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In this Letter we derive conditions that predict the existence of two-phase periodic-pattern grain
boundary structures that are stable against coarsening. While previous research has established that elastic
effects can lead to phase pattern formation on crystal surfaces, the possibility of stable grain boundary
structures composed of alternating grain boundary phases has not been previously analyzed. Our theory
identifies the specific combination of grain boundary and materials properties that enable the emergence of
patterned grain boundary states and shows that the dislocation content of grain boundary phase junctions,
absent in surface phenomena, weakens the stability of the patterned structures. The predictions of the
theory are tested using a model copper grain boundary that exhibits multiple phases and two-phase pattern
formation. We discuss how, similarly to surfaces, elastic effects associated with grain boundary phase
junctions have profound implications for how grain boundary phases transform.
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Long-range elastic interactions are known to have
profound effects on phase transformations and microstruc-
tural evolution [1], enabling phenomena such as 2D self-
assembling systems [2–4], reverse coarsening [5,6], and the
formation of helium bubble superlattices within a crystal-
line material [7]. Elastic effects arising from interactions
between junctions of surface phases are known to have a
profound effect on phase transformations in two dimen-
sions [8,9]. Line forces, also known as force monopoles,
exist at surface phase junctions due to the difference in
surface stress [8,10–13]. A seminal study by Marchenko
and Parshin showed that the interaction of these surface line
defects can in some cases reduce the surface energy of the
system relative to a coarse two-phase state [10]. This
stabilizes a new surface structure, which can be described
as a periodic pattern composed of alternating surface
phases. The characteristic dimensions of the pattern depend
on the temperature, composition, and elastic properties of
the system.
Thermodynamics, which does not consider long-range

interactions, predicts surface phase diagrams with well-
defined phase equilibrium lines that correspond to the
equilibrium coexistence of the different phases. In reality,
elastic interactions can smear the coexistence lines defined
by the equality of free energies, creating a new domain
represented by the patterned state. Patterned surface states
with a well-defined pattern wavelength and no well-defined
transition temperature have been experimentally observed
and confirmed for surface phases of silicon [9].
Grain boundaries are internal interfaces inside a material

that, just like surfaces, exhibit different phases for fixed
macroscopic degrees of freedom [14–16], separated by line
defects called grain boundary phase junctions (GBPJs). Just

as for surfaces, the junctions between different GB phases
give rise to line forces, because different GB phases have
different GB stresses [17]. In this regard, GB phases are
equivalent to surface phases and have the potential for
forming patterned states. However, one crucial distinction
is that GB phase junctions also contain dislocations [17–
19]. This additional, positive, dislocation-dislocation inter-
action energy contribution can overcome the negative
elastic energy of line forces and destabilize the patterned
GB state. Recently, stable faceted grain boundaries with
nanometer-sized facets, a related patterning phenomenon,
have been directly observed in copper [20], confirming
theoretical stability conditions proposed by Hamilton et al.
[21]. However, the possibility of metastable pattern for-
mation at GBs is currently not known. In this Letter, we
derive equations describing the energy of the patterned
states at GBs that include both line forces and dislocation
interactions and demonstrate conditions under which pat-
terned GB states can exist. Using the predictions of our
model we identify a model copper GB system that exhibits
pattern behavior. Our simulations demonstrate that the
structure composed of alternating GB phases is stable
against coarsening at finite temperatures.
In a manner analagous to Hamilton et al.’s study of GB

facets [21], let us consider a periodic GB phase pattern
consisting of two GB phases as depicted in Fig. 1. We will
term the two GB phases to be the α and β phases. The
repeat distance of the pattern is of length d, and the lengths
of the α and β phases are l and d − l, respectively. Both a
line force and dislocation can exist at the GB phase junction
[17]. The line force arises due to the difference in GB
stresses: f ¼ �

τα11 − τβ11
�
ê1. The dislocation is a result of the
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difference in excess volume, excess shear, and the density
of atoms at the GB for the two GB phases [18]. The energy
per unit area of such a two-phase pattern depicted in Fig. 1
is expressed in terms of χ ¼ l=d as

EðχÞ ¼ Δγαβχ þ A
d
ln

�
d sinðπχÞ

πρ

�
þ 2Γαβ þ B

d
; ð1Þ

where Δγαβ ¼ γα − γβ is the difference in GB energy
between the α and β GB phases. A and B are elastic terms,
of units energy per unit length, related to f ; the Burgers
vector, b; and the elastic constants of the bulk material.
ρ and Γαβ are the core radius and core energy per unit length
of the GBPJ. A derivation of Eq. (1) is given in the
Supplemental Material [22].
From Eq. (1) it can be shown that a local maximum or

minimum energy exists for the dual-phase system if
dEðχÞ=dχ ¼ 0, for some χ ∈ ð0; 1Þ. For pattern formation

to be at least metastable, this extreme point, χc, must be a
local minimum: d2EðχÞ=dχ2��χ¼χc

>0. As d2EðχÞ=dχ2 ¼
−π2A=dsin2ðπχÞ, the possibility for pattern formation to
occur is entirely dependent on the sign of the elastic
coefficient, A. If A < 0, a pattern can exist in a metastable
state. The metastable patterned state containing two differ-
ent GB phases is energetically stabilized against coarsening
by the elastic energy of the interacting GBPJs, which is not
to be confused with the mixed states stabilized by entropy
discussed in Refs. [23,24].
In the general case, when using anisotropic elasticity

theory, we can only compute a numerical value for A.
However, to better understand the conditions necessary for
pattern formation to occur, we consider the case of an
elastically isotropic system, as this allows us to write a
symbolic closed-form expression for A [17]:

A ¼ Add þ App þ Adp; ð2aÞ

Add ¼ μ
�ð1 − νÞb22 þ ðb21 þ b23Þ2

�
=2πð1 − νÞ; ð2bÞ

App ¼ −f21ð3 − 4νÞ=8πμð1 − νÞ; ð2cÞ

Adp ¼ −f1b3ð1 − 2νÞ=2πð1 − νÞ; ð2dÞ

where μ is the shear modulus, ν Poisson’s ratio and bi the
components of the Burgers vector. The first term in A, the
elastic coefficient related to the dislocation-dislocation
interaction, Add, must be positive if the material is to be
elastically stable. The second term, App, the line force-line
force interaction must be negative if the material is to be
elastically stable. Adp, the line force-dislocation interaction
can be positive or negative depending on the signs of f1
and b3.
Let us now try to find what values of f1 allow for A < 0.

A is a quadratic equation with respect to f1, so finding the
roots of f1 is instructive:

f0;low1 ¼ −
2μ

3 − 4ν

�
b3ð1 − 2νÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21ð3 − 4νÞ þ ð1 − νÞ�4b23ð1 − νÞ þ b22ð3 − 4νÞ�q �

; ð3aÞ

f0;high1 ¼ −
2μ

3 − 4ν

�
b3ð1 − 2νÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21ð3 − 4νÞ þ ð1 − νÞ�4b23ð1 − νÞ þ b22ð3 − 4νÞ�

q �
: ð3bÞ

Mechanical stability requires that −1 < ν < 1=2, so the
roots of f1 must be real for an elastically stable material.
A necessary condition for pattern formation, A < 0, is met
if f1 > f0;high1 or f1 < f0;low1 . Thus the theory allows us to
formulate the following screening criteria for GBs capable
of pattern formation. GB phases should have large
differences in GB stresses, a small Burgers vector at the
GBPJ, and a small shear modulus of the material.

Following the criteria identified by the theory we
consider the possibility of pattern formation in a face-
centered-cubic Cu Σ5ð210Þ½001� GB composed of repeat-
ing units of split-kite and filled-kite GB phases [25]. These
two GB phases have a large difference in τ11 as shown in
Table I resulting in a large line force, f1 ¼ −4.66 J=m2,
while the Burgers content is relatively small, b < 0.5 Å
[18]. In this reference frame, the ê1 direction corresponds to

FIG. 1. Panel (a) depicts a schematic of a periodic GB phase
pattern, with the α and β GB phases represented by green and
orange regions. The repeat length of the pattern is d and the
length of the α phase is l. Panel (b) depicts the corresponding
periodic pattern of GBPJs represented as line forces and dis-
locations.
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h210i and the ê2 direction corresponds to h001i. To match
the boundary dimensions along the tilt axis in our co-
existence simulations we selected metastable, but near to
the ground state, split- and filled-kite structures [26].
Following the work of Barnett and Lothe [27], we

applied anisotropic linear elasticity theory to calculate
the elastic coefficient in Eq. (1), A, using an embedded-
atom method potential of Cu [28] within the molecular
dynamics simulation code, LAMMPS [29]. Equation (1)
remains valid in the anisotropic case, but in general the
elastic coefficient A can only be determined numerically
[27]. At 0 K, A was calculated from the elastic constants of
the system, τ11 for each GB phase (given in Table I), and
the Burgers vector of the GBPJ. Using the approach
outlined in Ref. [18], we found the Burgers vector of
the GBPJ to be b ¼ −0.368ê3. From these inputs we find
A ¼ −31 meV=Å, and as a result, predict pattern formation
to occur.
To test if the magnitude of A is large enough to maintain

pattern stability in the presence of thermal fluctuations, we
first consider 0 K molecular statics simulations of the effect
of pattern morphology on system energy. Since the two
different grain boundary phases are composed of a different
number of atoms (Table I) and the total number of atoms in
the simulation box is fixed, a heterogeneous state com-
posed of just two GB phase islands is always stable in a
finite temperature interval [30]. As a result, to investigate
the stability against coarsening, we have to consider a
double-period system consisting of four GB phases repeat-
ing over a length D, two split kites, and two filled kites as
shown in Fig. 2(a). The double-period system is con-
structed such that the total length of split- and filled-kite
islands is constant, and as a result the number of atoms in
the system too: if one split-kite island grows in length, the
other shrinks. If we constrain the larger (smaller) split-kite
island to have the same length as the larger (smaller) filled-
kite island, we can describe the system with one parameter,
Δl: the difference in length between the two islands of a
given GB phase junction, shown in Fig. 2. The elastic
energy from such a double-period structure can be
written as

ΔEDPðΔlÞ ¼ A ln

�
cos

�
2πΔl
D

��
: ð4Þ

The derivation of Eq. (4) is detailed in the Supplemental
Material [22]. In Fig. 2, Eq. (4) is compared to molecular
statics simulations of the double-period system as a
function of Δl, which are generated using the method
described in Ref. [17]. As the simulations contained
approximately 500 000 atoms, the molecular statics simu-
lations of the double-period structure were performed by
annealing the structures at 300 K for 20 ns and then
relaxing the structure using the FIRE optimization algo-
rithm [31]. While the grain boundary structures were
already in their lowest energy states from the beginning,
the structure of the GBPJ cores required additional opti-
mization which occurred during the annealing stage. The
GB energy of all systems converged to 10−8 eV=Å2.
However, due to the large system size and complex GB
microstructure, the scatter of the 0 K energies is still seen in
Fig. 2. Overall, however, we see an excellent agreement
between the prediction of Eq. (4) and direct GB energy
calculations of the patterned state using molecular statics at
0 K. Both calculations suggest that the regular patterned
state should be stable against coarsening.
To investigate the effect of temperature on the stability of

the patterned state, we calculated A in the temperature
interval from 0 to 1000 K (≈0.75Tm). We note that the
melting point, Tm, of this potential is found to be 1327 K
[32]. This required the calculation of the elastic constants,
τ11, and thermal expansion as a function of temperature, the
details of which are given in the Supplemental Material
[22]. The calculated elastic coefficient AðTÞ is shown in
Fig. 3. It remains negative, predicting the stability of the
patterned state at finite temperature. The temperature
however has a destabilizing effect as A gradually decreases

TABLE I. Properties of the two grain boundary phases con-
sidered in this Letter.

GB phase Split kite Filled kite

GB energy (J=m2) 0.942 0.953
τ11 (J=m2) −2.36 2.30
Structural unit area (a20)

ffiffiffi
5

p
× 2 2

ffiffiffi
5

p
× 7

Fraction of plane 1=2 6=7

FIG. 2. Panel (a) depicts the double-period GB-phase-patterned
state. Panel (b) shows a comparison of the energy of a double-
period structure using molecular statics simulations and elasticity
theory. The increasing energy shows that the patterned state is
stable against coarsening.
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in magnitude and reaches a near zero value at 1000 K,
marking the limit of the patterned state’s stability.
Finally, we tested the predictions of our theory and

calculations by directly simulating the evolution of the
double-period patterned state at high temperature using
molecular dynamics in the NVT ensemble. The patterned
state containing four GB phase islands shown in Fig. 4
should be stable against coarsening into a two-phase state.
For our MD simulations, we selected 800 K as the optimal
testing temperature. At higher temperatures, the stabilizing
force becomes vanishingly small and comparable to fluc-
tuations, so we expect the pattern to go away. At lower
temperatures, the island size fluctuations become too

infrequent to provide convincing proof of stability. The
initial patterned state with all four islands of equal length,
l ¼ D=4, is shown in Fig. 4(a). We ran the simulation for a
total of 2.3 μs.
We estimated the lengths of the four islands, shown in

Fig. 4(c), by calculating the contour of the GB (and the step
heights between GB phase junctions). The contour was
estimated by applying polyhedral template matching [33],
as implemented in OVITO [34], with non-FCC atoms
considered to be part of the GB. Hyperbolic tangent
functions were fit to the GB contour to calculate island
lengths, with more details of the simulation given in the
Supplemental Material [22]. The GB pattern showed
remarkable stability during the first 0.75 μs, during which
the length of all islands fluctuated around the equal size
state with l ¼ D=4, as shown in Fig. 4(c). We note that
states with different l are visited during this time interval as
the junctions migrate by several GB units (see movie in the
Supplemental Material [22]).
At approximately t ¼ 0.75 μs we observe a large fluc-

tuation towards a coarser state when the length of one of the
split-kite islands increases significantly at the expense of
the other split-kite island. However, at approximately
1.75 μs, the system returns to the patterned state, confirm-
ing its stability. The state of the system after 2.3 μs is
shown in Fig. 4(b).
The observed large fluctuation of the island size away

from the even size state at 800 K is indicative of an already
very small stabilizing contribution from the elastic inter-
actions compared to thermal fluctuations. We expect that at
higher temperatures thermal fluctuations will dominate the
evolution of such a microstructure eventually leading to
coarsening. At lower temperatures on the other hand we
expect the patterned state to be stable.
There is an increasing recognition that just like in 3D

materials, complex defect microstructures exist inside
interfaces and greatly influence the properties of polycrys-
talline materials. GBs may contain ordered or random
networks of disconnections and/or GB phase junctions.
These defected GB microstructures could form during
nonequilibrium processes such as plastic deformation,
grain growth, exposure to fluxes of point defects during
radiation damage, and other processes that involve changes
in temperature and chemical composition.
Our understanding of the dynamic evolution and stability

of these GB defect microstructures is currently severely
limited by the lack of techniques that enable the identi-
fication and visualization of these defects in the GB plane
both experimentally and in simulations. Only recently,
algorithms capable of robust identification of disconnection
and GB phase junctions have been proposed [19,35].
Despite these limitations, there is growing interest in
understanding the collective behavior of disconnections
and GBPJs. For example, a recent theoretical study
predicted GB topological transitions due to disconnections

FIG. 3. The elastic coefficient A, plotted as a function of
temperature confirms the stability of the patterned state at finite
temperatures. Its decreasing magnitude suggests that the temper-
ature decreases the stability of the patterned state. Error bars are
smaller than the size of the data points.

FIG. 4. Panels (a) and (b) depict the initial and final island
configurations. Blue atoms correspond to split-kites islands, red
atoms correspond to filled-kite islands, and yellow atoms
correspond to GB phase junctions. Panel (c) shows the evolution
of islands over time.
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[36], which could result in dramatic changes in GB
mobility [37].
The GB patterns studied in this Letter effectively

introduce a stable uniformly spaced network of discon-
nections (GBPJs) on the GB plane and could have
beneficial properties with respect to radiation damage.
Each of these junctions is a near-ideal source or sink of
atoms, because when such a junction moves, atoms are
absorbed or released due to the GB transformation. Such a
network of disconnections (GBPJs) could also have a
beneficial impact on mechanical properties such as ductility
by providing dislocation nucleation sites on the GB.
Complex dual-phase patterns composed of different GB

phases have recently been investigated by high-resolution
transmission electron microscopy (HRTEM) in Cu GBs
[38,39], with dual-phase patterned GB microstructures
having been directly observed by HRTEM in h111i tilt
GBs in Cu [39]. To explain the pattern metastability the
authors of the study postulated that an array of preexisting
disconnections inherited from processing could exist at the
boundary and these disconnections would effectively repel
GB phase junctions and make this dual-phase patterned
structure metastable. Using our analysis, we can estimate
the elastic coefficient to be A ¼ 40 meV=Å, which means
that this particular Cu GB (without additional preexisting
disconnections) should not form a metastable patterned
state. We conclude that the observed state is either a result
of an incomplete transformation or indeed the presence of a
preexisting array of additional disconnections.
Inspired by well-known theoretical and experimental

results for surface phases, here we investigated the stability
of patterned states of GBs composed of different GB phases
separated by line defects containing both line forces and
dislocations. We derived equations describing the energy of
such states and identified conditions where the patterned
state becomes metastable, providing a barrier to coarsening
into a more common two-phase structure. We show that the
Burgers content present at GB phase junctions has a
destabilizing effect on the patterned state. Using our
theoretical model we identified a model system that should
exhibit pattern behavior and verified it by direct atomistic
simulations at finite temperature as well as energy calcu-
lations at 0 K.
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