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Constructing a highly localized wave field by means of bound states in the continuum (BICs) promotes
enhanced wave-matter interaction and offers approaches to high-sensitivity devices. Elastic waves can
carry complex polarizations and thus differ from electromagnetic waves and other scalar mechanical waves
in the formation of BICs, which is yet to be fully explored and exploited. Here, we report the investigation
of local resonance modes supported by a Lamb waveguide side-branched with two pairs of resonant pillars
and show the emergence of two groups of elastic BICs with different polarizations or symmetries.
Particularly, the two groups of BICs exhibit distinct responses to external perturbations, based on which a
label-free sensing scheme with enhanced-sensitivity is proposed. Our study reveals the rich properties of
BICs arising from the complex wave dynamics in elastic media and demonstrates their unique functionality
for sensing and detection.

DOI: 10.1103/PhysRevLett.132.187202

Introduction.—Enhancing wave-matter interaction thro-
ugh localized modes [1–3] is essential for achieving
improved sensitivity [4–10], nonlinearity [11–13], and
emission rate [14], which lays the foundation of many
applications requiring high quality (Q) factors inclu-
ding lasers [15–17], biosensors [18,19], vortex genera-
tors [20–22], and other compact devices [23–26]. The
localization of waves can be achieved in various ways
such as topological states [1,2,27,28], in-gap defect
modes [29,30], Anderson localization [31,32], nonlinear-
ity [33–35], and the acoustic black hole effect [36–38],
etc. An alternative way for energy “trapping” or “iso-
lation,” referred to as bound state in the continuum (BIC),
rests on the mismatch between a localized state and all
nearby extended states, which features complete suppres-
sion of radiation in an open environment. BICs have been
realized in a wide variety of platforms such as photonic
crystal slabs [39–41], coupled cavities [14,42], and wave-
guides [14,43–48].
BICs in elastic wave systems distinguish themselves

from the acoustic and optic analogies by their intrinsic
multiple polarizations, which suggest new physics and
opportunities not available in other wave systems [49–51].
For example, a recent work utilized the polarization
asymmetry between a solid resonator and its radiation
channels (nonviscous fluid) to achieve genuine elastic
BICs, going beyond the so-called “nonexistence theorem”
for BIC construction [52]. Maznev and Every [51] showed
the uniqueness of elastic wave systems in terms of

supporting non-symmetry-protected BIC without periodic-
ity required in optical cases. In this Letter, by investigating
the local modes of a Lamb waveguide side-branched
with two pairs of resonant pillars, we reveal the polar-
izations not only play a key role in forming elastic BICs in
different branches, but also enable these BICs to have
distinct responses to various perturbations.
Theoretical analysis.—We consider the elastic wave

propagation along a layer side branched with two pairs of
pillars, which forms a pillared elastic waveguide [Fig. 1(a)].
The four identical pillars, acting as four resonators, are
coupled via thewaveguide hosting Lambwave modes. d, ts,
tp, andhp are the spacing between the two columns of pillars,
thewaveguide thickness, and the thickness and height of the
pillars, respectively (ts ¼ 1, tp ¼ 1, and hp ¼ 16 mm
throughout this Letter). The reflection symmetry of the

FIG. 1. Lamb waveguide with two pairs of side-branched
resonators. (a) Schematic of the pillared elastic waveguide. It
supports both extensional (red dashed line) and flexural waves
(black solid line). (b) Model representation of the four resonators
(R1, R2, R3 and R4) coupled via the bus waveguide. For
simplicity, only the couplings of R1 with other pillars are plotted.
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pillars about the x axis guarantees the existence of two
branches of decoupled local modes, namely, symmetric and
antisymmetric modes [Fig. 1(a)]. For each branch of modes,
the pillars are coupled exclusively via the zeroth-order Lamb
waves with the same symmetry (viz. the extensional or
flexural waves of a beam), which differs from the single-
sided pillared waveguide with hybrid polarization [53]. The
intrinsic losses caused bymaterial damping andweak vibro-
acoustic couplings are neglected if not specified.
We use coupled-mode theory (CMT) to describe the

open elastic wave system [Fig. 1(b)]. The individual
resonance behavior of the four identical pillars is charac-
terized by ω0 ¼ ω0 þ iγ0, in which ω0 and γ0 represent the
resonance frequency and radiative decay rate, respectively.
The coupling between two different pillars Ri and Rj is
defined as Cij with i ≠ j and i; j ¼ 1, 2, 3, 4. The temporal
coupled-mode equations are written as i∂A=∂t ¼ HA with
A ¼ ½A1; A2; A3; A4�T representing the amplitude vector.
Since the CMT simplifies the pillars as lumped resonators
with a specific flexural mode, the vector can be quantified
either by the horizontal displacements or rotations of
the pillar ends. The non-Hermitian Hamiltonian, H, takes
the form

H ¼

0
BBB@

ω0 C12 C13 C14

C21 ω0 C23 C24

C31 C32 ω0 C34

C41 C42 C43 ω0

1
CCCA: ð1Þ

All couplings are reciprocal, namely, Cij ¼ Cji. The
reflection symmetries of the system about the x and y axes
further yield C12 ¼ C34, C14 ¼ C23, and C13 ¼ C24.
Considering the Lamb modes supported by the waveguide,
the radiation and coupling can be expressed as the sum of

the extensional and flexural components, γ0 ¼ γðEÞ0 þ γðFÞ0

and Cij ¼ CðEÞ
ij þ CðFÞ

ij , where the superscript “E” or “F”
represents extensional or flexural waves. Moreover, the
decoupled nature of the extensional and flexural modes

implies that γðFÞ0 ¼ 0ðγðEÞ0 ¼ 0Þ and CðFÞ
ij ¼ 0ðCðEÞ

ij ¼ 0Þ for
the symmetric (anti-symmetric) local modes. The four
eigenvalues of H are obtained and classified into two
branches according to their symmetries of eigenvectors
about the x axis as given in Table I.
For the symmetric branch, each pair of pillars at the

same site oscillates in-phase and radiates as a monopole
[Fig. 1(a)]. These two monopoles are coupled solely with
extensional wave. The far-field coupling between the
resonators is expressed as the radiative decay rate multi-

plied by a propagation phase delay CðEÞ
ij ¼ γðEÞ0 e−ikðEÞd, in

which kðEÞ denotes the extensional wave number. The two
eigenvalues of the symmetric (denoted by superscript “S”)
branch can thus be obtained as

ωðSÞ
� ¼ ω0 þ i2γðEÞ0 ð1� e−ikðEÞdÞ: ð2Þ

Remarkably, BIC occurs for vanishing imaginary part of

ωðSÞ
� , which corresponds to the condition kðEÞd ¼ nπ,

ðn∈ZÞ. This is similar to the two-resonator acoustic
system [3,44]. The BIC is a Friedrich-Wintgen (FW)
BIC for n ¼ 0 (i.e., d approaches zero) and a Fabry-
Perot (FP) BIC [3] for n ≠ 0.
The antisymmetric case is in stark contrast to the

symmetric case as a result of the out-of-phase motion of
the two pillars at the same site. Each pair of pillars radiate as
a dipole and are coupled to the waveguide through flexural
wave [Fig. 1(a)]. The far-field couplings between the two

individual pillars are expressed as−iγðFÞ0 e−iðkðFÞd−π=2Þ, which
contains a π=2 initial phase in addition to the propagation
phase delay kðFÞd. Additionally, considering the always out-
of-phase oscillation of the pillars on different sides of
waveguide for flexural-wave coupling, i.e., R1 and R3 as
well as R1 and R4, an additional phase, eiπ , should be
introduced when expressing their far-field couplings
with radiative decay rate. Overall, the couplings are

expressed as CðFÞ
13 ¼ iγðFÞ0 eiπ , CðFÞ

12 ¼ iγðFÞ0 e−iðkðFÞd−π=2Þ, and
CðFÞ
14 ¼ iγðFÞ0 eiπe−iðkðFÞd−π=2Þ. The eigenvalues for the anti-

symmetric (denoted by superscript “A”) case are

ωðAÞ
� ¼ ω0 þ i2γðFÞ0 ½1� e−iðkðFÞd−π

2
Þ�: ð3Þ

Note that compared with the symmetric case [Eq. (2)],
Eq. (3) has an additional π=2 phase difference. The forming
condition of antisymmetric BICs is given by vanishing

ImðωðAÞ
� Þ as kðFÞd ¼ nπ þ π=2, (n∈Z).

BICs and quasi-BICs in the pillared Lamb waveguide.—
To test the above analysis, we conduct 2D simulations
under plane strain assumption using both the eigenvalue
and frequency domain solvers of the solid mechanics
module, COMSOL Multiphysics (v5.6). Perfectly matched
layers are applied to the two ends of the waveguide to
mimic outgoing boundary conditions (BCs) [63]. The base
material is aluminum with its density, Young’s modulus,
and Poisson ratio being 2700 kg=m3, 76.27 GPa, and 0.32,
respectively. As predicted by CMT, the simulated eigen-
frequencies show there exist two branches of local resonant
modes, the antisymmetric and symmetric branches denoted
as Ae and Se, (e∈N), respectively, in which the subscript e

TABLE I. Eigenvalues and eigenvectors of the Hamiltonian.

Branch Eigenvalue Eigenvector

Symmetric ω0 þ
�
iγðEÞ0 þ CðEÞ

13

�� �
CðEÞ
12 þ CðEÞ

14

� ½ �1; 1;�1; 1�

Antisymmetric ω0 þ
�
iγðFÞ0 − CðFÞ

13

�� �
CðFÞ
12 − CðFÞ

14

� ½ ∓1;−1;�1; 1�
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represents the vibrational order of the region between
pillars and a prime is used to distinguish if the mode
shape is antisymmetric or symmetric along the waveguide
[Figs. 2(a) and 2(b)]. These modes display vanishing
imaginary part [Q ¼ ReðωÞ=ð2ImðωÞ → ∞] for specific
values of d, which are recognized as BICs [44]. A slight
parameter detuning generally results in leaky modes with
nonzero yet extremely small radiative loss, which are
termed quasi-BICs [13,67,68].
For the symmetric branch, BICs appear when d is

an integer multiple of the half wavelength (125 mm)
[Fig. 2(b)]. These BICs are formed through extensional-
wave coupling among the pillars and do not involve any
flexural-wave coupling, similar to that in an acoustic two-
resonator system [3,44]. Regarding the antisymmetric case,
multiple local modes can be observed in Fig. 2(a) owing to
the much shorter wavelength of flexural waves than exten-
sional waves. Each of them can evolve into a BIC at a
particular spacing, e.g., A0

0 at d ¼ 6, A1 at d ¼ 18, and A0
2 at

d ¼ 29 mm [Fig. 2(b)], overall consistent with the con-
dition of BICs derived by Eq. (3). The couplings between

the pillars and waveguides can strongly alter the resonance
frequencies as d varies, which leads to the transition
of antisymmetric local modes from those formed by the
lower-order pillar mode to those formed by the higher-order
pillar mode [53]. Apart from the above eigenmode analysis,
the multibranch BICs can be characterized from a scatter-
ing point of view [53].
Based on the simulation results, we 3D-print two groups

of Aluminum pillared waveguide samples and perform
experimental measurements of their frequency responses
using a Doppler laser-vibrometer [53] [upper right panel of
Fig. 2(c)] to characterize the BICs by examining the
evolution of Q factors with varied d (five samples for the
symmetric branch S01 with d¼ 115;120;125;130;135mm;
five samples for the anti-symmetric branch A0

0 with
d ¼ 4; 5; 6; 7; 8 mm). The sample ends are covered with
damping materials (blue tacks, ldj-01, bostik) to minimize
boundary reflections. The excitation source is a piezo patch
(PZT-5H) polarized along its thickness direction. All sam-
ples are designed to be 5-mm-wide in the z direction, which
is the same as the size of the piezo patch to ensure the

FIG. 2. BICs and quasi-BICs in pillared elastic waveguide. (a) Resonance frequencies [the real part of eigenfrequency, ReðfeigÞ] andQ
factors of the antisymmetric and symmetric branches of eigenmodes as a function of d. The color scale represents the amplitude of Q in
decibels (dB). (b) Mode shapes of the corresponding BICs and quasi-BICs. u and v are horizontal (x) and vertical (y) displacement
components. (c) Measured frequency response and field distributions for the local modes in branch A0

0 and S01. Left panel: frequency
response functions (FRFs) of vertical velocity component jv̇j. The dotted lines trace the peaks of S01 and A0

0. Upper right panel: photo of
the sample and experimental setup. Lower right panel: field distributions of jv̇j at the peaks I–V marked in the left panel (see animations
of fields in [53]).
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consistency in excitations and avoid the appearance of
higher-order guided modes [53].
As expected, the Q factors approach their maxima at

critical spacings in both S01 and A
0
0 branches, i.e.,Q ¼ 47 at

d ¼ 125 mm and Q ¼ 102 at d ¼ 6 mm, suggesting the
vicinities of a symmetric and an antisymmetric BICs,
respectively. The Q factors decrease as d deviates from
the critical spacings, as reflected in the broader and lower
spectral peaks for S01 and A0

0. The peak even disappears
when d ¼ 4 mm. Moreover, the scanned field distributions
of the vertical velocity component (jv̇j) for A0

0 around the
spectral peaks [lower right panel of Fig. 2(c)] display
trapped flexural wave field within two pairs of pillars when
d ¼ 6 mm and become leaky once d deviates from 6 mm,
further confirming the existence of antisymmetric BIC in
A0
0. The experimental results are overall consistent with the

simulation results [53].
Sensitivity analysis to perturbations.—Dynamic-based

approaches, which recognize material, structural, or envi-
ronmental perturbation by examining the changes in mode
parameters such as mode shift, splitting, and broadening,
have been used in techniques ranging from optical micro-
cavity sensing [16,69] to nondestructive testing [64–66].
Below, we reveal the unique spectral responses of the
multibranch BICs to different types of perturbations. We
focus on the parameter case of d ¼ 18 mm where there are
a BIC (21141 Hz) in A1 and a quasi-BIC (22055þ 82i Hz)
in S0. Four types of perturbation are considered [Fig. 3].
The environmental perturbation refers to the fluctuation of
surrounding temperature or hydrostatic pressure.
Since the flexural wave is fully trapped within the in-

between region, the BIC in A1 is rather sensitive to the inner
beam perturbation in terms of mode shift [Fig. 3(a)]
induced by varied effective mode mass. Such fully trapped
property in turn results in the immunity of this BIC to the
perturbation in the outer regions [Fig. 3(b)]. The BIC no
longer exists if the perturbation is exerted at the pillar
due to the detuned resonance and broken symmetry
[Fig. 3(c)].
The quasi-BIC in S0, however, is almost immune to the

perturbation in the entire waveguide [Figs. 3(a) and 3(b)],
due to the much larger extensional wavelength than
perturbation size and the extremely weak in-plane motion
interacting with pillars [53]. Besides, we note that the
perturbation exerted at pillars also leads to perceivable
mode shifts, though not as obvious as the antisymmetric
BIC [Fig. 3(c)].
The two states react in similar manners to the environ-

mental perturbation as evidenced by the simultaneous
mode shifts [Fig. 3(d)]. They are still a BIC and a
quasi-BIC since the forming conditions can always be
met for global parameter variations.
The ideal “radiation continuum” guaranteed by outgoing

BCs, however, are inaccessible in practical sensing

application. Instead, we are commonly faced with finite
structures. In this case, the BICs degenerate into the
corresponding localized modes of a finite structure [53],
which can no longer be termed BICs but inherit their
properties. To demonstrate this, we replace the above
outgoing BCs with fixed-free ends, in which the length
of the beam is 160 mm. The BIC in A1, quasi-BIC in S0,
and leaky mode in S00, which exist in the infinite pillared
waveguide [Fig. 2(a)], now respectively become modes A,
SI, and SII of the finite beam.
In the simulated eigenfrequencies [Fig. 4(a)], mode A

shows large frequency shift to the in-between defect as a
result of strong wave-defect interaction of BIC, suggesting
its high sensitivity. As a reference, mode C, the 14th
flexural mode of the cantilever with the same dimensions
but no pillars, is much less sensitive [Fig. 4(b)]. Modes SI
and SII are immune to the defect yet shift in the same
manner as mode A under the environmental perturbation, as
the quasi-BIC in S0 behaves.
The diverse sensitivities of the local modes are con-

firmed experimentally, as evidenced by the measured
651-Hz-shift of mode A, unshifted mode SII and 89-Hz-
shift of mode C in Fig. 4(c), in which the defect is
mimicked by gluing an 1 × 1 × 10 mm block on the
sample [53]. The measured fields [Fig. 4(f)] further validate
the properties of these local modes and their distinct
responses to the defect, in stark contrast to modes C and
Cd that appear as standing waves without any localization
(see the comparison with simulation in [53]).

FIG. 3. Variations of the antisymmetric BIC in A1 and sym-
metric quasi-BIC in S0 branches against different types of
perturbation: (a) in-between region, (b) outer region, (c) pillars,
and (d) environment. In (a)–(c), the defect is mimicked by a
1 mm × 1 mm inclusion with density being ρ0 þ Δρ and
Δρ=ρ0 ∈ f0; 0.1; 0.2; 0.3; 0.4g at particular locations. In (d) the
environmental perturbation is introduced by varying the
Young’s modulus of the entire structure as E0 þ ΔE with
ΔE=E0 ∈ f0; 0.01; 0.02; 0.03; 0.04g [53].
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Discussions.—The above unique responses of the local
modes degenerated from the elastic multibranch BICs
provide rich information about the local and global varia-
tions occurred in the waveguide, which may inspire novel
schemes for detection or sensing. For example, based on
the diverse sensitivities of mode A and mode SII to the inner
beam perturbation in combination with their uniform
responses to environmental perturbation, the difference
in their resonance frequencies can be defined as a new
indicator to monitor material or structural change [53]. It
enables us to easily eliminate unwanted environmental
influences (temperature, prestress, etc.) from the overall
mode shifts, contributing to a label-free high-performance
sensing scheme to cope with varied working conditions.
Conclusions.—To conclude, we have theoretically and

experimentally demonstrated the formation of BICs with
different polarizations in a pillared Lamb waveguide. The
symmetric configuration and multipolarized coupling lead
to the decoupled symmetric and antisymmetric branches of
local modes, which can evolve into BICs under certain
conditions, depending on the monopolar or dipolar oscil-
lation of the pairs of pillar resonators at the same site. These
states display striking contrast in response to the in-between
perturbation but vary similarly under environmental pertur-
bation, which suggests a novel BIC-based sensing scheme.
Our work reveals the rich polarization of BICs carried by
elastic wave as well as their promising applications in areas
of nondestructive testing and acoustic sensing.
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