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Randomly coupled phase oscillators may synchronize into disordered patterns of collective motion. We
analyze this transition in a large, fully connected Kuramoto model with symmetric but otherwise
independent random interactions. Using the dynamical cavity method, we reduce the dynamics to a
stochastic single-oscillator problem with self-consistent correlation and response functions that we study
analytically and numerically. We clarify the nature of the volcano transition and elucidate its relation to the
existence of an oscillator glass phase.
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Synchronization is ubiquitous in nature and science [1].
Periodic degrees of freedom with different individual
frequencies tend to lock into phase coherent motion when
weakly coupled to one another. Physics, chemistry, biology,
engineering, and even sociology abound in examples [1–3].
Quantitative studies flourished after 1984 when Kuramoto
introduced a mean-field model of phase oscillators with
random frequencies of spread σ globally coupled with
strength J [4]. For small ratios J=σ the time evolution of the
oscillators remains incoherent, whereas for large J=σ they
continue to change in unison. More precisely, the incoher-
ent state remains stable up to a threshold value of J=σ [5]
followed by a sharp transition into an ordered state with
gradually increasing degree of synchronization [4]. Over
the years, the original Kuramoto model with identical
couplings between all oscillators has been investigated
thoroughly, and a wealth of information on it is by now
available [3,6,7].
Much less is known about the inhomogeneous situation

in which the oscillators are connected by couplings Jij of
different strength and sign [7]. The asymmetric case with
no relation between Jij and Jji is dominated by chaotic
dynamics with little tendency to synchronization [8]. For
symmetric couplings, Jij ¼ Jji, synchronization prevails
and, due to frustration, new phenomena emerge. Some of
these have been discussed in [9] and in a series of recent
papers by Strogatz and collaborators investigating different
types of symmetric but disordered coupling matrices
Jij [10–13]. Partial synchronization, mixed phases, anti-
phase synchronization, traveling-wave states, and other
patterns were found.
The system of central interest in this field, however, is the

analog of the Sherrington-Kirkpatrick (SK) model of spin
glasses [14] with symmetric but otherwise independent
couplings drawn from a Gaussian distribution. It was
studied numerically in pioneering work by Daido more
than 30 years ago [15]. At J=σ ≃ 1.3, he found a peculiar

“volcano” transition in the distribution of the order param-
eter that gave rise to speculations about the existence of an
oscillator glass state and remained mysterious ever since.
So far, no analytical theory is available for this system.

An attempt made in [16] remained essentially restricted
to the case of asymmetric couplings. The methods devel-
oped in [13] when applied to the SK setting result in an
exponential number of order parameters rendering the
approach unfeasible [13,17].
In the present Letter, we analyze the Kuramoto model of

phase oscillators with normally distributed frequencies and
random interactions of SK type. Using the dynamic cavity
approach, we reduce the dynamics of the N-oscillator
system to a self-consistent stochastic differential equation
for a single oscillator that we study analytically and
numerically. We reproduce the volcano transition found
by Daido, provide a physical picture of its nature, and
discuss its relation to a possible oscillator glass phase.
The model is defined by the set of equations

∂tθjðtÞ ¼ ωj þ hjðtÞ þ
X
k

Jjk sin
�
θkðtÞ − θjðtÞ

� ð1Þ

for the time evolution of the phases θj of N oscillators
j ¼ 1;…; N. The frequencies ωj are drawn at random from
a normal distribution with zero mean and unit variance, and

the initial conditions θjð0Þ ¼ θð0Þj derive from a flat dis-
tribution over ½−π; πÞ. The couplings are symmetric,
Jjk ¼ Jkj, and otherwise independent Gaussian random
variables with zero mean and variance J2=N. The local
fields hjðtÞ are introduced solely to define the susceptibil-
ities χjkðt; t0Þ ≔ δθjðtÞ=δhkðt0Þ and will be put equal to zero
otherwise. We are interested in the long-time dynamics of
the system in the thermodynamic limit N → ∞.
Because of the global coupling, the model is of

mean-field type and may be reduced to an effective,
self-consistent single-site problem. To accomplish this
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reduction, we employ the dynamical cavity method that
rests on the assumption of stochastic stability of the
thermodynamic limit [18]. We consider system (1) for
one particular realization of frequencies, initial conditions,
and couplings and add one new oscillator, j ¼ 0, with

phase θ0ðtÞ and new quenched random variables ω0, θ
ð0Þ
0 ,

and J0k.
The presence of the new oscillator induces slight devia-

tions θj → θ̃j ¼ θj þ δθj in the dynamics of the previous
ones. Since J0k ¼ Oð1= ffiffiffiffi

N
p Þ, they are small and may be

treated in linear response:

δθjðtÞ ¼
X
l

Z
t

0

dt0χjlðt; t0ÞJl0 sin
�
θ0ðt0Þ − θlðt0Þ

�
: ð2Þ

To leading order in N, the equation of motion of the new
oscillator then assumes the form

∂tθ0ðtÞ ¼ ω0 þ h0ðtÞ þ
X
k

J0k sin
�
θkðtÞ − θ0ðtÞ

�

þ
X
k;l

J0kJl0

Z
t

0

dt0χklðt; t0Þ cos
�
θkðtÞ − θ0ðtÞ

�

× sin
�
θ0ðt0Þ − θlðt0Þ

�
: ð3Þ

The new couplings J0k are statistically independent of
the θiðtÞ, i ¼ 1;…; N, and, therefore, the third and fourth
term on the rhs of this equation are large sums of
independent random contributions with finite first and
second moments. By the central limit theorem, they are,
therefore, Gaussian random functions and may be charac-
terized by their respective first and second moments. As it
turns out, the third term gives rise to a Gaussian noise with
zero mean, whereas the fourth term is characterized by
negligible fluctuations for N → ∞ and may be replaced by
its average [19]. Denoting by h� � �i the combined average
over all couplings (including the new ones) as well as over
the frequencies and initial conditions for i ≥ 1, Eq. (3)
acquires the form [19]

∂tθ0ðtÞ ¼ ω0 þ h0ðtÞ þ J cos θ0ðtÞξ2ðtÞ − J sin θ0ðtÞξ1ðtÞ

− J2
Z

t

0

dt0 Rðt; t0Þ sin �
θ0ðtÞ − θ0ðt0Þ

�
: ð4Þ

Here ξi, i ¼ 1, 2, are two independent Gaussian noise
sources with

hξiðtÞi≡ 0; hξiðtÞξjðt0Þi ¼ δijCðt; t0Þ: ð5Þ

Moreover,

Cðt; t0Þ ≔ 1

2N

X
j

�
cos

�
θjðtÞ − θjðt0Þ

��
; ð6Þ

Rðt; t0Þ ≔ 1

2N

X
j

�
χjjðt; t0Þ cos

�
θjðtÞ − θjðt0Þ

��
: ð7Þ

The noise terms derive from the disordered crosstalk of the
θj on θ0 and are, hence, proportional to J. The response
term stems from the feedback of the polarization of the θj
due to θ0 on θ0 itself and is proportional to J2.
Consequently, the phase θ0ðtÞ of the new oscillator obeys

a Langevin equation with multiplicative colored noise and
memory kernel with correlation and response functions
determined by the dynamics of the original N-oscillator
system in the absence of θ0. We now close the argument by
stipulating that in the averaged (N þ 1)-oscillator system θ0
should in no way be special. Therefore, the average in (6)
and (7) may be replaced by one over the dynamics of θ0ðtÞ
itself.
In this way, we end up with our self-consistent single-

oscillator problem defined by (4) and (5) together with

Cðt; t0Þ ≔ 1

2

�
cos

�
θ0ðtÞ − θ0ðt0Þ

��
; ð8Þ

Rðt; t0Þ ≔ 1

2

�
χ00ðt; t0Þ cos

�
θ0ðtÞ − θ0ðt0Þ

��
; ð9Þ

χ00ðt; t0Þ ≔
δθ0ðtÞ
δh0ðt0Þ

: ð10Þ

The average h� � �i is now over the realizations of the ξi as

well as over ω0 and θð0Þ0 . In the following, the by now
superfluous index 0 will be omitted. For large values of t
and t0, the functions C, R, and χ will depend only on
τ ≔ t − t0. Equations equivalent to (4), (5), and (8)–(10)
may also be derived with the help of the Martin-Siggia-
Rose formalism [20] as applied to systems with quenched
disorder [21–23].
The self-consistent stochastic single-site problem

derived above represents a difficult system of equations.
Analytical progress is possible by perturbation theory in J
which we worked out up to fourth order [19]:

CðτÞ ¼ C0ðτÞ þ J2C2ðτÞ þ J4C4ðτÞ þOðJ6Þ; ð11Þ

RðτÞ ¼ R0ðτÞ þ J2R2ðτÞ þ J4R4ðτÞ þOðJ6Þ: ð12Þ

The complete expressions are rather long, and we quote
here only the asymptotic behavior for large τ:

C0ðτÞ ∼ R0ðτÞ ∼
1

2
e−τ

2=2;

C2ðτÞ ∼ 3R2ðτÞ ∼
3

ffiffiffi
π

p
16

τe−τ
2=4;

C4ðτÞ ∼ 13R4ðτÞ ∼
13π

ffiffiffi
3

p

864
τ2e−τ

2=6: ð13Þ
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As can be seen, the decay of both correlation and response
functions becomes slower with increasing order, and one
may speculate about the general asymptotic behavior

C2nðτÞ ∼ R2nðτÞ ∼ τne−½τ2=2ðnþ1Þ�:

The single-oscillator dynamics may also be studied by
numerical simulations [24,25]. Starting with initial guesses
for Cðt; t0Þ and Rðt; t0Þ and generating a family of trajecto-
ries fθðtÞg according to (4), one determines refined
approximations for Cðt; t0Þ and Rðt; t0Þ via (8) and (9)
and iterates until convergence is reached [19]. In this
procedure, the functional derivative δ=δhðt0Þ of Eq. (4)
yields an equation of motion for χðt; t0Þ which is solved in
parallel with the one for θðtÞ [25]. This numerical analysis
is rather different from and hopefully complementary to the
direct simulation of the original N-oscillator problem (1) as
performed by Daido. In particular, no finite-size effects
have to be taken into account: The solution of (4) is
expected to display the statistical properties of a typical
oscillator in an N ¼ ∞ system [24]. Finite-size effects are a
notorious nuisance in the simulation of glassy systems
[26,27], and their absence is quite advantageous.
To validate our approach, we display in Fig. 1 the

correlation function CðτÞ as obtained from the original
N-oscillator system and (6), the one determined self-
consistently according to (8), and analytical results from
perturbation theory. For J ¼ 0.80, i.e., below the volcano
transition, the agreement is very good. At J ¼ 1.75, well
above Jc ≃ 1.3, both simulations show a markedly
increased correlation range as can be inferred from the

comparison with C0ðτÞ. Unfortunately, the validity of our
fourth-order perturbation theory does not extend up
to J ¼ 1.75.
We now turn to the analysis of the volcano transition. As

order parameters that are able to signal synchronization into
disordered phase patterns, Daido introduced the so-called
complex local fields [15]:

ΨjðtÞ ≔ rjðtÞeiϕjðtÞ ≔
1

J

X
k

JjkeiθkðtÞ: ð14Þ

With their help, Eq. (1) may be rewritten as

∂tθjðtÞ ¼ ωj þ hjðtÞ þ JrjðtÞ sin
�
ϕjðtÞ − θjðtÞ

�
:

From this form, it is apparent that the distribution PðrÞ of
the moduli rj is crucial for the overall tendency of the
system to synchronize. The ϕj merely determine the
specific pattern on which the phases lock. In fact, Daido
detected the volcano transition in histograms of

P̃ðrÞ ≔ PðrÞ
2πr

compiled from time series rjðtÞ for different j. For small
coupling strength, P̃ has its maximum at r ¼ 0. With
increasing J, the height of this maximum shrinks, and at
J ¼ Jc it turns into a minimum with another maximum
developing at nonzero value of r.
In view of (14), the order parameter for the newly added

oscillator is given by

ΨðtÞ ≔ rðtÞeiϕðtÞ ≔ 1

J

X
j

J0jeiθ̃jðtÞ: ð15Þ

Using θ̃j ¼ θj þ δθj together with (2), it may be split into
two parts:

ΨðtÞ ¼ 1

J

X
j

J0jeiθjðtÞ þ
i
J

X
j

J0jeiθjðtÞδθjðtÞ þ � � �

≕ ξðtÞ þ ζðtÞ: ð16Þ

Here, ξ ¼ ξ1 þ iξ2 is a complex Gaussian noise defined
by (5). Arguments similar to those that carried us from (3)
to (4) reveal that the fluctuations of ζ as induced by the
randomness in the couplings and the θj; j ≥ 1 are negli-
gible for N → ∞. As a result, we get [19]

ζðtÞ ≔ ρðtÞeiφðtÞ ≔ J
Z

t

0

dt0Rðt; t0Þeiθ0ðt0Þ; ð17Þ

with
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FIG. 1. Correlation function CðτÞ as obtained via (6) from
simulations of an N ¼ 103 oscillator network averaged over 50
disorder realizations (red diamonds) and as resulting from (8) and
5 × 104 trajectories of the single-oscillator dynamics (blue
circles). Statistical errors are smaller than the symbol size. The
main figure is for J ¼ 0.80, the inset for J ¼ 1.75. Also shown
are the lowest-order perturbative result C0ðτÞ (black dashed line)
and, for J ¼ 0.80, the fourth-order result (11) (black full line).
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ρðtÞ ¼ J
�� Z t

0

dt0Rðt; t0Þeiθ0ðt0Þ��: ð18Þ

The decomposition (16) of Ψ now clearly reveals the
mechanism behind the volcano transition. For J ¼ 0, the
order parameter is equal to ξ, and, therefore, it is a Gaussian
random variable with zero mean. Accordingly, the maxi-
mum of P̃ðrÞ is at r ¼ 0. With increasing J, the Gaussian
distribution for Ψ is systematically shifted such that its
maximum coincides with ζ. This reduces P̃ð0Þ, and for
sufficiently large jζj the maximum of P̃ at r ¼ 0 turns into a
minimum; see also Fig. 3 in [19]. Note that the crucial
prefactor J in (17) results from the different J scaling of
noise and response terms in (4).
More quantitatively, we have

PðrðtÞÞ ≔
�Z

Dξ1ð·ÞDξ2ð·ÞδðrðtÞ − jΨðtÞjÞ
	
; ð19Þ

where the outer average is over ω and θð0Þ. Further
analytical progress is now hampered by the fact that due
to its dependence on θ0ðt0Þ the order parameter ΨðtÞ is a
complicated functional of the ξið·Þ. Both our perturbative
results and our numerical simulations, however, indicate
[19] that typically ρðtÞ is very near to its upper bound

ρu ≔ J
Z

t

0

dt0
��Rðt; t0Þeiθ0ðt0Þ�� → J

Z
∞

0

dτjRðτÞj; ð20Þ

where in the last step the limit t → ∞ was taken.
Using ρu instead of ρ in (19), no dependence on ω and

θð0Þ remains, and, moreover, the path integrals over the
noise histories simplify to Gaussian averages over ξiðtÞ.
Performing these, we end up with [19]

P̃ðrÞ ≃ P̃uðrÞ ¼
1

π
e−r

2−ρ2uI0ð2rρuÞ; ð21Þ

where I0 denotes a modified Bessel function [28]. From

∂
2P̃u

∂r2

����
r¼0

¼ 2

π
e−ρ

2
uðρ2u − 1Þ;

the corresponding approximation Jcu for Jc is implicitly
given by ρuðJcuÞ ¼ 1. Using the lowest-order perturbative
result for RðτÞ [19], we find

Jcu ¼
4ffiffiffiffiffiffi
2π

p ≃ 1.6:

Figure 2 compares (21) with numerical simulations. For
small J, the agreement is fine. With increasing J, the
nonlocal correlations between ζðtÞ and ξðt0Þ that were
neglected in the derivation of (21) become more and more
important. Nevertheless, the qualitative agreement between

approximate analytical theory and numerical simulations
remains valid. In particular, the volcano transition is clearly
described by (21). The histograms from both numerical
simulations are consistent with those of Daido [15] and,
hence, also reproduce his result Jc ≃ 1.3, which is some-
what smaller than Jcu.
We finally discuss the relation of our findings to the

possible existence of an oscillator glass phase. Our per-
turbation results (13) for the correlation and response
functions show a tendency to long-range autocorrelations
and slowly decaying memory kernel with increasing values
of J. Although this may be taken as precursors of a freezing
transition, these asymptotics give no hint on a power law
decay that is generally believed to characterize a glass
phase [29]. Moreover, in the analysis of (4) for large J, we
do not find any indication for a persistent part in the
correlation function similar to the case of the SK spin
glass [22]. This is consistent with the phase diffusion
observed by Daido for very long times [15] and may
originate in the peculiar symmetries of the model that show
up also in the linear stability analysis of the incoherent
state [5]. Also, the mechanism behind the volcano tran-
sition described by the decomposition (16) of the order
parameter is rather general, and it seems likely that it may
be found in several models [13,17] irrespective of whether
these possess a glass phase or not. Finally, from the
investigation of so-called “noise-induced” transitions, it
is well known that it may be misleading to link a
thermodynamic transition to the topological change of a
probability distribution [30]. In line with [13,17], we,
therefore, believe that the volcano transition found in [15]
does not immediately lead into a glass phase.
In conclusion, we have provided an intuitive as well as

an analytical understanding of the volcano transition

0 1 2 3 4
r
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0.05

0.1

0.15

0.2

0.25
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0.35
J=0.16
J=0.80
J=1.27
J=1.75
J=2.70

FIG. 2. Comparison between P̃uðrÞ as determined by (21) (full
lines) with numerical simulations of 103 trajectories of the
effective single-oscillator problem (4) (dotted lines) and of the
original N-oscillator problem (1) with N ¼ 103 averaged over 20
disorder realizations (dashed lines).
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characteristic for synchronization processes in disordered
networks of coupled phase oscillators. A key ingredient is
the decomposition (16) of the local order parameter in a
random and a systematic part. Our methods should be
relevant for systems beyond networks of simple phase
oscillators. Examples include optomechanical arrays [31],
chemical systems [32], and colonies of bacteria [33] as well
as the very recently discussed networks of Lohe [34] and
Stuart-Landau oscillators [35].

Stimulating discussions with Harald Engel, Joachim
Krug, Alexander Hartmann, Satya Majumdar, Peter
Reimann, Markus Schmitt, and Peter Young are gratefully
acknowledged.
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