
Contributions to Diffusion in Complex Materials Quantified with Machine Learning

Soham Chattopadhyay and Dallas R. Trinkle *

Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, USA

(Received 11 January 2024; revised 17 March 2024; accepted 5 April 2024; published 30 April 2024)

Using machine learning with a variational formula for diffusivity, we recast diffusion as a sum of
individual contributions to diffusion—called “kinosons”—and compute their statistical distribution to
model a complex multicomponent alloy. Calculating kinosons is orders of magnitude more efficient than
computing whole trajectories, and it elucidates kinetic mechanisms for diffusion. The density of kinosons
with temperature leads to new accurate analytic models for macroscale diffusivity. This combination of
machine learning with diffusion theory promises insight into other complex materials.
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The first verified laws for diffusion in fluids dates back to
the nineteenth-century work of Fick [1], and the last
century brought Einstein’s major breakthrough connecting
Brownian motion and diffusion [2], as well as Onsager’s
nonequilibrium thermodynamics [3]. In solids, systematic
studies of diffusion in metals go back to Roberts and
Austen’s work on gold diffusing into lead [4]. As the
fundamental kinetic process for atomic motion in a
material, diffusion controls materials processing for metals,
semiconductors, ceramics, and nanoparticles; the operation
of batteries and fuel cells; and degredation from corrosion
and irradiation [5]. The nano- or atomic-scale processes
controlling diffusion are often thermally activated and
driven by external forces; the understanding of thermally
activated processes goes back to Arrhenius [6], Eyring [7],
Polanyi [8], and Vineyard [9]. However, in complex
materials with multiple competing processes, diffusivity
can deviate from Arrhenius behavior, and is difficult to
connect individual processes to macroscale behavior.
Theoretical approaches to diffusion abound, where a

variety of approximations have been developed [10,11].
An incomplete list of approaches includes stochastic meth-
ods like kinetic Monte Carlo [12–17], master equation
methods based on cluster expansions [18–20], kinetic
mean-field approximations [21–23], path probability meth-
ods for irreversible thermodynamics [24–26], Green func-
tion methods [27–29], and Ritz variational methods [30–
32]. Recent work on a variational method [33] connected
many of these methods and provided a basis for comparing
accuracy. The computational methods take different ap-
proaches to the underlying difficulty in diffusion: the long-
time limit of trajectories complicates identifying important
processes and obscures how individual states and transitions
contribute to transport. Complex systems have a variety of
rates that themselves may be Arrhenius, but together the
diffusivity deviates from Arrhenius behavior. A state of the
system may have fast transitions to other states, but without
connected pathways, these fast transitions indicate trapping

without contributing to diffusion, leading to emergent
behavior such as percolation.
The variational principle for diffusion combined with

modern machine learning techniques presents an oppor-
tunity: by rewriting the diffusivity of a system as a sum over
individual contributions from every state and transition—
what we call “kinosons” (corresponding to movement)—
we analyze the transport processes in a new way and
discover non-Arrhenius behavior in complex systems.
Machine learning methods solve the optimization problem
in the variational method to accelerate the computation of
diffusivity and permit decomposition into kinosons. With
the density of kinosons, we directly identify new analytic
forms for the diffusivity and identify differences in the
behavior of species within a system. We demonstrate these
ideas with diffusion in a complex high-entropy alloy to find
fingerprints of percolation and a new analytic form for
diffusion.
Diffusivity can be alternatively computed from the mean

squared displacement at infinite time, or as the minimum of
average squared displacements. The Einstein-Smoluchowski
form [2] of diffusion,

D ¼ lim
t→∞

�ðxðtÞ − xð0ÞÞ2�
2dt

; ð1Þ

expresses diffusivityD in d dimensions as the average of the
long-time limit of squared displacement xðtÞ − xð0Þ divided
by time. By contrast, for a Markovian system, a variational
form [33] for Onsager transport coefficients,

D¼ inf
yχ

1

2d

�X
χ0
Wðχ→ χ0Þ�δxðχ→ χ0Þþyχ0 −yχ

�
2

�
χ

; ð2Þ

is expressed as an average over contributions from every
transition between any pair of states χ and χ0, with rate
Wðχ → χ0Þ and displacement δxðχ → χ0Þ. The diffusivity is
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minimized by optimizing the “positions” of states yχ . If every
state is moved to its optimal position yχ , then the mean dis-
placement out of every state is zero, while the mean squared
displacement grows linearly with time. The optimized dis-
placements between states is fδxðχ → χ0Þ ≔ δxðχ → χ0Þþ
yχ0 − yχ , and the total diffusivity is a sum over contributions
from every state χ with probability PðχÞ to any other state χ0:

κðχ; χ0Þ ≔ 1

2d
Wðχ → χ0Þ eδx2ðχ → χ0Þ: ð3Þ

These contributions we call “kinosons” (for “little moves”)
[34]. With the optimal yχ , the density of kinosons,

gðκÞ ≔
�X

χ0

Z
∞

0

δðκ − κðχ; χ0ÞÞ
�

χ

; ð4Þ

defines the diffusivity for the system and can elucidate the
diffusion process.
Having a variational form in Eq. (2) permits a variety of

methods to find the optimized displacements, including
combining methods for new solutions [33]. For example,
using kinetic Monte Carlo to generate finite-length trajec-
tories, Eq. (1) is a variational solution, even if trajectories
include only a single transition [33]. We can apply para-
metrized solutions that map our states χ into vectors yχ ,
such as convolutional neural networks [35], cluster expan-
sions [19,20], or a scaling of the average single-transition
displacement out of a state (called the “velocity bias,” bχ ,
that contains the escape rates from a state). The neural
networks contain the linear cluster expansion models as a
subset and should outperform them, while the velocity bias
contains explicit information about the rates. For all
models, we use machine-learning training methods with
Eq. (2) as our objective function; we construct two equal-
sized sets of states with Monte Carlo: a “training set” and a
distinct “validation set” of states. In this case, the ML
algorithm does not have access to the true diffusivity, but
instead optimizes to the lowest diffusivity, and our vali-
dation set verifies that we have not overtrained our models
or used insufficient diversity in the training set. With a
variational approach, the algorithm with the lowest diffu-
sivity is closest to the true value, and we can combine
multiple methods to increase the accuracy. Finally, once we
have our optimized yχ , we can find the density of kinosons
to identify important diffusion processes.
We apply this new approach to the diffusion of one of the

first and most studied high-entropy alloys, the Cantor alloy
[36,37]; details are available in the Supplemental Material
[38]. In this equiatomic Mn-Fe-Cr-Ni-Co alloy, diffusion
occurs by the movement of a single vacant site (a vacancy)
on a face-centered cubic lattice with a random arrangement
of five different chemical species. Due to the range of
different exchange rates for each species and the depend-
ency on the local environment, complex behavior emerges:

fast-exchanging species trap a vacancy when the vacancy
cannot find a different atom to exchange with to escape. For
a face-centered cubic lattice with twelve neighbors, this
percolation-like behavior is expected when the concen-
tration of fastest species drops below 20% [57,58].
Experimental and theoretical investigations of high-entropy
alloys have identified improved mechanical properties [59–
65] and high-temperature stability, which indicates slow
kinetics for phase separation [66,67]. This slow kinetics is
often surprising, due to the inclusion of “fast” exchanging
species in the alloys, and it presents an intriguing test for
the development of accurate theories of diffusion [68].
A complex material system lies along a spectrum from

ordered to fully random; the two ends of the spectrum
provide insight into the performance of different computa-
tional methods. We consider two model systems with five
components to understand how these approaches behave on
the ordered-to-random spectrum: one where the vacancy
exchange rate is fixed for each chemical species, and another
where the rate is sampled from log-normal distributions
convolved with the local environment out to the third-
nearest-neighbor distance of the vacancy. We select the
mean rate (ordered) and the mean and variance (random) for
the chemical species to match the distributions of our
complex high-entropy alloy. Figure 1 shows that the ordered

FIG. 1. Predicting diffusivity in an “ordered” (left) vs a “ran-
dom” (right) five-component model system. Diffusivity is shown
as a fraction of the one-step diffusivity prediction, with smaller
values indicating increased trapping. The five atomic components
have equal concentration, and they move via exchange with a
single vacancy, either with a fixed rate (ordered) or a distributed
rate (random) that depends on the chemistry. The fastest species
dominates the exchanges with the vacancy, but it has difficulty
moving over longer distances, as it needs to connect with other fast
species to escape trapping. The kinetic Monte Carlo results
converge to the true diffusivity as the number of steps increases
(lower diffusivity is more accurate). In the ordered case, a neural
network (NN) is most accurate, with only a single step; in the
random case, the rate-informed scaled bias basis (SBB) method is
the most accurate. A complex system lies in between ordered and
random, and we expect to need a combination of methods to
predict diffusivity.
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system diffusivity can be accurately predicted by a nonlinear
model (neural network, NN), which outperforms the linear
model (cluster expansion, CE) and does better than a simple
model relying only on the rates (scaled bias basis, SBB); the
configuration around the vacancy provides sufficient infor-
mation to build an optimized estimate of the mean displace-
ment from a state. However, for a truly random system, the
rates are much more diverse, and they flummox nonlinear
and linear models based on the configuration of species
around the vacancy; direct information about the rate is
needed to approach what comes from ten steps in a
trajectory. This type of random model has been previously
used to estimate diffusivity in high-entropy alloys [68–70],
but we note that a random model behaves differently than a
complex system.
A complex high-entropy alloy—with energies and bar-

riers from a modified-embedded atom model [67]—
includes aspects of ordered and fully random systems,
and so we combine a convolutional neural network with a
scaled residual bias correction in Fig. 2. The diffusivity is
converged after 100 transitions in each trajectory using
Eq. (1), or an ML approach gets similar results with single
transitions and Eq. (2). The ML approach starts with a
neural network to transform local environments around the
vacancy into an estimate for yχ by minimizing the dif-
fusivity in Eq. (2); we can further correct that estimate with
the residual velocity bias by directly incorporating infor-
mation about the escape rates. We note that the neural
network can be optimized using high-temperature kinetics
and applied out of domain at lower temperatures. This
combined method outperforms other computational ap-
proaches to the diffusivity, while also requiring orders of
magnitude less computational effort than computing long-
time trajectories. As we have a good approximation for our
optimized displacements, we also evaluate the kinosons for
this material system.
Figure 3 shows how the density of kinosons differs from

the distribution of rates in the problem, with a fingerprint of
percolation of the fast species in the optimized displace-
ments. The complex high-entropy alloy has five different
normal distributions for the energy barriers to exchange
with a vacancy, depending on the chemical species; the
distribution of rates is then approximately log-normal and
dominated by the fastest species (Mn). However, the
density of kinosons follows a different distribution: a
log-skewed normal, which we identify with an exponen-
tially modified Gaussian form [71–73]. The mean of ln κ
moves to lower values, while the skewness also favors
smaller values. The change in form is due to the relaxed
displacements eδx, which also show their own interesting
behavior. The vacancy exchanges with all five species in
the alloy, albeit with the highest probability for Mn.
However, the distribution of eδx looks remarkably different
for Mn—where it collapses to highest probability at zero
displacement—than for the other four species. While Mn is

the fastest exchanger, at 20% concentration most exchanges
are later undone, and hence there is the maximum prob-
ability for zero displacement. The collapse of the distri-
bution indicates the percolation limit, without connected
paths for Mn to transit.
Finally, we can examine the behavior of the density of

kinosons with temperature, and we derive a new functional
form for the diffusivity of high-entropy alloys in Fig. 4. An
exponentially modified Gaussian distribution has three
parameters—mean μ, variance σ2, and decay parameter
λ−1—that control the skewness. The parameters follow
simple temperature behavior that allows us to easily fit the
macroscopic diffusion behavior and extrapolate to lower
temperatures. The change in the density of kinosons with
temperature can be modeled with a few parameters,
producing a new functional form for this diffusivity in

FIG. 2. Predicting vacancy (left) and Mn (right) diffusivity in a
five-component complex high-entropy alloy. Diffusivity is shown
as a fraction of the one-step diffusivity prediction, with smaller
values indicating increased trapping. The real alloy has atomic
exchanges with a vacancy that depend on the local atomic
environment, behaving as a combination of an ordered and a
random system. The kinetic Monte Carlo results converge to the
true diffusivity as the number of steps increases (lower diffusivity
is more accurate). By combining a neural network with a rate-
informed scaled residual bias correction (NNþ SRBC, stars), it
is possible to predict diffusivity very close to the true value, while
only taking a single transition from one state to another. The
neural network trained on higher-temperature states can work at
lower temperatures in the same phase, with similar accuracy
(orange stars). This accuracy allows the computation of the
density of kinosons for this complex alloy, and an understanding
of the diffusion process.
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this class of alloys. In terms of our parameters, the
diffusivity is

DðEMGÞ ¼ λ

λþ 1
exp

�
−μþ 1

2
σ2
	
: ð5Þ

If σ and λ−1 were both zero, the diffusivity would follow an
Arrhenius form, as μ is linear in inverse temperature;
however, σ is also linear in inverse temperature and λ−1

is finite with a weak temperature dependence, producing
non-Arrhenius behavior in this complex high-entropy
alloy. We note that the vacancy and Mn have nonzero
λ−1, while Fe and Cr are better represented by log-normal
distributions (λ−1 ¼ 0). The result of this high-temperature
fit also extrapolates well to even lower temperatures. The
functional form of Eq. (5) comes from the density of
kinosons, revealed by our machine-learning analysis, and
we expect it to be applicable to other high-entropy alloys.
The new prediction of diffusivity agrees much better

with experimental measurements [74] in Fig. 5. The ratio

of diffusivity for the second- and third-fastest species
(Fe and Cr) to the fastest (Mn) removes the unknown
vacancy concentration, tracer correlation factor, and thermo-
dynamic factors in our random alloy—assumed to be equal
for our species—to robustly compare with the measured

FIG. 3. Density of kinosons κ (top) and optimized displace-
ments fδx (bottom) for the vacancy in a high-entropy alloy.
Without the optimized displacements, the distribution of ex-
change rates provides an “uncorrelated” estimate of the density of
kinosons that contribute to diffusivity; for this alloy, this is a
nearly log-normal distribution. Once the displacements are
known, the kinoson distribution skews to lower values and
follows a log–exponentially modified Gaussian. The optimized
displacements show a distinct distribution depending on whether
they are with a fast Mn or one of the slower elements; the Mn
displacements collapse to a peak at zero, while the other elements
are distributed around the jump distance in the face-centered
cubic lattice. This change is a signature of percolation-like
behavior for Mn.

FIG. 4. The density of kinosons’ mean, standard deviation, and
decay parameters with temperature for the complex high-entropy
alloy, and extrapolation to lower temperatures. The log–
exponentially modified Gaussian form in Fig. 3 is quantified
with three parameters, and their temperature dependence is
empirically fit. This reveals a new non-Arrhenius analytic form
for the vacancy diffusivity [Eq. (5)] that can be extrapolated
accurately to lower temperatures.

FIG. 5. Ratio of the diffusivity of Mn to those of Fe and Cr in
the cantor alloy. Using the average rates (“uncorrelated”) dis-
agrees with experimental tracer diffusion measurements [75],
while the neural network calculations of the optimized kinosons
are within experimental uncertainty.
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tracer diffusivity from experiments. The unrelaxed kinoson
prediction of “uncorrelated” diffusivity—what you would
expect using the distribution of transition rates—shows a
significant deviation from the experimental values. When the
optimized kinosons are used instead, the agreement is within
the experimental error estimates.
Working with a variational approach for diffusivity, a

machine-learning approach for optimization correctly pre-
dicted diffusion in a complex high-entropy alloy with a
fraction of the effort needed for trajectories. We take
advantage of a physics-informed neural network, leverag-
ing underlying crystal symmetries including translation and
the locality provided by a convolutional neural network to
gain insight into the underlying physical processes. With
the optimized displacements, we express diffusivity as a
sum of discrete jumps, called kinosons, which follow a
different statistical distribution than the transition rates in
the material. The distribution of optimized displacements
indicates the approach of a percolation transition for the
fastest species in alloy, helping to illustrate the complexity
of this material that lies between ordered and random. The
density of kinosons provides a new analytic form for the
diffusivity of high-entropy alloys, and the parameters can
be easily fit from the density of kinosons. This new analysis
technique highlights the power of physics-based machine
learning to model and even understand diffusion processes
in complex materials, transforming the high-dimensional
kinetic problem of diffusion into a one-dimensional density
of kinosons. This should prove a powerful tool for under-
standing diffusion in other solid materials, including
glasses, and the analysis of long-time kinetic processes
may be applied to other nonequilibrium problems in
materials or chemistry.
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