show that, contrary to widespread
belief, a realistic interpretation of classical theory is not
always logically possible: while such interpretation is
consistent with all experiments involving only classical
systems, it can become, in principle, falsifiable if classical
systems are considered alongside other types of physical
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systems. To make this point, we construct a toy theory that
includes classical theory as a subtheory, meaning that it
coincides with classical theory when restricted to a subset
of the possible physical systems. In addition to all classical
systems, the toy theory includes another type of systems,
called anticlassical, as illustrated in Fig. 1. An observer
who has access only to classical systems cannot see any
difference between classical theory and our toy theory: all
measurements are, in principle, compatible, all pure states
are perfectly distinguishable through measurements, and all

Anticlassical world
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FIG. 1. In a universe described by our toy theory, an observer
who has access only to classical systems (represented by red disks
on the left) would see a world described by classical theory. The
same situation applies to an observer with access only to
anticlassical systems (blue disks on the right). In contrast,
observers with access to both types of systems can observe Bell
nonlocality and other nonclassical features.
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the states of all composite systems are separable. In
contrast, we show that observers with joint access to both
types of systems can, in principle, observe nonclassical
features such as Bell nonlocality [4].

Crucially, we show that our toy theory allows for a
maximal violation of the Clauser-Horne-Shimony-Holt
(CHSH) inequality [5,6] in scenarios where one of the
settings corresponds to a local measurement performed on a
classical system. Building on this result, we prove that
measurement outcomes in classical theory cannot, in
general, be regarded as predetermined. Finally, we show
that, under mild assumptions, the predictions of our toy
theory cannot be reproduced by any deeper theory that
describes reality as a list of individual properties of classical
and anticlassical systems. This result indicates that, no
matter whether the properties of classical systems are
accessible through measurements or not, their full speci-
fication is not sufficient, in general, to account for the
correlations between classical systems and other types of
physical systems.

While our toy theory is not meant to be a description of
the world, it makes an important conceptual point: the
realistic interpretation of classical theory can, in principle,
be falsified if classical systems exist alongside other types
of physical systems. Notably, our toy theory cannot be
ruled out from within classical theory: every classical
phenomenon is, in principle, compatible with the existence
of some yet-unobserved type of system that prevents the
assignment of definite values to classical variables prior to
measurement.

Our results complement recent works by Gisin and Del
Santo [7,8], who challenged the determinism of classical
physics on the grounds of the impossibility to specify real-
valued variables like position and momentum with infinite
precision. In our work, the impossibility to assign a
predefined value to classical variables arises from correla-
tions with some other physical systems, rather than
precision limits in the definition of real numbers. As such,
our results apply also to classical bits and other discrete
classical variables. It is also worth mentioning that physical
arguments in favor of classical indeterminism could also be
put forward by setting up a dynamical interaction between
classical and quantum systems (see, e.g., [9-11].) In the
existing frameworks, however, classical and quantum
systems cannot be entangled, and therefore there cannot
be any CHSH violation when one of the settings corre-
sponds to a measurement on a classical system alone. In
this respect, our toy theory exhibits a stronger form of
indeterminism.

Classical and anticlassical systems.—To formulate our
toy theory, we adopt the framework of general probabilistic
theories [12—17], in the specific version known as opera-
tional probabilistic theories (OPTs) [19-24]. An OPT
describes a set of physical systems, closed under compo-
sition, and a set of transformations thereof, closed under

parallel and sequential composition. Mathematically, the
compositional structure is underpinned by the graphical
language of process theories [25-28].

Classical theory can be regarded as a special case of an
OPT [15,29]: precisely, it is the largest OPT where (i) the
pure states of every given system are perfectly distinguish-
able through a single measurement, (ii) the pure states of
every composite system are the products of pure states of
the component systems, and (iii) all permutations of the set
of pure states are valid physical transformations. For
simplicity, we will focus on the classical theory of discrete
systems such as bits and their generalizations.

We now construct a toy theory that includes classical
theory as a subtheory, meaning that our toy theory coincides
with classical theory when restricted to a subset of physical
systems that includes all discrete classical systems. A
classical system with d perfectly distinguishable pure states,
conventionally denoted by 0, 1, ..., d — 1, will be called a dit
(or a bit in the special case d = 2.) The mixed states of a dit
are probability distributions of the form (p,)¢=}, with p; > 0,
Y iand > 97} p; = 1. Thereversible processes acting on the
dit are permutations of its pure states, while general noisy
processes are described by transition probabilities p(jli).
Similarly, a (generally noisy) measurement with outcomes in
a set A can be represented by transition probabilities p(ali),
yielding the probability of the outcome a when the ditis in the
state i.

An equivalent way to represent classical states, proc-
esses, and measurements, commonly used in the quantum
information literature (see, e.g., [30]), is provided by
diagonal matrices. Specifically, probability distributions
( p[)f:‘& can be equivalently represented by d x d diagonal
matrices of the form p = Y9! p;|i)(i|, where {|i)}¢} is
the canonical orthonormal basis for C?. A general process
with transition probabilities p(j|i) is described by a linear
map of the form M(p) = >_; ; p(jli)|/)(jl({ilp|i). Finally, a
measurement with outcomes in the set A is described by a
positive operator-valued measure (POVM) (P, ), ca of the
form P, = %} p(ali)|i)(i|, and the outcome probabil-
ities can be computed with the Born rule p(ali) = (i|P,[i).

In our toy theory, classical systems coexist with another
type of systems, called anticlassical. The anticlassical
systems can be viewed as a mirror image of the classical
systems: for every classical system type, there exists a
corresponding anticlassical system type with exactly the
same state space, the same set of physical transformations,
and the same set of measurements. To help intuition, one
can think of the distinction between classical and anti-
classical systems as analogous to the distinction between
particles and antiparticles, which have the same state spaces
and yet are distinguishable by some external property, such
as their charge.

While classical and anticlassical systems are described
by classical probability theory when considered separately,
composite systems including both types of systems exhibit
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nonclassical features. In the following, we present the
simplest version of our toy theory, which describes arbi-
trary composite systems made of m bits and n antibits,
hereafter called (m,n) composites. (m,0) and (0,n)
composites will be described by classical theory, while
the nonclassical behaviors will emerge when both m and n
are nonzero. The generalization to basic systems of
arbitrary dimension, as well as the full specification of
the allowed states, measurements, and processes, is pro-
vided in Supplemental Material [31].

Nonclassical composites.—The simplest nonclassical
composite is the (1,1) composite, consisting of a bit and
an antibit. In this case, the pure states are represented by
rank-one projectors onto unit vectors |¥) with well-defined
parity, that is, unit vectors satisfying either the condition
I1y|¥) = |¥) or the condition IT;|¥) = |¥), where I1, (IT;)
is the projector on the subspace spanned by the vectors
{]0)[0), [1)|1)} ({]0)[1),[1}]0)}). The mixed states of a bit
and an antibit are described by density matrices of the form
p=>_;q;|¥;)(¥;|, where (|'¥;)); are pure states and (q;);
is a probability distribution. For an (m, m) composite, the
most general pure state is a unit vector of the form
W) = [I(5,.5,) ® U409, where UAi-4n) s a
unitary operator that permutes m bits (antibits) and |¥')
is a unit vector satisfying the condition

)= (W @ e ). ()

,k,,) €{0, 1} where we used the
notation Hf"'A" for the projector onto the subspace of the

composite system of the ith bit and ith antibit with fixed
parity k; € {0, 1}.

The pure states of arbitrary (m,n) composites are
defined in Supplemental Material [31]. General mixed
states are defined as density matrices that are convex
combinations of rank-one density matrices associated with
the above pure states. Measurements on system S are
defined as POVMs {P;}* , whose operators are linear
combinations, with positive coefficients, of the allowed
states and satisfy the normalization property Zf: P =1
The outcome probabilities are then given by the Born rule
p; = Tr[P,;p]. With these definitions, states and measure-
ments satisfy a fundamental consistency condition: when a
subset of the systems is measured, the conditional state of
the remaining systems is still a valid state allowed by our
toy theory. We call this condition consistency of the
conditional states and prove it in Supplemental Material
[31], where we also show that similar consistency proper-
ties hold for all processes in our toy theory. In particular, all
the multipartite states, processes, and measurements
allowed by our toy theory coincide with the states,
processes, and measurements of classical theory once all
the anticlassical systems are eliminated.

for given vector (ky, ...

It is worth noting that, unlike classical theory and
standard quantum theory on the complex field, our toy
theory does not satisfy local tomography [12,13,44,48-51],
the property that the states of composite systems are
completely characterized by the correlations of local
measurements. While this property holds separately for
all classical systems and for all anticlassical systems, it fails
to hold when classical and anticlassical systems are
combined together.

The violation of local tomography is not an accident, but
rather a necessary condition for obtaining nonclassical
composites out of systems with classical state spaces
[52] (see also the no-go theorem in [53] where local
tomography is implicit in the choice of possible tensor
products). Nevertheless, we show that our toy theory
satisfies a weaker locality property, known as bilocal
tomography [40], for all multipartite systems consisting
of bits and antibits: any arbitrary state of m bits and n
antibits can be fully characterized by the correlations of
measurements performed on pairs of bits and antibits. A
proof of this fact is provided in Supplemental Material [31].
Other examples of physical theories that violate local
tomography but satisfy bilocal tomography are quantum
theory on real vector spaces [48,49], fermionic quantum
theory [32,33], and doubled quantum theory [24,34].

Classical mixtures from entanglement.—It is immediate
to see that every mixed state of a classical bit can be
obtained from a pure state of the composite system by
discarding the antibit. For example, the generic mixed state
p = p|0){0] + (1 = p)|1)(1| can be obtained from the pure
entangled state |¥) = ,/p|0)|0) + /T = p[1)[1). In other
words, every mixed state of a classical bit admits a
purification [21,44].

In the rest of the Letter, we discuss the implications of
purification for the interpretation of classical physics. Let
us first assume, for the sake of argument, that our toy
theory describes nature at the fundamental (i.e., ontic)
level. In this setting, the claim that every classical system
must be in a pure state at the ontic level would imply that
the joint states of a bit-antibit pair are always of the
separable form X = ¢|0)(0| ® po + (1 —q)|1)(1| ® py.
for some probability g € [0, 1] and some states p, and p,
of the antibit (see Supplemental Material [31]). However,
this condition is manifestly in contradiction with the
existence of pure entangled states. Operationally, any pure
entangled state of a bit-antibit pair can be distinguished from
all separable states by performing a measurement allowed by
the toy theory. For example, the pure entangled state |¥) =
VP10)[0) + /1= p[1)|1), p€ (0, 1), can be distinguished
with a guaranteed success probability of at least min{ p, 1 —
p} from all separable states (see Supplemental Material
[31]). Hence, we conclude that, in a world where our toy
theory is fundamental, the belief that classical systems must
always be in some (possibly unknown) pure states can be
experimentally falsified.
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Bell nonlocality.—We now use our toy theory to chal-
lenge the common belief that the outcomes of classical
measurements reveal the values of some preexisting proper-
ties of the measured systems. The starting point of our
argument is the observation that our toy theory exhibits
activation of Bell nonlocality [54-58]. Suppose that a bit B
and an antibit A are in the entangled state |®)g, =

(|0Y5|0) 4 + [1)5|1),)/V/2. This state alone does not give
rise to any Bell inequality violation: since the local
measurements on a bit and antibit are classical, one can
easily construct a local hidden variable model. However,
Bell nonlocality arises when we consider the two-copy state
|@)p 4, ® |P)p,4,, Where BB, are bits, and A;A, are
antibits. Suppose that two parties, Alice and Bob, play a
nonlocal game, such as the CHSH game [5,6], in the
scenario where Alice has access to system B;A,, while Bob
has access to system B,A;, as illustrated in Fig. 2.

We now show that the state @), , ® |®)p 4, allows
Alice and Bob to reproduce the correlations of arbitrary
single-qubit measurements performed locally on a 2-qubit
maximally entangled state. More specifically, we show that
a qubit measurement that projects Alice’s qubit on a given
orthonormal basis {|vy), |v;) } with |vy) = @|0) + f|1) can
be simulated by a measurement on the bit-antibit pair B A,,
described by two orthogonal projectors { Py, Py} with

0 0 1 1
Po = VYV g0, + IVENVE g,
0
V) 5,a, = @0}, [0V, + A1), 1),
1
VY50, = a0 (1), + Bl1)5, |0 .. (2)

and P, =1Ig ® I4, — Py, acting on the bit-antibit pair
B A,. Similarly, a measurement that projects Bob’s qubit
on the orthonormal basis {|wy), |w;)} with [wy) = y|0) +
6|1) can be simulated by the projective measurement

{Q0. 0} defined by

[ 5, (WY RVNVITVINPIVNIINY .
o

FIG. 2. Activation of Bell nonlocality with bit-antibit entangled
pairs. Alice (left) and Bob (right) perform local measurements on
two copies of an entangled state of a bit-antibit pair. The first
copy (top) involves bit By and antibit A, while the second copy
(bottom) involves bit B, and antibit A,. Alice’s and Bob’s
laboratories (represented by dotted boxes) contain systems
B|A, and A,B,, respectively. Their measurements have settings
x and y, respectively, and produce outcomes a and b, respectively.

0 0 1 1
Qo = |W(() )><W(() )|32A1 + |W(() )><W(() >|BZA1
0
WE") = 710)5,10), + 8/1)5, 1),
1
W) = 711)5,10)4, +610)5,11)s, (3)
and O, = Iy, ® I, — Qp. When these measurements are

performed on the state p = |O)(D[p 4 ® [D)(D[p, 4,
Alice and Bob obtain outcomes a and b with probability

p(a.b) =Tr[(P, ® Qp)p] = [{va|(wyl| @), (4)

equal to the outcome probability of the original single-qubit
measurements performed on the 2-qubit maximally
entangled state |®) (see Supplemental Material [31] for
more details). In this way, every pair of local measurements
on a maximally entangled 2-qubit quantum state can be
simulated by local measurements in our toy theory. In
particular, Alice and Bob can simulate the optimal strategy
in the CHSH game [5,6,59,60], thereby achieving a
maximal violation of the CHSH inequality.

Letus now examine the implications of the above result for
the interpretation of classical theory. A first, important
consequence is that the value of Alice’s classical bit cannot,
in general, be regarded as predetermined. This conclusion
follows from the fact that the violation of the CHSH
inequality can be achieved with setup in which one of
Alice’s measurements is the canonical measurement on bit
B, . Technically, this follows from the fact that one of Alice’s
measurements in the original quantum scenario is a qubit
measurement on the computational basis {|0), |1)}. In our
simulation, this measurement corresponds to the projectors
Py =10)(0]5, ® 14, and Py =1Q@1—Py=|1){1[5 ®14,,
as one can see from Eq. (2). Operationally, this measurement
is realized by discarding the antibit A, and measuring bit B,
on the basis {|0),|1)}. Since Alice’s bit value is a meas-
urement outcome in a setup that violates the CHSH inequal-
ity, we conclude that the bit value cannot be predetermined
[41]: explicitly, in Supplemental Material we show that, if the
underlying ontic state determines the value of Alice’s bit up
to an error ¢, then the CHSH value cannot exceed 2(1 + 2¢)

and therefore cannot reach the maximum value 2\/§ when €
is small. In Supplemental Material, we also show that the
above argument applies to all pure entangled states of a dit
and an antidit [31].

Another implication of Bell nonlocality is that, even if
we replace our toy theory with a more fundamental
description of nature, this description cannot, under rea-
sonable assumptions, assign individual ontic states to
classical systems. Two different arguments leading to this
conclusion are provided in Supplemental Material [31]. In
both cases, the conclusion is that classical systems in our
toy theory cannot be reduced to independent and uncorre-
lated degrees of freedom of the underlying reality.
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Conclusions.—In this Letter, we have shown that the
realistic interpretation of classical theory can, in principle,
be falsified when classical systems coexist with other types
of physical systems. We built a toy theory in which every
classical system can be entangled with a dual, anticlassical
system. The entanglement between classical and anticlass-
ical systems gives rise to activation of Bell nonlocality and
implies that, in general, the outcomes of measurements on
classical systems cannot be interpreted as revealing the
values of some preexisting properties of the measured
systems.
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