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Cell adhesion receptors are transmembrane proteins that bind cells to their environment. These proteins
typically cluster into disk-shaped or linear structures. Here, we show that such clustering patterns
spontaneously emerge when the receptor senses the membrane deformation gradient, for example, by
reaching a lower-energy conformation when the membrane is tilted relative to the underlying binding
substrate. Increasing the strength of the membrane gradient-sensing mechanism first yields isolated disk-
shaped clusters and then long linear structures. Our theory is coherent with experimental estimates of the
parameters, suggesting that a tilt-induced clustering mechanism is relevant in the context of cell adhesion.
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Introduction.—Clusters of cell adhesion receptors play a
critical role as signaling platforms regulating tissue integ-
rity [1–5], antigen recognition by immune cells [6], and
neuronal connections [7].
Here, we propose a generic model for the clustering of

cell adhesion receptors upon interactions with a flat, rigid
substrate. Our approach is in the same spirit as the
pioneering work of Bruinsma and Sackmann [8], but we
take an explicit account of the conformation of binding
receptors upon binding. In particular, we consider the case
of a binder that tends to tilt to both the membrane and the
substrate with angles denoted θi and δi, respectively, as
shown in Fig. 1(a). This results in the membrane tilting to
the substrate upon binding (see also Ref. [9], Fig. 8).
Considering such a tilt effect, we show that a character-

istic cluster size emerges and that no ripening takes place.
This contrasts with previous work on the subject [10,11],
which considered clustering as a nucleation problem and
focused on determining the critical size beyond which
clusters would continuously grow.
Our model predicts that clusters of receptors can form as

circular dots or long linear structures depending on the tilt-
induced negative surface tension and the membrane-
substrate adhesion. This is echoed by experiments, with
nascent adhesions displaying circular clusters with 100 nm
diameter [12,13], and fibrillar adhesions displaying
micron-long linear structures that are mediated by a5b1
integrin and enriched in Tensin3 [14,15] (see also Fig. 3).
Our Letter is organized as follows: We first present the

model, show the analytic and numerical results, and discuss
experimental agreement.

Model.—Our model relies on two fields: ϕðxÞ∈ ð0; 1Þ,
the fraction of bound cell adhesion receptors among other
molecules, and eðxÞ measures the height of the membrane
with respect to the substrate; see Figs. 1(a) and 1(b).
We consider a total free energy for the membrane-

receptor-substrate system in the form F½e;ϕ� ¼ FFH½ϕ�þ
FHel½e� þ Fint½e;ϕ�, where FFH accounts for an entropy of
mixing (which depends on ϕ only), FHel for the mechanical
energy of membrane deformation (which depends on e
only), and Fint½e;ϕ� ¼ Ftilt½e;ϕ� þ Fadh½e;ϕ� for tilt
and adhesion-based interactions which, in our model,
will couple the ϕ and e fields. We find that FFH ¼R
d2xfðkBT=aÞ½ϕ lnϕþ ð1−ϕÞ lnð1−ϕÞ� þDϕð∇ϕÞ2=2g

(see Supplemental Material [16], Sec. I), where kBT is the
thermal energy (as in Flory-Huggins theory [25,26]), a is
the inverse areal density of binders,Dϕ is a gradient energy
coefficient that controls the width of the interface of the
bound receptor clusters [27], and the integral is over an
entire domain of interest, which corresponds to a region
within the bulk of the adhered region (e.g., away from
the cell edge by a few hundred nanometers). We model
the membrane through the classical Helfrich free energy
[28,29], FHel¼

R
d2x½σð∇eÞ2=2þκð∇2e−c0Þ2=2�, where σ

is the surface tension, κ the bending stiffness, and c0 the
spontaneous curvature of the membrane.
Tilt.—We propose that the average conformation of

bound receptors is affected by the local gradient in the
membrane height.
We first illustrate our model by considering an imposed

binder-membrane angle statistics θ⃗i ¼ �θ0x⃗; see Fig. 1(a).
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Considering an elastic energy on the binder-substrate angle
results in Ei ¼ Kðθi þ∇eÞ2=2; the Boltzmann average

tilt then simply reads θ⃗ ¼ hθ⃗ii ¼ −½ðKθ20Þ=ðkBTÞ�∇!e (see
Supplemental Material [16], Sec. II).
In the following, we consider a minimal and generic

description that encompasses such an onset of local polar
order, denoted θ⃗ðx⃗Þ and called average tilt. The presence of
a height gradient breaks the symmetry and allows for the
emergence of a nonzero average tilt vector θ⃗ðx⃗Þ ¼ hθ⃗ii ≠ 0
[Figs. 1(a) and 1(c)]. The statistics of such an average tilt
vector can be described through the free energy

Ftilt ¼
Z

d2xϕðxÞ
�
μθ⃗ · ∇!eþ ν

2
θ⃗2
�
; ð1Þ

where μ and ν define the average tilt angle minimizing the
free energy:

θ⃗opt ¼ −
μ

ν
∇!e; ð2Þ

as represented in Fig. 1(c).

Minimizing the tilt free energy density Eq. (1), the tilt
effect of cell adhesion receptors results in the following free
energy:

Ftilt ¼
Z

d2x

�
−
1

2
σaϕð∇eÞ2

�
; ð3Þ

where σa ¼ μ2=ν quantifies the tilt intensity. Equation (3)
suggests that the tilt effect of cell adhesion receptors
effectively contributes to a negative surface tension term
σtilt ¼ −σaϕ < 0; the change of sign in the surface tension
is reminiscent of Lifshitz points [30].
Adhesion.—Following Refs. [10,11], we assume that, in

the presence of adhesion molecules, the membrane is
pinned at a relatively short distance (∼20 nm) to the
substrate, while in the absence of adhesion molecules,
the membrane rests at a larger distance (∼100 nm), due
to glycocalyx steric interactions in cells; see Fig. 1(b).
Building upon Ref. [10], we propose the following generic
free energy for such adhesion-mediated interaction between
the membrane and a flat substrate:

Fadh ¼
Z

d2x

�
1

2
kðϕÞe2 − kðϕÞe0ðϕÞe − hðϕÞ

�
; ð4Þ

where e0 stands for the membrane rest-length height (as
measured from the attached height), k for the membrane-
substrate adhesion stiffness, and h for the chemical poten-
tial of receptor-substrate binding. Here, we focus on the
case of a constant kðϕÞ ¼ k0 and linear relations e0ðϕÞ ¼
e0ð1 − ϕÞ and hðϕÞ ¼ hϕϕ; see Fig. 1(d) for adhesion
energy profiles (the homogeneous case shown). A homo-
geneous state eðxÞ → 0 represents a fully adhered mem-
brane [ϕðxÞ → 1] and eðxÞ → e0 for a fully de-adhered
one [ϕðxÞ → 0]. Increasing the chemical potential hϕ
shifts the energy minima from ϕ ≈ 0 to ϕ ≈ 1 (Fig. S3
and Movie S1 [16]).
Results.—We are interested in the minimum energy state

of the system. We first consider the stability of homo-
geneous steady states, denoted ðē; ϕ̄Þ. Solving for the
condition δF=δϕ ¼ 0, we find that the number of homo-
geneous states depends on the chemical potential hϕ and a
nondimensional parameter:

ζ ¼ ak0e20
kBT

; ð5Þ

which quantifies the ratio of the membrane-substrate
repulsion energy (∼ak0e20) to the entropic energy (∼kBT).
For a high temperature or weak membrane-substrate

adhesion stiffness, that is, ζ < ζcr with ζcr ¼ 4, there exists
one and only one homogeneous state, regardless of the
value of hϕ (Supplemental Material [16], Sec. III). For a
lower temperature or a stronger membrane-substrate adhe-
sion stiffness, i.e., ζ > ζcr, the situation depends on the

FIG. 1. (a) Tilted binders with respect to the membrane (angle
θi) and substrate (angle δi). The tilt free energy is then minimized
when the membrane is inclined to the substrate; membrane (blue),
cell adhesion receptors (black, springs), ligands (red), and
substrate (gray). (b) Membrane-receptor-substrate adhesion free
energy cost in the absence (left, ϕ ¼ 0) and in the case of full
occupancy by binders (right, ϕ ¼ 1). (c) The tilt free energy Ftilt
[see Eq. (1)] as a function of the average tilt angle θ ¼ hθii, at
given values of ∇e (1D case). (d) The adhesion energy Fadh [see
Eq. (4)] as a function of the normalized height difference e=e0 in
the case hϕ > hcr;3ϕ , for homogeneous states. A black arrow
indicates a shift from a fully detached state (ϕ ¼ 0) to a fully
attached state (ϕ ¼ 1). (e) Clustering sketch for different levels of
membrane tension in the case hϕ < hcr;3ϕ .
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value of hϕ; a single homogeneous phase exists for either
hϕ < hcr;1ϕ (corresponding to a dilute phase, i.e., with ϕ ≈
exp ½aðhϕ − k0e20Þ=ðkBTÞ� ≈ 0 and e ≈ e0) and for hϕ >

hcr;2ϕ (corresponding to a dense phase, with ϕ ≈ 1 −
exp ½−ahϕ=ðkBTÞ� ≈ 1 and e ≈ 0); hcr;1ϕ and hcr;2ϕ depend
on ζ and k0e20 (the membrane-substrate adhesion energy
barrier) with hcr;1ϕ ¼ k0e20gðζÞ and hcr;2ϕ ¼ k0e20½1 − gðζÞ�,
where gðζÞ is a dimensionless function of ζ, with values
between by 0 and 1; in the low-temperature limit ζ ≫ ζcr,
we find that g ≃ ð1þ ln ζÞ=ζ → 0 (see Supplemental
Material [16], Sec. III).
Such behavior follows Landau’s phenomenology of

phase transitions. At low temperatures T < Tcr with Tcr

defined in terms of ζcr, i.e., Tcr ¼ ak0e20=ðkBζcrÞ ¼
ð1=4Þak0e20=kB, an increase in hϕ leads to a first-order
transition from a dilute (gaslike) phase to a dense (liquid-
like) state (Fig. S3 [16]). Beyond the critical temperature
Tcr, the system transitions to a disordered (gaslike) state
(Figs. S3 and S4 and Movie S2 [16]). Such a liquid-gas
paradigm is mentioned for cell adhesion binders in
Refs. [8,31]; yet, as such, this cannot explain the formation
of stable clusters.
For intermediate values hcr;1ϕ < hϕ < hcr;2ϕ , three homo-

geneous states exist (Fig. S3 [16]), with a local maxima
ðemed;ϕmedÞ and two local minima, i.e., the dilute and dense
states, denoted ðemax;ϕminÞ and ðemin;ϕmaxÞ, respectively.
The free energy densities of these two energy minimum
states are fðemax;ϕminÞ ≈ −k0e20=2 and fðemin;ϕmaxÞ≈
−hϕ, respectively; thus,

hcr;3ϕ ¼ k0e20
2

; ð6Þ

which is the critical potential below which the dilute state is
favored as compared to the dense one.
We next consider the dynamic stability of the homo-

geneous state ðē; ϕ̄Þ, by examining the second-order
variation of the total free energy, δ2F, expressed in the
Fourier space as δ2F ¼ R

d2qΦ̂ðqÞ · JðqÞ ·ΦðqÞ=ð2πÞ2,
with q being the wave vector (for details, see
Supplemental Material [16], Sec. III). The eigenvalues
λ�ðqÞ (λ− < λþ) of the Jacobian matrix JðqÞ determine
the dynamic stability of the homogeneous state, with
Reðλ�Þ > 0 for a stable state.
Using this method, we find that the homogeneous dilute

state (emax, ϕmin) is stable for all wave vectors q; in contrast,
near the homogeneous dense state (emin, ϕmax), the smaller
eigenvalue reads λ− ≃ e20½k0 þ ðσ − σaÞq2 þ κq4�; the mini-
mum of such an expression reads minqfλ−g ¼ k0 > 0 for
σa < σ and minqfλ−g ¼ k0 − ðσa − σÞ2=ð4κÞ for σa > σ.
This leads to the following critical tilt intensity for
instabilities to occur:

σcra ¼ σ þ 2
ffiffiffiffiffiffiffi
k0κ

p
; for hϕ > hcr;3ϕ : ð7Þ

In the regime of σa > σcra , the most unstable wave number
is qmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσa − σÞ=ð2κÞp
. In particular, at the critical

point σa ¼ σcra , the most unstable wave number reads
qcr ¼ ffiffiffiffiffiffiffiffiffi

k0=κ
4
p

, corresponding to the characteristic size of
cluster formation:

lcr ¼ 2π

ffiffiffiffiffi
κ

k0
4

r
: ð8Þ

The analytical expressions of Eqs. (7) and (8) accurately
predict the transitions in patterns observed through
gradient-descent simulations; see Figs. 2(a) and S5 [16].

FIG. 2. (a) Diagram of the fraction of cell adhesion receptors averaged over the whole space (dark, hϕi ¼ 0; light magenta, hϕi ¼ 1) as
a function of hϕ=ðk0e20Þ (i.e., the chemical potential to the membrane-substrate adhesion energy barrier ratio) and ðσa − σÞ= ffiffiffiffiffiffiffi

k0κ
p

(i.e.,
the tilt to attachment-induced bending surface tension ratio). The cyan dashed line represents the critical transition [hϕ ¼ hcr;3ϕ ; see
Eq. (6)] from an unbound state to a bound state in the absence of the tilt effect. The yellow dashed line represents the critical transition
[σa ¼ σcra ; see Eq. (7)] from a fully bound pattern to a cross-linked pattern at a high chemical potential regime, hϕ > hcr;3ϕ . (b–i) Typical
patterns of cell adhesion receptor clustering, where the color code corresponds to the fraction ϕðxÞ of cell adhesion receptors at the
position x. See Table S1 in Supplemental Material [16] for parameter values.
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Simulations.—We briefly sketch our numerical method
(see Supplemental Material [16], Sec. III, for details). To
reach the energy minimum, we consider the annealing
dynamics ϕ̇ ¼ −δF=δϕ and ė ¼ −δF=δeþ ηðx; tÞ, with a
noise term ηðx; tÞ whose amplitude decays with time [32];
we point out that the total number of adhesion molecules is
not conserved through the simulation. We use the spectral
method on a 256 × 256 two-dimensional lattice within a
square domain of size L ¼ 1280 nm (much larger than the
typical size of integrin clusters l ∼ 100 nm [12,13]) with
periodic boundary conditions.
With no tilt coupling (σa ¼ 0), increasing the chemical

potential hϕ leads to a first-order-like transition from the
dilute to dense homogeneous phases but does not result in
stable cluster formation (Fig. S3 and Movie S1 [16]). In
contrast, in the absence of adhesion (k0 ¼ 0 or e0 ¼ 0, and
hϕ ¼ 0), a strong tilt effect is sufficient to destabilize the
homogeneous state around ϕ ≃ 0.5, but no circular clusters
emerge; see Fig. S6 [16].
In the presence of tilt and adhesion, we identify two

regimes depending on the value ofhϕ with respect to a critical
value hcr;3ϕ . For hϕ > hcr;3ϕ , upon increasing σa beyond the
value of σcra predicted by Eq. (7), dilute (ϕ ≈ 0) circular
patches arisewithin the otherwise fully adherent state (ϕ ≈ 1).
In contrast, for hϕ < hcr;3ϕ , dense circular patches (modeling
clusters) emerge for σa > σcra , where σcra now depends
approximately linear on hϕ (Fig. 2). This results in the
following overall expression for the critical tilt inten-
sity: σcra ¼ σ þ 2

ffiffiffiffiffiffiffi
k0κ

p þ ω
�
hcr;3ϕ − hϕ

�
1ðhϕ < hcr;3ϕ Þ, with

ω ≈ 6
ffiffiffiffiffiffiffiffiffi
κ=k0

p
=e20, as obtained by numerical estimate, and 1 is

the indicative function. At σa ¼ σcra , hexagonally arranged
circular clusters form; see Fig. 2. At higher σa values, the
number of circular patches decreases due to the onset of
long linear structures; at even larger σa values, these linear
structures connect into domain-size, Turing-like patterns
(Fig. S7 [16]).
Discussion.—Increasing σa leads to a behavior that

resembles the dots to stripes transition observed in the
Swift-Hohenberg model for convection patterns [33];
indeed, as discussed in Supplemental Material [16],
Sec. III, we find that σa controls the bifurcation parameter
value and a quadratic term is present within the nonlinear
function.
Increasing the membrane tension σ leads to the dis-

appearance of patterns, either in favor of the homogeneous
dilute and detached state, for hϕ < hcr;3ϕ [Figs. 1(e) and S9
[16]), or to the homogeneous dense and adhered state for
hϕ > hcr;3ϕ (Fig. S9 [16]), as sketched in Ref. [34].
Reducing the height difference e0 between the adhered

and detached state promotes the transition from circular
dots to linear structures; see Fig. S8 [16].
Experimental relevance.—We consider a typical distance

between binders d ¼ 10 nm (a ¼ 100 nm2) [12]; a typical
binding energy k0e20a ∼ 10kBT [10,11]; a typical height

difference e0 ¼ 80 nm. With these values, we find that
the ratio of the adhesion energy to the entropic energy
k0e20=ðkBT=aÞ ∼ 10, hence satisfying ζ > ζcr (i.e., low-
temperature case T < Tcr). These estimates also fix the
membrane-substrate adhesion stiffness at k0 ∼ 10kBT=
ðe20aÞ ∼ 10−5kBT · nm−4; the effective stiffness, k0a∼
10−3kBT · nm−2, is consistent with one provided in
Ref. [10] (the parameter λ therein). Furthermore, consid-
ering Dϕ ¼ kBT, a typical cell membrane tension σ ¼
2 × 10−5 J · m−2 ≈ 0.005kBT · nm−2 [27,35], and mem-
brane bending stiffness κ ¼ 10kBT [27,29,36], we find
that adhesion is the dominant contribution to the critical tilt
strength, with σcra ≈ 7σ ≈ 0.03kBT · nm−2.
Such critical tilt energy is accessible. Indeed, a 1kBT

gain in conformational energy due to tilt corresponds to
σa ≈ 0.1kBT · nm−2 ≈ 3σcra , with a height gradient of order
1 (for integrins, the membrane height is approximatively
100 nm in the de-adhered state and 20 nm in the adhered
state [10]). Such a typical tilt intensity is sufficient to
generate stable clusters. With these values, we observe a
typical cluster size lsim ≈ 100 nm in simulations, in agree-
ment with the size of integrin-based nascent adhesions [12].
Especially interesting is that the pattern predicted by our

theory strongly resembles the shape and distribution of
fibrillar adhesions in human umbilical vein endothelial
cells (HUVEC); see Figs. 2(d), 2(f), and 3(a). In contrast,
focal adhesions, shown in Fig. 3(b), do not resemble the
pattern predicted by this theory and are most probably
formed by a different mechanism. In contrast to focal

FIG. 3. Confocal image of integrin adhesions of a human
umbilical vein endothelial cell (HUVEC), with fibrillar adhesions
visualized by GFP-fused Tensin3 (a) and focal adhesions visu-
alized by mCherry-fused Zyxin (b); (a0) and (b0) are magnified
regions boxed in (a) and (b), respectively. Scale bar, 10 μm.
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adhesions, fibrillar adhesions are also sensitive to different
treatments affecting membrane tension (see Refs. [37,38]).
Extensions.—In our model, the membrane could include

the cell cortex; yet, here we do not consider actin turn-
over and contractility explicitly. This is particularly
justified for nascent adhesions, which form before any
visible actin recruitment [12]. We also show that a biased
averaged orientation, modeling the effect of a directed
actin retrograde flow, favors the formation of oriented
linear adhesions (Supplemental Material [16], Sec. V,
Fig. S11). We also show clustering for a ϕ-dependent
membrane-substrate adhesion stiffness kðϕÞ in Eq. (4) (see
Supplemental Material [16], Sec. IV, Fig. S10).
Perspectives.—We envisage two adaptations of our

work: (i) to describe binders between opposite free mem-
branes and (ii) to account for a statistics of activation and
deactivation, which modulate the affinity and shape of
integrins [39].
Conclusion.—We propose tilt as a new paradigm explain-

ing the stable clustering of cell adhesion receptors. Likely,
recently developed polarization techniques will soon pro-
vide further means to challenge the tilt hypothesis [40].
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