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Quantum acoustics—a recently developed framework parallel to quantum optics—establishes a non-
perturbative and coherent treatment of the electron-phonon interaction in real space. The quantum-acoustical
representation reveals a displaced Drude peak hiding in plain sight within the venerable Fröhlich model: the
optical conductivity exhibits a finite frequency maximum in the far-infrared range and the dc conductivity is
suppressed. Our results elucidate the origin of the high-temperature absorption peaks in strange or bad metals,
revealing that dynamical lattice disorder steers the system towards a non-Drude behavior.

DOI: 10.1103/PhysRevLett.132.186303

Stretching over four decades, an intensive theoretical
pursuit has concentrated on finding an all-embracing explan-
ation for a plethora of puzzling phenomena which have been
colloquially labeled as “bad” or “strange.” These kinds of
“bizarre”materials seem to defy the traditional paradigms for
electron behavior [1] in metals. Mysteries abound, such as
high-temperature superconductivity beyond the grasp of the
BCS theory [2,3], the paradoxical existence of pseudogaps
[4–8] and charge density waves [9–12], the violation of the
Mott-Ioffle-Regel (MIR) limit [13,14], not to mention the
major dilemma of linear-in-temperature resistivity over a
wide temperature range (see, e.g., Refs. [15–21]) at the
mysterious but ubiquitous Planckian bound [22]. This list of
theoretical challenges also includes the elusive emergence of
displaced Drude peaks (DDP) [23–37]: a prominent absorp-
tion peak located typically in the infrared range, signaling a
breakdown of the conventional Drude picture. This Letter
reveals the origin of this phenomenon as the result of strong
electron-phonon interaction if treated correctly as nonper-
turbative and coherent.
A putative culprit for the observed Drude shift in the

optical conductivity peak has been suggested to be some as
yet unidentified dynamical disorder that generates evan-
escent localization, thus hampering but not precluding
charge carrier diffusion [38–42]; Consequently, the zero-
frequency conductivity does not vanish completely, but it is
strongly suppressed, favoring the DDP phenomenology.
This scenario contrasts with alternative points of view,
like the common arguments resorting to collective modes
[43,44] or to strong electron-electron correlations [45,46].
Here we show that a morphing potential landscape of

hills and valleys stemming from thermal lattice vibrations

by the Fröhlich Hamiltonian (see Ref. [47]), as illustrated in
Fig. 1 is the sought-after sea of “slowly moving bosonic
impurities” [41], or the cryptic “self-induced randomness”
[42,48]. In a broader milieu, the subtle interplay between
the Anderson localization and lattice vibrations has been
encountered in a wide class of random metal alloys and
other degenerate disordered systems. In fact, the intricate
game of being localized or not was identified early on by
Gogolin et al. [49,50] and Thouless [51], even pondered by
Anderson himself [52,53].
The random fluctuations introduced by lattice motion

slowly but surely scramble the quantum interference
required for localization of the electronic state, resulting
in transient localization (for capturing the essential aspects
of this phenomenon, see, e.g., Ref. [54]), which has lately

FIG. 1. Quantum acoustics. Illustration of the coherent state
lattice vibrations at a certain temperature. Electrons experience a
spatially continuous internal field formed by the thermal acoustic
distortions. While undergoing quasielastic scattering events, like
due to impurities, electrons can also be incipiently trapped by
valleys of slowly undulating and propagating deformation po-
tential when their kinetic energy is comparable to the fluctuations
of the deformation potential.
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been of interest in the context of crystalline organic
semiconductors [55,56] and halide perovskites [57].
The quantum-acoustic route to linear and universal

resistivity in strange metals [58] has opened up a new
path unrelated to quantum criticality [59,60], and not
relying on (strong) electron-electron interaction [48,61],
instead starting with the standard Frölich Hamiltonian.
Following the path paved in Refs. [47,58], here we

demonstrate the formation of a DDP due to the electrons
interacting with fluctuating lattice degrees of freedom. We
go further by showing that this mechanism gives rise to a
temperature dependence of spectral features in agreement
with experimental DDP observations in strange metals.
More specifically, we consider the following Fröhlich

Hamiltonian [62,63] describing the lowest-order (linear)
lattice-electron coupling [64]:

HF ¼
X

p

εpcpc
†
p þ

X

q

ℏωqa
†
qaq

þ
X

pq

gqc
†
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�
aq þ a†−q

�
; ð1Þ

where cp ðc†pÞ is the creation (annihilation) operator for
electrons with momentum p and energy εp; whereas

aq ða†qÞ is the creation (annihilation) operator for longi-
tudinal acoustic phonons of wave vector q and energy ℏωq,
respectively. The electron-phonon interaction is defined by
its Fourier components gq. By following the steps of the
recently established coherent state formalism in Ref. [47],
the Hamiltonian gives rise to an undulating and propagating
potential landscape (Supplemental Material, Sec. I [65]):

VDðr; tÞ ¼
Xjqj≤qD

q

gq
ffiffiffiffiffiffiffiffiffiffiffiffi
hnqith

q
cosðq · r − ωqtþ φqÞ; ð2Þ

where qD is Debye wave number defining the Debye
frequency ωD, r is continuous position, φq ¼ argðαqÞ is
the (random) phase of a coherent state jαqi, and the mode
population is determined by hnqith.
The coherent state picture developed here is the dual

partner of the traditional number state description of
electron-lattice dynamics, so widely successful for describ-
ing electron resistivity [75]. In addition to recovering the
results of the conventional Bloch-Grüneisen theory [76,77],
the coherent state representation extends beyond perturba-
tion theory (see Ref. [47] for a more detailed discussion).
The coherent state limit of quantum acoustics reveals a real-
space, time-dependent description of electron-lattice inter-
action. A very similar notion was introduced in 1957 by
Hanbury Brown and Twiss for the vector potential of a
blackbody field [78], with the essential difference of
missing the ultraviolet cutoff, i.e., the Debye wave number
in the definition of our deformation potential originating
from the minimal lattice spacing.

This follows the quantum optics pathway pioneered by
Glauber [79], a long neglected but essential wave perspec-
tive for lattice vibrations—quantum acoustics. Bardeen
and Shockley, in the 1950s, regarded dynamical lattice
distortions in nonpolar semiconductors [80,81], and it
seemed they would have been happy with a coherent state
description, but the theory was subsumed by a number
state, perturbative perspective.
Within the present deformation potential framework, an

electron undergoes quasielastic, coherence-preserving scat-
tering events when roaming through the slowly altering
potential landscape of hills and valleys.
In this work, we focus on three prototypical compounds

classified as strange or bad metals, namely, LSCO, Bi2212,
and Sr3Ru2O7 (Supplemental Material, Sec. II [65]).
However, we want to stress that the physics we find below
transcends the material-specific constraints: In general,
dynamical disorder, caused by lattice vibrations here,
temporarily confines electrons to nest in its instantaneous
potential wells (see Fig. 1, a hallmark of transient locali-
zation dynamics, resulting in the buildup of a DDP).
It appears that, regarding photoabsorption, electrons are

insensitive to the lattice dynamics when ω ≫ ωD. In other
words, the deformation landscape appears as if it is
stationary for an electron in this regime, a notion confirmed
by our results below.
Motivated by this, we initially freeze the potential and

study its transitory electronic eigenstates. Since the allowed
transitions take place near the Fermi level, we are allowed
to focus on the states lying within the stack of εF � 3kBT.
Figure 2 shows examples of eigenstates for the three
materials at different temperatures along with the

FIG. 2. Transient localized states. A selection of eigenstates
(red color scheme) near the Fermi level is shown for the
considered prototype materials at four temperatures, where the
gray scale represents the corresponding frozen deformation
potential. An increasing temperature leads to more spatially
confined states that are linked to fugitive, Anderson-localized
states in transient dynamics.
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profile of the deformation potential. Despite the diversity
among the physical settings, all three materials share
similar qualitative characteristics: Instead of being spatially
extended, as observed at lower temperatures (EF=Vrms≳1),
the relevant states appear to be localized in the dips of the
potential at temperatures EF=Vrms ≲ 1 where the potential
fluctuation Vrms is comparable to Fermi energy EF. These
eigenstates of the frozen potential relate to the localized
states associated with the transient dynamics.
Next, we compute the corresponding optical

conductivity σðℏωÞ within the Kubo formalism first
by numerically diagonalizing the Hamiltonian with the
potential given in Eq. (2) (see Supplemental Material,
Sec. III [65]). In the upper panel of Fig. 3, we present
the optical conductivity at various temperatures for the
three chosen materials, averaged over an ensemble of
100 random realizations of the deformation potential.
With increasing temperature, the optical conductivity
evolves from the Drude-peak behavior of having a sharp
maximum value located at ω ¼ 0 into a displaced peak:
the maximum conductivity point steadily shifts towards
higher energies ℏω and the conductivity peak profile
broadens.
In addition, we show the temperature dependence of the

peak locations and their width in Fig. 4. We determine
the peak location ℏωp as the energy at which the optical

conductivity σðℏωÞ reaches its maximum. The peak width
ℏΔωp is then defined in a similar manner as in Ref. [82]:
the distance between the maximum and the optical con-
ductivity point in the high-energy tail where the height of
the maximum is dropped by 50%. Figure 4 further confirms
and quantifies the migration and broadening of the DDP
with increasing temperature present in Fig. 3.
To further validate the frozen potential results above,

we expand our DDP analysis by computing the optical
conductivity while considering the temporal evolution of
the deformation potential. Nonetheless, we can still deter-
mine the conductivity σðℏωÞ by utilizing the Kubo for-
malism (see Supplemental Material, Sec. IV [65]). In short,
we take advantage of the already defined eigenstates of the
frozen deformation potentials as initial conditions, and let it
thereafter unfold according to Eq. (2).
The lower panel of Fig. 3 shows the optical conductivity

spectrum of the three materials at different temperatures
in the case of a dynamical potential field, averaged over
10 realizations of the distorted potential landscape. As
expected, the dynamical conductivity spectrum deviates
from the frozen potential prediction when ω≲ ωD is
indicated by the black dash line in Fig. 3. Instead of strong
suppression near to the dc conductivity as in the static
landscape situation, we observe a saturation of the optical
conductivity within an energy window of the order of

FIG. 3. Frozen versus dynamical quantum acoustic vibration field. The upper and lower panels display the optical conductivity for the
three materials at different temperatures, resolved within the static and dynamical potential landscapes averaged over 100 and 10
realizations, respectively. The back dashed line marks the Debye frequency of the given material below which the frozen potential
assumption breaks down. A key dynamical effect is the saturation of conductivity in the regime ω≲ ωD, instead of the suppression
evident in the static case. However, regardless of the deformation potential dynamics and the chosen material, the optical conductivity
peak shifts from the Drude-peak edict of situating at ω ¼ 0 to higher energies and broadens as the temperature increases.
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0.1 eV near the zero frequency. This can be interpreted
as the reversed adiabatic approximation where the external
electric field of frequency ω ≪ ωD is a slow varying degree
of freedom and thus is roughly static compared to the
fluctuations of the lattice, yielding virtually the same
conductivity as the dc conductivity and manifesting as a
conductivity plateau below the Debye frequency.
Nevertheless, there is still a generic trend similar to the
frozen potential approximation: the higher temperature
yields a more substantial DDP, suggesting that the tran-
siently localized states are at play in both cases. This
tendency is also evident in Fig. 4 where the increase in
temperature moves the DDP to higher absorption frequen-
cies while broadening the peak at the same time.
The physical picture behind the observed DDP evolution

is that the increase in temperature has a twofold effect.
First, it yields stronger spatially localized, transient elec-
tronic states at the Fermi energy (shift to higher frequen-
cies); electrons either residing in local potential wells
(frozen) or nesting in instantaneous potential pockets
(dynamic). These local wells or nests become more
energetically confining as the deformation potential
strengthens with the rising temperature. As a result, the
location of the DDP roughly scales like ℏωp ∼ Vrms, which
defines the fitting illustrated by the colored dashed curves

in the upper panel of Fig. 4 [83]. In general, the peak
location migrates like ℏωp ∼ ðkBTÞ3=2 at low temperatures
T ≪ TD and ℏωp∼ðkBTÞ1=2 at high temperatures T ≫ TD.
In addition, the presence of eigenstate localization caused
by the frozen lattice disorder is known to result in band tails
in the density of states [47] that has later shown to persist
even under quantum-acoustical lattice dynamics [84].
On the other hand, a higher temperature permits a wider

energy window for electronic transitions to occur (the
broadening of the peak). Whereas the transition element
between the (momentarily) localized states dictates the
location of DDP, the width is instead determined by the
broadening function characterizing the energetically
allowed transition. As indicated by the black dashed line
in the lower panel of Fig. 4, the widths of the DDP behave
roughly as ℏΔωp ∼ kBT that is interestingly more accurate
in the case of the dynamical potential landscape. The
quantum-acoustical DDP is thus intimately connected to
the ambiguous Planckian timescale ℏ=kBT that underpins
the linear-in-temperature resistivity exhibited by numerous
families of bad and strange metals (for comparison, see
Ref. [82]). In addition, this observed correlation between
the width of the DDP and Planckian behavior supports the
prospect of the near-universal transport by transient dynam-
ics reported in Refs. [47,58].
In the quantum-acoustic DDP scheme, there are no

extrinsic sources, such as defects or impurities, which
could also generate or enhance a shift in optical conduc-
tivity (see, e.g., Refs. [85–87]). In other words, the disorder
at the origin of our DDP is self-generated, arising from the
existence of thermally fluctuating lattice degrees of free-
dom that significantly affect the charge carrier dynamics. In
particular, our DDP gives a unique temperature-dependent
fingerprint, clearly distinguishing it from an impurity-
induced DDP. The general trend of a DDP seen in Fig. 3
qualitatively agrees with experimental observations [88],
also supporting the scaling behavior of the quantum-
acoustical DDP illustrated in Fig. 4 [89]. Noteworthy,
the transient dynamics driving the birth of an acoustical
DPP resides within a dynamical regime of nonperturbative
and coherent electron-lattice motion, thus lying outside the
reach of the conventional perturbative or Boltzmann trans-
port methods (see Ref. [47]). In fact, many bad and strange
metals are on the verge of a transient localization and/or
have strong electron-phonon coupling [1,46].
Moreover, alongside the DDP formation and Planckian

resistivity, the deformation potential perspective offers a
natural pathway for charge carriers in strange metals
to cross the MIR bound with impunity at high temperatures
[13,14], as already asserted in Ref. [47]. We explicitly
demonstrated the violation of the MIR limit with quantum
acoustics in another paper [58]. Our approach also carries
the potential to enlighten the perplexing phenomenon
of pseudogaps [4–8] and charge density waves [9–12].
In particular, we see that when electron motion strongly

FIG. 4. Position and width of the Drude peak. The panels show
the mean location (top) and width (bottom) of the optical
conductivity peak as a function of temperature for the studied
materials, averaged over 100 (static) and 10 (dynamic) deforma-
tion potential realizations, with error bars representing the
standard deviation within the given ensemble. Specifically, as
the temperature increases, there is a generic upward shift in the
Drude peaks towards higher energies (upper panel), accompanied
by a broadening of the peaks (lower panel). Colored dashed
curves show the fittings for the DDP location estimated with the
assumption that it is mostly determined by the strength of the
deformation potential (ℏωp ∝ Vrms). Furthermore, the width of
the DDPs live near to Planckian bound (ℏΔωp ∼ kBT), which is
indicated by the black dashed line.
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couples and synchronizes with low-energy lattice vibration
modes, it creates a favorable environment for incommen-
surate charge density order. Likewise, a similar resonance
promoted by the deformation potential could result in
temperature-dependent pseudogaps, i.e., a substantial sup-
pression in the density of the low-energy excitations, which
eventually melt away leaving the pseudogap phase regime.
We aim to study these considerations in future research.
In conclusion, we have introduced the phenomenon

of quantum-acoustical Drude peak displacement, which
involves the temperature-dependent shift and broadening
of the optical conductivity peak to finite frequencies,
demonstrated here for three archetypal strange metals.
Overall, the coherent state picture of lattice vibrations,
which has always been at one’s disposal but not utilized,
provides a fresh perspective on the investigation of the
mysteries of bad and strange metals. The manifested shift in
perspective simply comes from the coherent state limit of
quantum acoustics.
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Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li, P.
Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Colson,
L. Taillefer, and C. Proust, Universal T-linear resistivity
and Planckian dissipation in overdoped cuprates, Nat. Phys.
15, 142 (2018).

[19] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K.
Watanabe, T. Taniguchi, C. R. Dean, and A. F. Young,
Large linear-in-temperature resistivity in twisted bilayer
graphene, Nat. Phys. 15, 1011 (2019).

[20] G. Grissonnanche, Y. Fang, A. Legros, S. Verret, F.
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