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The Kitaev model on a honeycomb lattice may provide a robust topological quantum memory platform,
but finding a material that realizes the unique spin-liquid phase remains a considerable challenge. We
demonstrate that an effective Kitaev Hamiltonian can arise from a half-filled Fermi-Hubbard Hamiltonian
where each site can experience a magnetic field in a different direction. As such, we provide a method for
realizing the Kitaev spin liquid on a single hexagonal plaquette made up of 12 quantum dots. Despite the
small system size, there are clear signatures of the Kitaev spin-liquid ground state, and there is a range of
parameters where these signatures are predicted, allowing a potential platform where Kitaev spin-liquid
physics can be explored experimentally in quantum dot plaquettes.
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Introduction.—Quantum spin liquids are a new phase of
matter that exhibit the lack of long-ranged order, an
emergent gauge field, long-ranged entanglement, topologi-
cal order, and fractionalization of spins [1–3]. Despite
several promising candidate materials coming from frus-
trated Kagome [4,5] and triangular [6–10] lattices, there
remains a lack of consensus about the nature of their
ground-state phase.
Another route to spin-liquid materials comes out of the

Kitaev model on the honeycomb lattice [11], an exactly
solvable playground for exploring the physics of spin
liquids and non-Abelian anyons [12]. In the gapless
isotropic phase, the low-energy excitations behave as
non-Abelian anyons, once a magnetic field introduces a
small gap, and these anyons could form the basis for perfect
topological memory [12]. The model became physically
relevant after Jackeli and Khaliullin found that certain
materials, arising from 4d rare earth atoms with the correct
geometry, may have a significant Kitaev term [13].
The search for a material realization of the Kitaev

spin liquid, a “Kitaev material,” has now generated an
enormous amount of research on a host of compounds such
as Na2IrO3 [14–20], Li2IrO3 [18,21–23], H3LiIr2O6

[24,25], Na2Co2TeO6 [26], and α-RuCl3 [27–31]. For
RuCl3 in particular, the smoking-gun signature of a
Kitaev spin liquid, a quantized thermal Hall effect, has
been claimed to have been measured [32–34], but convinc-
ingly reproducing the results has been difficult and questions
remain [35–37].
Within the Kitaev materials, there remain formidable

challenges: most materials enter a long-range ordered phase
at low temperature, implying considerable non-Kitaev inter-
actions, and the underlying effective spin Hamiltonian is
never known exactly [23,25,38–40], particularly since the

fundamental Hamiltonian is an electronic and not a spin
Hamiltonian. In fact, it is unclear that naturally occurring
solid state materials can manifest the precise Hamiltonian
necessary for producing quantum spin liquids described by
theoretical models, including the Kitaev model.
There is, however, an alternate way of realizing spin

liquids by using engineered structures containing the
requisite spin Hamiltonian by design, i.e., quantum sim-
ulators. Advances in these systems allow for much more
detailed probing of the proposed spin-liquid state. In two-
dimensional Rydberg arrays it was theoretically proposed
and then experimentally demonstrated that an arrangement
of atoms on the bonds of a Kagome lattice can lead to some
topological ordering [41,42]. Although the long-ranged
nature of the interaction, nonexactness of the Rydberg
blockade, and nonequilibrium nature of the state compli-
cate the interpretation of the experiment [41,43,44],
this result represents a definitive advance in spin-liquid
experiments.
Multiple proposals for realizing Kitaev physics in

quantum simulators already exist: the first, using ultracold
atoms [45], requires a significant number of independent
lasers and two-photon processes and faces serious chal-
lenges in cooling the system to low enough temperatures to
observe long-ranged topological order [46,47]. More recent
work uses an approach based on a Floquet drive [46] and
trapped ions [48], but the former requires significant
temporal coherence and the latter has stringent constraints
on the relevant timescales. There is thus considerable
interest in the engineered realization of the Kitaev spin
liquid; beyond allowing for the direct access to the physics
of spin liquids, topological order, and non-Abelian anyons,
the braiding of these anyons would allow for quantum
computation with “passive” quantum error correction

PHYSICAL REVIEW LETTERS 132, 186501 (2024)

0031-9007=24=132(18)=186501(8) 186501-1 © 2024 American Physical Society

https://orcid.org/0000-0001-6264-7908
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.186501&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1103/PhysRevLett.132.186501
https://doi.org/10.1103/PhysRevLett.132.186501
https://doi.org/10.1103/PhysRevLett.132.186501
https://doi.org/10.1103/PhysRevLett.132.186501


[12,49]. Of course, within fully programmable quantum
computers it is possible to directly simulate the Kitaev
model [50,51] and a similar model with many of the same
properties, the toric code [52–54], but these constructions
likely benefit less from the topological protection of
quantum information.
In this Letter, we discuss how spin-liquid physics can be

explored in small quantum-dot systems by precisely
creating the Kitaev model on a single hexagonal plaquette
(Fig. 1). Quantum-dot systems are a potential spin qubit
quantum computing platform where full control has been
demonstrated for six sites [55] but where systems with
more dots (with as many as 16 having been fabricated so far
[56]) can be considered quantum simulators of Hubbard-
model physics [57]. In fact, semiconductor quantum-dot-
based spin qubits are considered to be a leading quantum
computing platform because of their scalability, fast all-
electrical operations, and long coherence. Even though the
systems are small, they have already provided experimental
evidence for Nagaoka ferromagnetism [58–60] and the
small-system analog of the Mott transition [61,62], and
they could provide evidence for flat-band ferromagnetism
in the near future [63,64]. It is already possible to apply a
magnetic field gradient using micromagnets [55,65], and
our main assumption is that, as the technology improves, it
will be possible to place each site in its own effective
magnetic field, which is also necessary for quantum
computing single qubit operations. Under this assumption,
we will derive an effective Hamiltonian that can be tuned to
be exactly the Kitaev model on a single hexagon. The
physics we propose is no more challenging than fabricating
the spin qubit based quantum computing platform, which is
a huge activity in more than a dozen research centers and
industrial labs including Intel Corporation [66].
Since a “phase” is only defined in the thermodynamic

limit, we cannot claim to ever create a Kitaev spin-liquid
“phase” in such a small system (which is a problem
intrinsic to all quantum simulator platforms). However,
we find that the unique properties of the Kitaev model
allow for spin-liquid signatures to be manifest even in this
small system for a range of parameters around the exact
Kitaev point, that is, the system does not have to be
perfectly fine-tuned. Our construction is not limited to a
single hexagonal plaquette, and can be extended straight-
forwardly to a many-unit-cell system.
Theory.—We start by explaining the construction on a

single hexagonal plaquette, see Fig. 1. In addition to six
sites on the vertices of the hexagon, which will interact via
an effective Kitaev Hamiltonian, we have an additional six
sites that live on the bonds or edges of the hexagon that will
be frozen/integrated out. We will demonstrate that this
system, which can be fabricated using the existing spin
qubit technology, is sufficient to see Kitaev-spin-liquid-like
physics.

Because we are considering an application to experi-
mental quantum-dot systems, the Hamiltonian for our
12-site system is given, by construction, by the Fermi-
Hubbard model in a magnetic field,

H¼U
X
i

ni↑ni↓þ
X
ij;σ

tijc
†
iσcjσþ

1

2

X
i;σ;σ0

hi ·c
†
iσσσ;σ0ciσ0 ; ð1Þ

where tij ¼ t�ji are not necessarily real. We assume that the
system is half-filled, which is easy to control in spin qubit
quantum-dot structures. We only allow for nearest-
neighbor hopping t1 and hopping between nearest-neighbor
vertices t2, since longer distance hopping falls off expo-
nentially [68]. We are envisioning two different magnetic
field strengths: jhBj for the sites positioned on the edges
(“bonds”) of the hexagon and jhV j for sites positioned on
the vertices. The direction of the magnetic field follows the
pattern described in Fig. 1: each edge is labeled by one of
three orthogonal directions, x, y, or z, and the field on a
bond site points in that direction (i.e., h2 ¼ hBẑ), and the
field on a vertex points in the sum of the directions of
adjacent edges [i.e., h1 ¼ hVðẑþ x̂Þ]. We use the hopping
strength jt1j as the energy unit. In order to create a single
Kitaev plaquette, we will show self-consistently that we
need the scalings U ≫ jhBj ≫ jt1j2=U, jhV j ∼ jt1j2=U, and
jt2j ∼ jt1j2=

ffiffiffiffiffiffiffiffiffiffiffiffi
UjhBj

p
. Again, this is, in principle, achievable

FIG. 1. Our system consists of 12 Fermi-Hubbard sites with
interaction strength U arranged on a hexagon as shown. We
separate the sites into the odd sites that live on the vertices, V, and
the even sites that live on the bonds, B. There is hopping t1
between all adjacent sites and hopping t2 between the vertices.
Even though a next-nearest-neighbor hopping t3 between two
bond sites should have roughly the same magnitude as t2, we
show in the Supplemental Material (SM) [67] that its effect is
OðU−3Þ and does not alter our construction. The six edges of the
hexagon are each given a label, x, y, or z in the pattern indicated
by color. The direction of the magnetic field for the bond (vertex)
sites points in the direction of the bond label (sum of the two
adjacent bond’s labels), respectively. For example, h4 ¼ −hBŷ
and h3 ¼ hVðẑþ ŷÞ. If jt1j; jhBj ≪ U, jhBj ≫ jt1j2=U, and jt2j
and jhV j are related to jt1j, jhBj, and U as shown, then the six
vertex spins will interact with an effective Kitaev interaction of
strength K ¼ 2jt1j4=ðU2jhBjÞ.
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in semiconductor spin qubit platforms, where U and the
hoppings are the largest and the smallest energy scales,
respectively, and the magnetic field is experimentally
tunable.

We first perform perturbation theory in jhBj=U, jtijj=U
following [69,70]. The full details of the calculation are
given in the SM [67], and we end up with the effective
Hamiltonian of localized spins, Si ¼ σi=2, at OðU−3Þ:

Heff;spin ¼
1

2

X
i

�
1 −

2jt1j2
U2

�
hi · σi þ

X
hiji

jt1j2
U

�
1 − 4

jt1j2
U2

þ 1

4

jhj2
U2

�
ðσi · σj − 1Þ þ

X
⟪ii0⟫B

jt1j4
U3

ðσi · σi0 − 1Þ

þ
X
⟪jk⟫V

�jt2j2
U

þ jt1j4
U3

�
ðσj · σk − 1Þ þ

X
hiji

jt1j2
2U2

ðhj · σi þ hi · σjÞ þ 3
X

ðj;i;kÞB
sinðϕBÞ

jt21t2j
U2

σi · ðσj × σkÞ; ð2Þ

where ⟪jk⟫V (⟪ii0⟫B) indicates next-nearest-neighbor
pairs between vertex (bond) sites, and ðj; i; kÞB indicates
a sum over bonds where j, k are the vertex sites and i is the
bond site. The value of ϕB is how much flux, in units of the
flux quantum, pierces the triangle made up of those three
sites; in our geometry, ϕB ¼ 0, but in other geometries this
term may exist. However, if ϕB ≪ 1, this term is likely
negligible. Note that we do not have the ring-exchange term

because it requires a four-cycle to exist in hopping. We also
have made use of jhV j ∼ jt1j2=U and jt2j ∼ jt1j2=

ffiffiffiffiffiffiffiffiffiffiffiffi
UjhBj

p
to

ignore terms that are already higher order in 1=U.
We now integrate out the bond sites to be left with an

effective Hamiltonian for just the vertex sites. We fix the
magnetic field on each bond to be hi ¼ −jhBjα̂ where site i
is on an α bond. We perform perturbation theory in
jt1j2=ðjhBjUÞ again to OðU−3Þ (with ϕB ¼ 0):

HV;eff ¼
1

2

X
j∈V

heff;j · σj þ
X
hjkiV;α

Jσj · σk þ Kσαjσ
α
k þ C

heff;j ¼
X

iα ∈ n:n:ðjÞ
α̂

�
hV

�
1 −

2jt1j2
U2

�
þ 2jt1j2

U

�
1 − 4

jt1j2
U2

þ jhBj2
4U2

−
jhBj
2U

þ 2
jt1j2
UjhBj

��

J ¼ jt2j2
U

þ jt1j4
U3

− 2
jt1j4

U2jhBj
þ 2

jt1j4hV
U2jhBj2

− 4
jt1j6

U3jhBj2
K ¼ 2

jt1j4
U2jhBj

− 4
jt1j4hV
U2jhBj2

þ 8
jt1j6

U3jhBj2
; ð3Þ

where hjkiV;α indicates nearest-neighbor pairs of vertices
that are connected via an α bond, and iα ∈ n:n:ðjÞ indicates
the nearest neighbors of site j that are on an α bond. The
constant C is provided in the SM [67].
Since we want the field strength, jheff;j=K ≲ 1

and Heisenberg coupling J=K ≲ 1, we need jt2j≲
ffiffiffi
2

p jt1j2=ffiffiffiffiffiffiffiffiffiffiffiffi
UjhBj

p
and hV ≈ −2jt1j2=U, which justifies the scaling

we used to derive Eqs. (2) and (3). Although we have
computed expressions for these quantities to OðU−3Þ, we
see that the Kitaev coupling is OðU−2Þ implying that, even
if ϕB ¼ 0 turns out to be a poor assumption, our con-
struction still works for large enough U.
Despite the notion of a phase being properly defined

only in the thermodynamic limit, there is a clear-cut
signature of a Kitaev spin-liquid-like “phase” even in this
small plaquette. First, there is an operator defined on each
plaquette that commutes with the Kitaev Hamiltonian. For
our single plaquette, it is given by

WP ¼ σy1σ
x
3σ

z
5σ

y
7σ

x
9σ

z
11 ¼ �1; ð4Þ

where the site indices are from Fig. 1. The value of WP ¼
�1 is a signature of the emergent Z2 gauge field of the
Kitaev model [11]. Second, the spin-spin correlators are
short-ranged [71]: the only nonzero static Sz − Sz correla-
tors for our system at the Kitaev point are hSz1Sz3i ¼
hSz7Sz9i ¼ −1=6 and hSzjSzji ¼ 1=4 with S ¼ σ=2.
Results.—In order to verify our theory and clarify possible

experimental signatures, we use the density matrix renorm-
alization group (DMRG) [72] method to directly find the
ground state of Eq. (1) and compare with exact diagonal-
ization (ED) on six sites givenbyEq. (3). ForDMRG,weuse
TeNPy [73]with a bond dimension of χ ¼ 4096, large enough
to describe the ground state exactly.
In Fig. 2, we plot the plaquette operator, hWPi, and

hSziSzji for a z bond ði ¼ 1; j ¼ 3Þ, an x bond
ði ¼ 1; j ¼ 11Þ, and the farthest spins ði ¼ 1; j ¼ 7Þ. We
set t1 ¼ hB ¼ 1 with t2 and hV given by
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hV ¼ −A1 þ A2
heff
K

A3 þ 4A4
heff
K

;

t2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

�
J
K
ðA2 − 4A4hVÞ − 2A4hV − A5

�s
;

A1 ¼ 2
jt1j2
U

�
1þ h2B − 16jt1j2

4U2
þ 4jt1j2 − h2B

2UjhBj
�
;

A2 ¼
2jt1j4
U2jhBj

þ 8
jt1j6
U3h2B

; A3 ¼ 1 − 2
jt1j2
U2

;

A4 ¼
jt1j4
U2h2B

; A5 ¼
jt1j4
U3

− 2
jt1j4

U2jhBj
−
4jt1j6
U3h2B

; ð5Þ

so as to reproduce a targeted value of J=K and jheff j=K with
errors at higher order than OðU−3Þ. We are able to verify
that DMRG and ED have ground-state energies that agree
to OðU−4Þ when the parameters are specified in this way
(see SM [67]). We use real values of the hoppings so as
to avoid additional parameters needed to compute the
flux, ϕB.
We see that when U=jt1j ¼ 33, the two methods give

excellent agreement with each other further lending cre-
dence to our theoretical derivations and plaquette con-
structions efficacy. Note that, when jheff j=K ¼ 0 and
J=K ≪ 1, hWPi and hSzi Szji take on their approximate

values as expected for the Kitaev model. Additionally,
when jheff j=K ≠ 0, there are points where the derivatives of
these observables are discontinuous, and, in the region
J=K ≪ 1, they take a value close to the Kitaev value. In a
large system, these features are consistent with the mag-
netic field gapping out the itinerant Majoranas and provid-
ing a gap that J must overcome; in our system, we have
verified that some of the degeneracy seen at the J=K,
jheff j=K ¼ 0 point is lifted in the presence of a magnetic
field implying that the same interpretation might hold.
Taken together, the numerics demonstrate that, even

though strictly speaking the Kitaev Hamiltonian only arises
at a single point, it is possible to see evidence of the Kitaev
state in a range of parameters meaning that the construction
is less fine-tuned than anticipated, i.e., there is some
robustness.
Conclusion.—In this Letter, we proposed how to realize

the Kitaev honeycomb model, with its non-Abelian anyons,
topological order, and its potential as a quantum memory
platform with topologically protected quantum informa-
tion, on connected quantum dots; these small spin qubit
arrays have already been successfully used as experimental
platforms to study many-body collective phenomena such
as Mott-Hubbard transitions [61,62] and Nagaoka ferro-
magnetism [58–60], making our work both timely and
experimentally relevant.

FIG. 2. We perform DMRG on twelve Fermi-Hubbard sites at half filling (scatter plot points) as well as exact diagonalization (ED) on
six spin-1=2 sites using the effective Hamiltonian, Eq. (3). We set t1 ¼ hB ¼ 1, and the values of t2 and hV are set so as to give a
specified value of J=K and heff via Eq. (5). In (a), (b) jheff j=K ¼ 0 and in (c),(d) jheff j=K ¼ 0.6 and the value of J=K is indicated on the
horizontal axis. In all plots, the value of U used for DMRG is U ¼ 10 (U ¼ 33) for the circle (×) points, respectively. By U ¼ 33, the
DMRG results are almost entirely on top of the ED curves showing that the effective Hamiltonian is a Heisenberg-Kitaev Hamiltonian in
a magnetic field. We compare two observables: in (a), (c), we plot the plaquette operator Eq. (4) and in (c),(d) we plot the correlator
hSzi Szji for a z bond ði ¼ 1; j ¼ 3Þ, an x bond ði ¼ 1; j ¼ 11Þ, and the farthest spins ði ¼ 1; j ¼ 7Þ. In (b) and (d), the color of the points
and dashed line indicates which spin correlator is being plotted. A Kitaev plaquette would haveWP ¼ 1 and the x bond and farthest spin
correlators will be zero. Clearly J=K ¼ 0 and jheff j=K ¼ 0 satisfy these requirements, but when jheff j=K ≠ 0, there is a small range of
J=K where these are approximately true as well.
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From the above results (and additional numerical re-
sults shown in [67]), we argue that if jJj=K ≲ 0.02 and
jheff j=K ≲ 0.75, our 12-site system should exhibit Kitaev-
spin-liquid-like physics. The experimental setup therefore
does not need to be perfectly fine-tuned to observe this
physics: for U=jt1j ¼ 33 and jt1j=jhBj ¼ 1, these values
roughly correspond to a range of 0.0615 ≤ hV ≤ 0.0650
and 0.2565 ≤ t2 ≤ 0.2620 with K ≈ 0.00229. This range
reveals that hV and t2 need only be accurate at the 5% and
2% level, respectively, which should be experimentally
controllable in semiconductor quantum-dot structures.
It is also not necessary to prepare the ground state of
the system. As long as the energy is well below jhBj, the
state will always have short-ranged spin-spin correlators as
this property is true for every eigenstate in the Kitaev
model [71].
Our proposal, though developed for a single plaquette,

works for systems of as many connected plaquettes as is
desired. Our expressions can be straightforwardly gener-
alized to include an arbitrary system size or geometry, and
we include fully general expressions in the SM [67] [the
only change to Eq. (3) is to the coefficient of the hV jt1j2=U2

term]. An advantage to having several plaquettes connected
to each other is that, for all interior vertex sites (i.e., those
sites with a neighbor along an x, y, and z bond), the applied
field on those sites will all be in the x̂þ ŷþ ẑ direction and
will therefore be uniform. Alternatively, another advantage
of our construction is that the field on the vertex sites does
not need to be tuned individually. If the field on the bond
sites decays at just the right rate, it can provide the
necessary field as hj∈V points in the same direction as
the sum of the neighboring hj∈B.
The most significant perturbation we have not explicitly

included in this Letter is a hopping between nearest-
neighbor bond sites, t3, that is similar in strength to t2.
As is shown in the SM [67], the only change to our effective
Hamiltonian (besides a constant energy shift) due to this
addition is an effective field on the vertex sites at OðU−3Þ.
These terms slightly change the direction of the magnetic
field that needs to be applied to a vertex site if the vertex site
is not in the interior of the system, but it can be canceled if
the field on each vertex site can be tuned individually.
The main experimental difficulty in our proposal is

realizing individual magnetic fields on each bond site. In
the SM [67], we consider what happens if the magnitude
and direction of these fields are not perfectly tuned. If the
error in the magnitude is Oð1=UÞ and if the components of
the field of the bond site pointing in the incorrect direction
(e.g., in the x̂ and ŷ directions for the ẑ bond) are less than
jt1j2=ð10UÞ, we find some amount of robustness of our
chosen signal of spin-liquid physics for the ground state,
but large enough inaccuracies will wash out the signal.
Although our proposal should realize a Kitaev spin-

liquid plaquette in principle, there are many open questions.
For example, what are the necessary conditions and system

sizes to observe the non-Abelian anyon braiding signa-
tures? What are the most suitable experimental signatures
of these anyons? How does one realize topological qubits
using anyon braiding in such Kitaev plaquettes? Our work
should motivate both experimental work to realize our
proposed Kitaev quantum-dot plaquette and theoretical
work to answer these questions.
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