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Understanding turbulence rests delicately on the conflict between Kolmogorov’s 1941 theory of
nonintermittent, space-filling energy dissipation characterized by a unique scaling exponent and the
overwhelming evidence to the contrary of intermittency, multiscaling, and multifractality. Strangely,
multifractality is not typically envisioned as a local flow property, variations in which might be clues
exposing inroads into the fundamental unsolved issues of anomalous dissipation and finite time blowup.
We present a simple construction of local multifractality and find that much of the dissipation field remains
surprisingly monofractal à la Kolmogorov. Multifractality appears as small islands in this calm sea, its
strength growing logarithmically with the local fluctuations in energy dissipation—a seemingly universal
feature. These results suggest new ways to understand how singularities could arise and provide a fresh
perspective on anomalous dissipation and intermittency. The simplicity and adaptability of our approach
also holds great promise in applications ranging from climate sciences to medical data analysis.
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As a central scaffold for interpreting and describing out-
of-equilibrium pattern forming processes [1–4], multifrac-
tality has inevitably woven itself into the most ubiquitous of
natural phenomena: turbulence [5–8]. And so, unsurpris-
ingly, the Frisch-Parisi multifractal model [9–11] remains
the key theoretical justification for the most baffling
observations which go beyond the Kolmogorov picture
of turbulence. These include the anomalous scaling of
correlation functions of velocity differences [10,12–14],
strongly non-Gaussian distributions of velocity gradients
[15–17], and fluid accelerations [18]. Is there, however, an
obvious way which makes the multifractal formalism more
potent in attacking fundamental questions such as inter-
mittency, anomalous dissipation, and finite-time blowup?
We show this is possible through spatially local measures of
multifractality which in turn leads to a surprising shift in
perspective: Most of turbulence is essentially monofractal
à la Kolmogorov with few patches of multifractality
correlated with regions of sharply varying dissipation.
This complements a recent analysis [19–21] bridging the
multifractal formalism to weak solutions of the Navier-
Stokes equation and possibilities of finding disconnected,
spatial patches of intense high frequency fluctuations.
Whence, the inevitable conclusion that fully developed
turbulence is best described as intermittent, multifractal
islands on a vast and calm Kolmogorovean sea.
When applied to the intermittent, energy dissipation field

ϵðxÞ (for instance, a 2D slice of dissipation [22–24] shown
in Fig. 1), a multifractal analysis leads [25] to the total
dissipation in d-dimensional “boxes” of size r, denoted Er,
scaling as a fractal power law with a variable scaling

exponent α ¼ 3h (where h is the standard Hölder exponent)
as Er ∼ rα−1þd, and their order q moments Zq ≡P

Nr
Eq
r ∼

rðq−1ÞDq lead to generalized dimensions Dq [10,26–29]
(shown in Fig. 1 inset (A), consistent with earlier mea-
surements [10,26]). This is a direct corollary of the multi-
fractal interpretation [9] that despite the three-dimensional
embedding dimension, the energy dissipation—which is a
culmination of the energy cascading process—accumulates
in different, entangled fractal subsets with unique dimen-
sions [39]. It is then possible to associate the fractal
dimension fα of these subsets with exponents lying
between α and αþ dα yielding the well-known singularity
or multifractal spectrum fα − α (as seen in Fig. 1, inset B):
A broad fα curve is the clinching measurement showing
turbulence admits a range of scaling exponents and not just
the mean field Kolmogorov exponent α ¼ 1. Obtaining
these exponents and corrections to the Kolmogorov
prediction, directly from the Navier-Stokes equation, still
remains elusive.
We here arrive at an impasse, for the (global) multifractal

analysis tends to suppress an unremarked symptom of its
construction: Even if a measure is multifractal only in
isolated patches, one is bound to find a broad fα curve
representing the entire data [25]. Therefore, it is not
possible to conclude from the usual analysis whether
turbulence is uniformly multifractal. Indeed, while statis-
tical homogeneity and isotropy underlie (small-scale)
turbulence theories [43,44], the dissipation field is decid-
edly inhomogeneous. We now uncover the precise relation
between such local variations in dissipation and their
corresponding degree of multifractality.
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In fact, while the first observations of intermittency
[45–48] were already suggestive of spatial variations of the
singularity spectrum, more recent work [49] on estimates
from the Navier-Stokes equation is not only consistent with
the measured non-Gaussian character of turbulence [45] but
also admits the possibility of isolated, anomalously active
regions of dissipation. Remarkably, investigations of
weak solutions also provide key insights into the success
of the Frisch-Parisi multifractal model with rigorous
estimates for a range of fractal dimensions where dissipa-
tion occurs [19–21].
It seems reasonable to wonder why should the fractal

sets, the singularity spectrum, and the Hölder exponents not
have a local character when everything else in turbulence
like the velocity, vorticity, and dissipation strongly vary in
space? This would be revealed if it were possible to
measure the generalized dimensions DqðxÞ and fαðxÞ −
αðxÞ locally. Beyond fundamentally expanding our notion
of multifractality from a global to a local flow feature, these
variations would assist the detection of (possible) singular
h < 1=3 regions of anomalous dissipation [50,51]. Closest,
so far, have been wavelet techniques and local energy
transfer concepts [52–55] to characterize fields similar to
the intractable hðxÞ and multiscale urban morphology
studies [56]. Our work exploits the crucial underlying

variation in multifractality, allowing us to discover the local
distributions of the Hölder exponents.
We develop a tiling approach [25], illustrated in Fig. 1

where a (exaggerated) white grid is superimposed on a 2D
slice of the dissipation field, leading to square data tiles
with edge LT (or cubes, for 3D analysis). Each tile,
centered at x, is treated independently, and multifractality
is measured within every tile following the usual approach
typically adopted for the full dataset. We tested tiles in the
range 2η < LT < 16η, where η is the Kolmogorov dis-
sipation scale. Larger tiles (still smaller than the inertial
range) give a wider range of r values over which to
construct ZqðxÞ while, for a truly localized measurement,
the tiles should be as small as possible. The lower end of
LT , however, is dictated by the need for enough points to
measure the scaling of ZqðxÞ unambiguously [57]. We
report results for LT ≈ 10η and have checked that they are
robust across the range of LT .
The dissipation field of course varies within these tiles,

and we find it useful to keep track of, for each tile, the
maximum ϵmaxðxÞ, minimum ϵminðxÞ, and mean ϵ̄ðxÞ
dissipation, as well as ΔϵðxÞ≡ ϵmaxðxÞ − ϵminðxÞ as a
measure of the fluctuation of the field, all normalized by
the global mean dissipation hϵi. We use data from four
different direct numerical simulations (DNSs)—both in
house [25] and publicly available data from the Johns
Hopkins Turbulence Database (JHTDB) [22–24]—with
Taylor-scale based Reynolds numbers 200 ≤ Reλ ≤ 1300.
Our results are consistent across this wide range of
Reynolds numbers and independent of simulations; in
what follows, we present results from a 40962 × 192 subset
of the 40963 dataset. We quantify the reliability of our local
multifractal measurements (see the Supplemental Material
[25]) with the Pearson correlation coefficient ρ for the linear-
regression fits used to obtain DqðxÞ. We find ρ > 0.98 for
more than 99.98% of the 3D tiles.
Before stepping into spatially varying multifractal spec-

tra, we pause to look at the special case of D2 (q ¼ 2), the
correlation dimension, that gives a measure of the inho-
mogeneity in a fractal set [29,58]. Figure 2 shows a planar
cross section of the D2ðxÞ field [59], starkly varying in
space, with sizeable coherent regions of similarly valued
D2. This shows that the field is far from random and
reflective of the structures in the dissipation field. We wish
to underline that our method allows one, for the first time,
to visualize this field. This opens up new directions to study
the structure of these intrinsic, and as yet elusive, fields of
generalized dimensions underlying the fractal skeleton of
turbulence.
We are now equipped to calculate local measures of

multifractality—fαðxÞ − αðxÞ—and uncover whether tur-
bulence is indeed uniformly multifractal. We know that,
even locally, the singularity spectrum should satisfy
α ⩾ αmin ¼ −2, fα ⩽ αþ 2, and fα ⩾ 0 [20]. The maxi-
mum of the spectrum in three dimensions is fα ≤ 3; within

FIG. 1. Spatially varying dissipation ϵ at a representative cross
section from the Johns Hopkins Turbulence Database for a flow
with Reλ ≈ 610. Superimposed is a regular tiling as a pictorial
guide to show the subdivisions used for local multifractal analysis
(made with Processing [41,42]). Generalized dimensions Dq

[inset (A)] and the singularity spectrum fα − α [inset (B)]
calculated over the full 2D cross section show the essential
global multifractal nature of the dissipation field, as is usually
reported.
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the monofractal, nonintermittent, Kolmogorov view of
turbulence, the singularity spectrum is single valued with
α ¼ 1 and fα ¼ 3. While there is no bound (in real
turbulence) for αmax, it is reasonable to assume αmax ≈ 3
for a region with no singular structures.
It therefore follows that an intuitive but precise measure

of the degree of local multifractality in the flow, exploiting
the spread of singularity strengths, is ΦðxÞ ¼ std½αðxÞ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hα2i − hαi2

p
, where h·i denotes an average over all values

of α. It follows therefore that monofractal regions show
Φ ≈ 0, and larger values of Φ correspond to high degrees
of local multifractality. Theoretically, it is easy to show
that for α uniformly ranging from −2 to 3, the largest
values of Φ, corresponding to highly multifractal regions,
are Φ ≈ 1.7 ∼Oð1Þ. Thence, our approach ought to yield
0≲ΦðxÞ≲Oð1Þ, with the lower and upper bound
corresponding to monofractal and multifractal statistics,
respectively.
First, in Fig. 3(a) we show local DqðxÞ vs q curves

measured at different spatial positions, corresponding to
different values of ϵ̄. Clearly, while the shape of each curve
resembles the global statistics (Fig. 1, inset A), a very
strong spatial dependence on where we measure the
generalized dimensions is unmistakable. Furthermore,
the spread in DqðxÞ is not trivially related to mean
dissipation ϵ̄ (or even the maximum ϵmax) around x, as
one would expect from naïve intuition; the secret to such
variation, as we shall demonstrate, lies in how locally
fluctuating (within each tile) the dissipation field is.
All this brings us to the central message of this work. In

Fig. 3(b), we show representative plots of local fαðxÞ −
αðxÞ for the same locations (see legend for panel a).
Quite clearly—and contrary to what one sees in the

conventional global measurements of the singularity spec-
trum [see, e.g., Refs. [10,26] and Fig. 1, inset]—there are
several regions where the flow is essentially monofractal
(the fα spectrum being very narrow) and hence consistent
with the ideas of Kolmogorov, while other highly multi-
fractal regions lead to broad fα curves. These results
already hint that multifractality can be considered as a
local property of a field.
In Fig. 3(c) we show a pseudocolor plot of Φ. Quite

remarkably, much of the flow is Kolmogorov-like with
Φ ≪ 1; the highly multifractal regions—ΦðxÞ ∼Oð1Þ—
are isolated patches which, as we shall see, correlate
completely with the extreme (singular) regions of energy
dissipation. This result is remarkable. It illustrates that,
surprisingly, turbulent flows are not uniformly multifractal;
indeed on the contrary, much of the turbulent flow seems to
respect, locally, Kolmogorov’s ideas of an exact, self-
similar cascade. We also note that the range of ΦðxÞ is
within the theoretical range discussed above.
What determines the magnitude and variation of ΦðxÞ?

We find that the probability distribution function (PDF) of
Φ, conditioned on ΔϵðxÞ, is revealing. In the inset of
Fig. 3(d) we show this PDF for three different values of Δϵ.
Clearly, as evident from the previous measurements, the
distribution is sharply peaked at values of Φ≳ 0 with an
(likely) exponential tail for Φ ∼Oð1Þ. We also find that the
probability of having a higher degree of multifractality
increases, albeit marginally, when there is a greater varia-
tion of ϵðxÞ within a tile. The mean value Φ̄, for a given Δϵ
(sampled in windows of Δϵ� 0.25), grows as Φ̄ ∼ logðΔϵÞ
[Fig. 3(d)]. This logarithmic dependence marks an impor-
tant relation between a local dissipative structure charac-
terized by fluctuations in ϵ and its multifractal nature. We
recall that the log-normal theory (K62) [60] also leads to a
logarithmic relation, albeit globally [8,26]. Our results in
fact reduce to K62 if Φ does not fluctuate significantly.
However, Figs. 3(b) and 3(c) show that such an assumption
cannot hold, with the relation between ϵ and fα calling for
greater nuance. Further, we highlight that this logarithmic
dependence seems universal and is found even for a
measure composed of pure noise.
What then is the role of the average dissipation ϵ̄ðxÞ in

determining the spatial nonuniformity of ΦðxÞ? A joint
distribution [Fig. 3(e)] shows that the answer is fairly
nontrivial. Clearly, the most likely value of ΦðxÞ grows
logarithmically with ϵ̄ðxÞ as shown through the dashed
white line. For low values of ϵ̄ðxÞ, it is far more likely to
have ΦðxÞ ≪ 1; although, surprisingly, the less likely
extreme values of ΦðxÞ also coincide with regions of
low ϵ̄ðxÞ. This reflects that it is not the mean dissipation in a
region, but the variation of dissipation, that manifests
multifractality [as shown in Fig. 3(d)]. At higher ϵ̄ðxÞ,
the smallest admissible values of ΦðxÞ slightly increase
with ϵ̄ðxÞ, while the largest values of ΦðxÞ also dip. While
this result might appear contrary to our notion that extreme

FIG. 2. A cross section of the D2 (correlation dimension) field,
obtained from a local multifractal analysis, which coarsens a
4096 × 4096 × 8 data slice to 512 × 512 tiles. The stark variation
in D2 over space, which remained hitherto unseen, highlights
coherent regions of D2 nestling in a fluctuating (and nonrandom)
field.
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dissipation alone begets multifractality, it finds parallel in a
recent study showing local Hölder exponents, measured by
proxy, also do not trivially correlate with inertial dissipation
[53]. In fact, experiments have shown that the most
dissipative structures locally resemble Burgers vortices
[61]. While these intense spots make the entire field highly
intermittent and contribute to broadening the global multi-
fractal spectrum, the local multifractal picture can be
different. We have tested this idea [25] on a more tractable
curdling model and found the conclusions surprisingly
robust.
We finally tie up these ideas with a visual illustration of

where the Kolmogorov-like regions are embedded, in
Fig. 3(f), restricting the dissipation field to large values
ϵ̄ðxÞ ≥ 1, superimposed with ΦðxÞ ≤ 0.5. Unlike the
sparsely populated high ϵ̄ðxÞ regions, the more frequent

low ϵ̄ðxÞ regions (hidden from view here) remain largely
occupied by low ΦðxÞ (these regions are also coincident
with mild to low kinetic energy). Clearly, then, the regions
of monofractal flow are strongly correlated to the more
populous regions of mild dissipation, showing that the
Kolmogorov-like regions locally dissipate less than the
multifractal regions.
We have given first evidence that multifractality in

turbulent flows is not spatially uniform, which compels
a revision in our accustomed understanding of turbulence.
While this may conform to a belief shared by some, it is
important to actually show that this can be measured. In the
absence of a robust theory, we make a final test in a Navier-
Stokes-like flow—the decimated turbulence model [30]—
which is guaranteed to be nonintermittent [25]. A con-
firmation of the conclusions drawn above would mean that

FIG. 3. (a) Local generalized dimensions Dq vs q, for randomly sampled tiles, and (b) the corresponding local fα − α spectra of
singularity strengths, show strong variation in the multifractal properties over space. (c) The resultant Φ field shows large regions of the
flow are almost monofractal with Φ ≈ 0, with pockets of Φ ∼Oð1Þ with its PDF [(d), inset)] shifting toward higher Φ when sampled in
regions of higher Δϵ ¼ ϵmax − ϵmin. (d) The mean value ofΦ is shown to grow as the logarithm of Δϵ. (e) The joint distribution ofΦ and
the mean dissipation ϵ̄ in each tile show that most likely Φ values grow logarithmically (dashed white line) with ϵ̄. (f) A volume
rendering of ϵ̄ ≥ 1 is superimposed with the Φ ≤ 0.5 field, which being spatially exclusive, clearly illustrates that the most monofractal
flow regions are coincident with mild dissipation.
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the nonintermittent flow ought to show lower values of
ΦðxÞ than what is measured in real, intermittent turbulence.
Indeed, this is what we find as PDFs of ΦðxÞ consistently
shift toward lower values [25] with decreasing intermit-
tency confirming the relation between intermittency and
local multifractality [62].
To summarize, our work shows that turbulence manifests

strong multifractality only in localized pockets of inter-
mittency with a quiescent Kolmogorovean background of
mild dissipation. Furthermore, while local measurements of
a single hðxÞ remain intractable (as even locally turbulence
seems to admit a range of h), our prescription of ΦðxÞ
provides a starting point to ask where and whether
singularities could occur. Our framework opens up a
completely novel avenue for studying flow singularities
and generalized dimension fields in tandem with structures
like intense vorticity worms [63–65], nonlocally induced
velocity jets [66], or precursors to singular dissipation
[61,67]. The lessons learned from local multifractality will
also be useful on a different front: Reduced predictive
models for synthetic turbulence that rely on global multi-
fractal statistics can now inch closer to the real nature of
physical fields, by accounting for the spatial variation in
multifractality [8]. Studies with classical curdling models
[25] will hence be illuminating.
Moreover, this projects multifractality beyond its sta-

tistically reductive role [68] to applications in prediction
and diagnostics. Therefore, this approach can be applied to
data from across disciplines, where multifractality has been
found emergent like in physics and chemistry [1], medicine
[69], geophysics [70], climate [71], and finance [72], and is
likely to be just as revealing in unpredictable ways.
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