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We show that lasing in flat-band lattices can be stabilized by means of the geometrical properties of the
Bloch states, in settings where the single-particle dispersion is flat in both its real and imaginary parts. We
illustrate a general projection method and compute the collective excitations, which display a diffusive
behavior ruled by quantum geometry through a peculiar coefficient involving gain, losses and interactions,
and entailing resilience against modulational instabilities. Then, we derive an equation of motion for the
phase dynamics and identify a Kardar-Parisi-Zhang term of geometric origin. This term is shown to exactly
cancel whenever the real and imaginary parts of the laser nonlinearity are proportional to each other, or
when the uniform-pairing condition is satisfied. We confirm our results through numerical studies of the
π-flux diamond chain. This Letter highlights the key role of Bloch geometric effects in nonlinear dissipative
systems and KPZ physics, with direct implications for the design of laser arrays with enhanced coherence.
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Introduction.—The physics of weakly dispersive bands,
where correlation effects and interactions dominate over
kinetic energy, has been the topic of various conceptual and
experimental studies, starting from the strong coupling
limit of the Hubbard model and the fractional quantum Hall
effect, and pioneering, in recent years, the discovery of flat
bands in twisted bilayer graphene [1] and the consequent
experimental observation of superconductivity [2] and
correlated insulators [3]. The most appealing flat bands
are the ones displaying a complex structure of the Bloch
states, not ascribable to a trivial atomic limit. The crucial
role of Bloch state geometry for (quasi)condensation [4–6]
and superfluid transport [7,8] is now well established.
Similarly to weakly interacting atomic BECs in flat

bands [6,9], it is natural to consider lasing in flat band
systems within a semiclassical framework. However, in
such a non-Hermitian context, one should specify whether
the flatness condition applies to the real or imaginary part
of the single-particle dispersion relation. In this Letter, we
explore the situation where the Bloch geometry stabilizes a
lasing state in a purely nonlinear fashion, due to gain
competition. This goes beyond a series of recent works on
topological lasers [10,11] and polariton condensation on

the Lieb lattice [12], where a privileged Bloch state benefits
from a larger gain or quality factor already at the linear
level. In other words, this Letter considers single-particle
bands that are flat both in their real and imaginary parts.
This Letter also addresses a question that is specifically

relevant to nonequilibrium quasicondensates: the fate of
Kardar-Parisi-Zhang (KPZ) physics [13–16] in a flat band.
Indeed, in dispersive systems the KPZ nonlinearity is
proportional to the bandwidth. Here, we determine under
which conditions the KPZ nonlinearity survives in non-
Hermitian flat bands, revealing the key role of Bloch
geometry in this context.
We start by introducing the semiclassical lasing equa-

tions on the diamond chain, as well as a real-space
projection method to the lowest flat band. The geometry
of the Bloch states determines the steady-state lasing mode
and the collective modes, calculated by the Bogoliubov
method. In particular, the onset of modulational instabilities
is shown to be hindered by quantum geometry. We then go
beyond Bogoliubov, by introducing stochastic noise and
allowing for large phase fluctuations. Adiabatically elimi-
nating density fluctuations yields an equation for the phase
featuring a nonlinear KPZ term, which is proportional to a
Bloch geometric constant. This term is shown to cancel out
whenever the real part of the laser nonlinearity is propor-
tional to the imaginary part, or when the uniform-pairing
condition is satisfied. Our results are confirmed by numeri-
cal simulations. Finally, we discuss connections with
previous works on flat bands [12,17,18] and outline future
directions.
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Model and projection.—We consider lasing in a semi-
classical framework, particularly adequate for lattices of
microring laser resonators [19], exciton-polariton micro-
pillars [20], and VCSEL’s arrays [21]. The light field (or
polariton field, in themicropillar case)ψxσðtÞ, is defined on a
lattice, where σ denotes one of theNσ orbitals within the xth
unit cell, Nx being the number of unit cells. We assume that
the field obeys a complex Ginzburg-Landau equation
(CGLE) [22]

i∂tψxσ ¼ ðH0ψÞxσ þ
i
2
½ð1 − iαÞrxσ − γ�ψxσ; ð1Þ

∂trxσ ¼ γRP − γRð1þ jψxσj2=nSÞrxσ; ð2Þ
where the reservoir of carriers is described by the local gain
strength rxσ , and the Henry factor α [23] sets the relative
strength of the interaction (aka refractive index in the laser
context) over gain nonlinearities. Furthermore, P and γ are,
respectively, gain and losses, which we assume to be
uniform along the system, nS is the saturation density that
determines the strength of gain competition. While a slow
carrier dynamics can potentially give rise to further insta-
bilities [11,17,24,25], we assume that the reservoir relax-
ation rate γR represents the fastest scale, such that the
adiabatic approximation holds:

i∂tψxσ ¼ ðH0ψÞxσ þ
i
2

�
ð1 − iαÞ P

1þ jψxσj2=nS
− γ

�
ψxσ:

ð3Þ
The single-particle HamiltonianH0 encodes the hopping

on the lattice. Because of the relevance of 1D lattices for
KPZ physics, we will henceforth consider the π-flux
diamond chain, a 1D setting displaying flat bands [26].
However, we expect our analytical results to hold for other
models and independently of the dimensionality of the
system. The diamond chain is sketched in Fig. 1 and is
described by the quadratic Hamiltonian

H0 ¼ −J
XNx

x¼1

ðc�xax − b�xax þ ia�xþ1bx þ ia�xþ1cxÞ þ H:c:;

ð4Þ
where σ runs over A, B, C and we denoted a≡ ψxA;
b≡ ψxB; c≡ ψxC. We emphasize that each plaquette

contains a π flux, which is key to form flat bands [26];
for the sake of notations, we have chosen a gauge in which
lasing occurs in the zero-momentum Bloch state. Such
Hamiltonian can be implemented in lattices of microring
laser resonators with passive dielectric elements [27,28] or
polaritons micropillars in an external magnetic field [29], as
well as in superconducting qubits [30].
Under periodic boundary conditions, the energy spec-

trum associated with H0 yields three perfectly flat bands,
with energies f−2J; 0; 2Jg. From now on, we assume that
all the dynamics occurs in the lowest band, requiring the
hopping J to dominate over all other scales in the problem
(P, γ and interactions). The Bloch eigenstates correspond-
ing to this band have the form ukðσÞ ¼ ½1=ð2 ffiffiffi

2
p Þ�ð2;

−1 − ieik; 1 − ieikÞT , where k denotes the quasimomentum.
For a given field configuration, its projection onto the lowest
band has the form ðPψÞxσ ¼

P
k ukðσÞðeikx=

ffiffiffiffiffiffi
Nx

p Þψ̄k.
Fourier transforming the coefficients ψ̄k yields the auxiliary
field ψ̄x, which is the relevant representation used in the
following.
To tackle the problem, we assume that density fluctua-

tions are small on top of a noiseless steady-state ψ ss, with
uniform density along x, ρσ ¼ jψ ss

xσj2=nS. In this way we
can expand the nonlinearity as

1

1þ jψxσj2=nS
≃

1þ 2ρσ
ð1þ ρσÞ2

�
1 −

jψxσj2=nS
1þ 2ρσ

�
: ð5Þ

This leads to a cubic CGLE with site-dependent inter-
action coefficients. We use the convolution

ðPψÞxσ ¼
1

Nx

X
k;y

ukðσÞeikðx−yÞψ̄y ð6Þ

(which makes the nonlocality introduced by the projection
explicit) to obtain

i∂tψ̄x ¼
�
−2J− i

γ

2

�
ψ̄xþ i

P
2

X
y

Kρðx;yÞψ̄y

−
iP
2nS

ð1− iαÞ
X
y1y2y3

Kρðx;y1; y2;y3Þψ̄�
y1 ψ̄y2 ψ̄y3 ; ð7Þ

where we have defined the “quantum geometric kernel”

Kρðx; y1; y2; y3Þ ¼
X
k1k2k3

eik1z1−ik2z2−ik3z3

N3
x

Λρðk1; k2; k3Þ: ð8Þ

Here, we used the shortcut zj ≡ yj − x and introduced the
crucial object

Λρðk1; k2; k3Þ ¼
X
σ

u�k2þk3−k1ðσÞu�k1ðσÞuk2ðσÞuk3ðσÞ
ð1þ ρσÞ2

; ð9Þ
FIG. 1. Sketch of the diamond chain, with three inequivalent
sites A, B, C per unit cell. The dashed on the link stands for a
minus sign in the hopping amplitude, the arrow for a þi.
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which contains the geometric properties of the Bloch
states. Generalization to other functional forms of the
nonlinearity is straightforward. In particular, lasing near
threshold corresponds to the limit ρσ → 0. In this case, if
uk ¼ u�−k, and under the uniform density assumption

ju0ðσÞj2 ¼ ð1=NσÞ, the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΛ0ðk; 0; 0Þj2

p
repre-

sents the Hilbert-Schmidt distance between the Bloch states
at �k [6,9].
The other exotic object is the nonlocal kernel Kρðx; yÞ ¼

ð1=NxÞ
P

kσ½ð1þ 2ρσÞ=ðð1þ ρσÞ2Þ�jukðσÞj2eikðx−yÞ. Be-
cause of gain saturation, the effective gain depends on
the occupation of the sites within a unit cell. The non-
locality of this expression could result in an imaginary part
of the dispersion of ψ̄ at the linear level. For the dia-
mond chain, however, Kρðx; yÞ ¼ δxy

P
σf½1þ 2ρσ�=½ð1þ

ρσÞ2�gju0ðσÞj2 is local and we can define the effective linear
gain constant P̄ ¼ PKρðx; xÞ. In the following, we no
longer consider the original field and drop the bar from ψ̄ .
Lasing state and Bogoliubov modes.—At this stage, we

simply rewrote the CGLE projected onto the lowest band.
We will now study the steady-state solution and its
dynamical properties. Lasing will typically occur in the
momentum state k� that optimizes gain saturation [mini-
mizing Λðk; k; kÞ] and density uniformity. In the case of the
diamond chain, there exist two such (equivalent [31])
momenta, 0 and π, and we will assume that k� ¼ 0 is
spontaneously selected. The lasing steady state then reads

ψxðtÞ ¼ ffiffiffiffiffi
n0

p
e−iω0t; ð10Þ

with n0 ¼ nSðP̄ − γÞ=ðPΛ0Þ the density of the field, ω0 ¼
−2J þ αðP̄þ PΛρ

0n0=nSÞ=2 the laser frequency and the
shortcut Λρ

0 ≡ Λρð0; 0; 0Þ.
We now consider the collectivemodes on top of the steady-

state byperturbing it asψxðtÞ¼e−iω0tð ffiffiffiffiffi
n0

p þP
kδψkðtÞeikxÞ.

These fluctuations obey the equation of motion

i∂tδψk ¼ −i
Γ
2
ð1 − iαÞ½ð2Λρð0; k; 0Þ − Λρ

0Þδψk

þΛρðk; 0; 0Þδψ�
−k�; ð11Þ

where Γ ¼ Pn0=nS determines the relaxation rate for density
fluctuations. As previously noticed in the atomic BEC con-
text [6,9], where ρσ ¼ 0 (two-body interactions), the quan-
tities Λ0ð0; k; 0Þ ¼ P

σ jukðσÞj2ju0ðσÞj2 and Λ0ðk; 0; 0Þ ¼P
σ u

�
kðσÞu�−kðσÞu20ðσÞ are related to the quantum metric of

the Bloch states;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jΛ0ðk; 0; 0Þj2

p
is also called the

“condensate quantum distance.”We remark that, as a further
improvement over these works, we did not invoke any
uniform-density assumption, and considered general non-
linearity functionals.
One can turn Eq. (11) into a 2 × 2 eigenproblem and find

the complex eigenvalues ω�ðkÞ. At k ¼ 0, the phase (or
Goldstone) mode has always ωþ ¼ 0, reflecting the invari-
ance of the dynamics under global phase shifts.

For the diamond chain, we have ρB ¼ ρC ¼ ρA=2 and
Λρð0; k; 0Þ ¼ Λρ

0 ¼ f1=½4ð1þ ρAÞ2�g þ f1=½8ð1þ ρBÞ2�g,
yielding

ω�ðkÞ¼−
i
2
ΓΛ0�

Γ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2Λ2

0−ð1þα2ÞΛðk;0;0Þ2þ i0þ
q

:

ð12Þ

At small momentum, one can expand Λρðk; 0; 0Þ≃
Λρ
0 − ðβ=2Þk2, where β ¼ f1=½8ð1þ ρBÞ2�g plays the role

of a metric. We thus recover a diffusive behavior for the
Goldstone branch

ωþðkÞ ≃ −
i
4
βΓð1þ α2Þk2: ð13Þ

For exciton polaritons in dispersive bands [32,33], the
Goldstone branch diffuses as ωþðkÞ ≃ 2iJαk2. In contrast,
Eq. (13) features the geometric quantity β, but also a
peculiar functional dependence on Γ, α. In particular, α
enters at the quadratic level instead of linearly, suggesting
that the modulational instabilities (that appear for Jα > 0 in
the dispersive case [25,34,35]) are tamed by the quantum
geometry. We confirm this important statement in [36],
which may have an important impact on applications. The
stability of the flat-band laser in the case of slow reservoir
dynamics γR ∼ γ, as well as the validity regime of the
projected model, are also investigated in [36].
Fate of the KPZ nonlinearity.—So far, we have been

dealing with deterministic evolution and small perturba-
tions. We now supplement the CGLE (3) with a stochastic
drive

ffiffiffiffi
D

p
ξxðtÞ, whereD is the strength of the noise and ξ is

taken as an uncorrelated random variable of zero mean and
unit variance, hξ�xσðtÞξx0σ0 ðt0Þi ¼ δxx0δσσ0δðt − t0Þ. Since H0

is Hermitian and the Bloch states are orthogonal, the noise
variance is unaffected by the projection onto the lowest
band (no Petermann broadening is introduced [38]); hence,
one can simply complement the projected CGLE (7) with a
white noise term

ffiffiffiffi
D

p
ξxðtÞ of unit variance.

Because of the absence of long-range order, Bogoliubov
theory in low dimensions is not fully consistent and its
conclusions have to be taken with a grain of salt. In 1D
nonequilibrium systems, it has been theoretically [13–15]
and experimentally [16] established that the low-energy
dynamics is dominated by phase fluctuations, as described
by the KPZ equation [39]

∂tϕ ¼ ν∇2ϕþ λð∇ϕÞ2 þ ffiffiffiffi
D

p
ξϕ; ð14Þ

where hξϕðxtÞξϕðx0t0Þi ¼ 1
2
δðx − x0Þδðt − t0Þ. The KPZ

nonlinearity of strength λ distinguishes this growth equa-
tion from the linear Gaussian evolution. In the physics of
interfaces, the Laplacian describes surface tension favoring
a smooth interface, while the nonlinear term entails that
growth occurs in the direction locally normal to the
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interface. While the exponential decay of the spatial
correlations is unaffected by λ ≠ 0, the hallmark of KPZ
physics concerns the dynamical exponent characterizing
the decay of temporal correlations.
KPZ physics was identified in the context of polariton

wires [40], where the linear kinetic term is nonlocal and the
nonlinear term is local. In contrast, Eq. (7) features a
nonlocal and nonlinear term. To go beyond Bogoliubov
theory, we adopt the density-phase formalism ψðx; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ δn

p
e−iω0tþiϕ, where we only require the density

fluctuations to be small. Treating x as a continuous
variable, we then divide both sides of Eq. (7) by eiϕðxÞ
and expand

ei½ϕðy2Þþϕðy3Þ−ϕðy1Þ−ϕðxÞ� ≃ 1þ i∇ϕðxÞðz2 þ z3 − z1Þ

þ i
2
∇2ϕðxÞðz22 þ z23 − z21Þ

−
1

2
½∇ϕðxÞ�2ðz2 þ z3 − z1Þ2:

In principle, one can also perform a Taylor expansion for
density fluctuations, but it turns out that the spatial
derivatives of the density will eventually yield higher-order
corrections to the phase equation. For instance, the
Laplacian ∇2δn will generate a term ∇4ϕ. Physically, this
is related to the fact that density correlations are very short
ranged. We then approximate δnðyjÞ ≃ δnðxÞ; note that one
also drops ∇δn;∇2δn in the case of dispersive bands.
We have reduced the problem to evaluating moments of

the quantum geometric kernelZ
dzjdkj eik1z1−ik2z2−ik3z3Λρðk1;k2;k3ÞPolðz1;z2;z3Þ; ð15Þ

where Polðz1; z2; z3Þ denotes a polynomial with real coef-
ficients. In the case of the diamond chain, one explicitly
verifies that Λρðk1; k2; k3Þ ¼ Λρð−k1;−k2;−k3Þ. This
entails that only even polynomials survive the integration
and the result is real. It is easy to recognize that integration
of z22 þ z23 − z21 yields ðd2=dk2ÞΛρðk; 0; 0Þ ¼ −β, while
the coefficient η¼−ð∂k2þ∂k3−∂k1Þ2Λρðk1;k2;k3Þjkj¼0

¼
2β stems in front of ð∇ϕÞ2. Putting pieces together and
separating real and imaginary parts of the CGLE, we finally
arrive at the density-phase equations

∂tδn¼ −ΓΛρ
0δnþ

αβ

2
Γn0∇2ϕþΓ

2
n0ηð∇ϕÞ2 þ 2

ffiffiffiffiffiffiffiffiffi
n0D

p
ξn;

∂tϕ¼ αΓ
2
Λρ
0

δn
n0

þΓ
4
β∇2ϕ−

αΓ
4
ηð∇ϕÞ2 þ

ffiffiffiffiffi
D
n0

s
ξϕ; ð16Þ

where we now have two uncorrelated sources of noise,
hξϕðxtÞξϕðx0t0Þi¼ 1

2
δðx−x0Þδðt− t0Þ and hξnðxtÞξnðx0t0Þi ¼

1
2
δðx − x0Þδðt − t0Þ. The last step consists in adiabatically

tracing out density fluctuations, so to be left with the
equation for the low-energy phase dynamics

∂tϕ ¼ β

4
Γð1þ α2Þ∇2ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
n0

ð1þ α2Þ
s

ξϕ: ð17Þ

Remarkably, the KPZ nonlinearity is zero because of an
exact cancellation of the ð∇ϕÞ2 term, which could have
potentially been generated by interactions and Bloch
geometry. Also, notice that the coefficient of the
Laplacian recovers the diffusion of the Goldstone mode
in Eq. (13) and the noise coefficient is the square root of the
Henry-Schawlow-Townes linewidth per unit length [41].
This argument for the cancellation of the KPZ non-

linearity holds irrespective of the dimensionality of the
system, but it is of particular relevance in on dimension,
where the renormalization group (RG) applied to the KPZ
equation predicts that the Gaussian fixed point is unstable.
Then, in principle, the RG flow may regenerate an effective
KPZ nonlinearity originating from higher order corrections.
Hence, we now aim at numerically testing the validity of
our results by studying the presence of KPZ effects in the
correlation functions. We ran extensive simulations of the
full unprojected CGLE (3), including a stochastic drive,
with an initial seed chosen to lase at k ¼ 0. We computed
the first-order coherence function, defined by the statistical
averages in the steady state

gð1Þðx; tÞ ¼ ha�xðtÞa0ð0Þi: ð18Þ

The hallmark of KPZ is a decay of temporal correlations of
the form gð1Þð0; tÞ ∼ exp ð−At2=3Þ, with some nonuniversal
constant A. In Fig. 2, we plot − log gð1Þð0; tÞ for different
system sizes and values of g, showing no sign of the 2=3
KPZ exponent.
On the other hand, Eq. (17) has the form of a Gaussian

process, described by the Edwards-Wilkinson (EW) equa-
tion ∂tϕ ¼ ν∇2ϕþ ffiffiffiffi

D
p

ξϕ. The correlations for this model
can be easily computed; in one dimension, they read

gð1ÞEWð0; tÞ ¼ n0 exp ½−ðD=4Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiðt=πνÞp � and gð1ÞEWðx; 0Þ ¼
n0 exp ½−ðD=8νÞx�. While these are the predictions for
an infinite system, in general there will be finite size
corrections. In particular, at large times, we expect the

Schawlow-Townes (ST) exponential decay gð1ÞST ð0; tÞ ¼
n0 exp ½−ðD=4NxÞt�, with a linewidth inversely propor-
tional to the system size [42]. We recall that the linewidth is
also very sensitive to the presence of KPZ physics, with a
scaling ∼N−1=2

x , which can already show up for a dozen of
resonators [41]. The EWand ST predictions are also plotted
in Fig. 2 and match perfectly the numerical data, confirm-
ing the validity of Eq. (17) and the absence of KPZ physics
for all numerically accessible system sizes. (The small
discrepancy at small times is due to high-energy fluctua-
tions, for which density cannot be eliminated).
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Generalizations.—To better understand under which
conditions the KPZ term exactly cancels, we introduce a
photon-photon interaction term gjψxσj2ψxσ in Eq. (3), and
set α ¼ 0. In this case, the real and imaginary parts of the
nonlinearity have different functional forms. As a conse-
quence, the projected CGLE (7) contains an extra term
g
P

y1y2y3 K
0ðx; y1; y2; y3Þψ̄�

y1 ψ̄y2 ψ̄y3 , since dealing with the
cubic nonlinearity is equivalent to setting ρσ ¼ 0. The
derivation of the Bogoliubov modes and of the density-
phase equations follows straightforwardly. Eliminating the
density, the final phase equation reads

∂tϕ ¼ Γ
4

�
β þ Λ0

Λρ β
0

�
2μ

Γ

�
2
�
∇2ϕ

þ μ

2

�
η0 −

Λ0

Λρ η

�
ð∇ϕÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
n0

ð1þ α2Þ
s

ξϕ; ð19Þ

where we defined the blueshift μ ¼ gn0. This is a proper
KPZ equation, provided that μ ≠ 0 and η0Λρ ≠ Λ0η. We
have thus demonstrated that, in a flat-band laser, a KPZ
term of geometric origin can be present under a few
assumptions: first, the presence of a nontrivial Bloch
geometry; second, the real and imaginary part of the
nonlinearity should not be proportional to each other,
and, in particular, the real part must be nonzero; third,
the density of the lasing steady-state has to be nonuni-
form, otherwise all the ρσ would be the same and

ðη0=ηρÞ ¼ ðΛ0=ΛρÞ ¼ ð1þ ρσÞ2. In particular, this last
statement implies that the uniform-pairing condition
[8,9,43] always entails a cancellation of the KPZ non-
linearity. These requirements have no analog in dispersive
systems, where the KPZ nonlinearity is simply proportional
to the bandwidth, and where the real nonlinearity is not
required to produce KPZ physics. In practice, the KPZ
contribution is quantitatively small, and we did not manage
to isolate it numerically with the available computational
resources (the KPZ nonlinearity is absent for μ ¼ 0, and the
Laplacian term dominates for large μ).
Concluding remarks.—We have revealed how gain

competition can stabilize lasing in flat bands with nontrivial
Bloch geometry. This phenomenon occurs despite the fact
that no mode is privileged at the linear level.
We have computed the Bogoliubov spectrum and the

peculiar diffusion coefficient of the corresponding Gold-
stone branch, which shows resilience against the modula-
tional instability present in the dispersive case [25,34,35].
This suggests that quantum geometry may have an impact
in applications, allowing for more stable laser arrays.
Similarly, a KPZ nonlinearity can arise from geometric
effects, but it is exactly cancelled in the relevant cases of
uniform pairing or whenever the real part of the non-
linearity is zero or proportional to its imaginary part. This
suggests that the KPZ nonlinearity is typically small in
practice. Our analytical results, obtained under weak
assumptions, were numerically validated using the dia-
mond chain.
Previous works based on the Lieb chain [25] considered

a nonuniform gain to induce lasing in a flat band, which led
to a momentum-dependent gain PðkÞ ¼ P0 − P2k2 þ � � � at
the linear level determined by the shape of the Bloch states.
In that case, a KPZ nonlinear term proportional to P2 is
known to appear in the equation for the phase [14]. A
similar scenario occurs in topological lasers [11,42], but
with a weakly dispersive edge mode. Instead, in this Letter
we have considered bands that are flat in both their real and
imaginary part, which led to a cancellation of the KPZ term.
We notice that a PT-symmetric flatband laser was

proposed in [17] and a Kagome polariton condensate
was realized in [18], without analyzing the role of quantum
geometry. In both these cases, the flat band is not gapped
from the dispersive bands, such that our projected theory
does not apply. It would be interesting to assess the
presence of the KPZ nonlinearity in these cases, as well
as in settings displaying flat-band skin effects [44].
Here we limited ourselves to a semiclassical theory,

where interactions are weak enough to approximate the
field on each site by a coherent state. It would be of great
interest to investigate the quantum regime of strong
interactions and explore flat band physics in quantum
dissipative systems. Experimental platforms like circuit
QED promise to be very well suited for this purpose
[30,45]. We remark that clean samples are needed, since
flat bands are particularly sensitive to disorder [12].

FIG. 2. Correlation functions computed solving numerically
Eq. (3) plus a stochastic drive. (main) The temporal correlation
function gð1Þð0; tÞ, displaying a crossover from Edwards-Wilkin-
son to Schawlow-Townes, and no sign of KPZ. The two EW red
lines correspond to α ¼ 0 (red dashed-dotted) and α ¼ 2.5 (red
dashed), while the ST decay depends also on the size of the
system (black dashed dotted line for α ¼ 0, Nx ¼ 256, dashed for
α ¼ 2.5, Nx ¼ 256, and dotted for α ¼ 2.5, Nx ¼ 64). (inset)
Decay of gð1Þðx; 0Þ, with initial slope predicted by EW (before
finite-size effects set in). We take as parameters P ¼ 2γ,
nS ¼ 250, D ¼ 2γ, J ¼ 5γ.
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All numerical calculations were performed using the
Julia Programming Language [46].
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